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1. Differential Equations and

Holomorphic Foliations



1.1. Differential Equations

Darboux’s Method (1878)

• Differential equation on R2

dy

dx
=

q(x , y)

p(x , y)
, (1)

d = max{ deg p, deg q }

• Differential equation on CP2

α = 0 (2)

α is a nonzero rational 1-form on CP2,

α
∣∣
C2 = p(x , y)dy − q(x , y)dx
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1.1. Differential Equations

• Differential equation on a compact complex surface X :

α = 0

α is a nonzero rational 1-form on X .

α|U = a(x , y) dy − b(x , y) dx = 0 ⇐⇒ dy

dx
=

b(x , y)

a(x , y)

• The poles and 1-dimensional zeros of α are canceled

α =
{

a(x , y) dy − b(x , y) dx
}
,

=
{

s(x , y) ·
(

p(x , y)dy − q(x , y)dx
)}

,

= s · ω,

• ω is holomorphic with at worst isolated zero points.
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1.2. Holomorphic Foliations

• As differential equations: α = 0 ⇐⇒ ω = 0

• C ⊂ X is a holomorphic curve (not necessarily compact).

C is a solution of α = 0 ⇐⇒ ω|C ≡ 0

• The set of holomorphic solutions of α = 0

F = F(α) :=
{

C ⊂ X
∣∣ ω|C = 0

}
is called a holomorphic foliation on X .

• F(α1) = F(α2) iff there a rational function ϕ such that

α1 = ϕ · α2

• D(α) := div(s) = div(α) = (α)0 − (α)∞

NF = O(−D(α)): Normal bundle of F .
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1.3. An Example

Linear system:

• ϕ = ϕ(x , y) : X 99K P1: non-constant rational function.

Λ(ϕ) :=
{

Ct : ϕ(x , y) = t
∣∣∣ t ∈ P1

}
Λ(ϕ): Linear system of dimension 1 without fixed part

Foliation:

• We get a nonzero rational 1-form α = dϕ and a CDE

dϕ = 0

One can check that

F(dϕ) = Λ(ϕ).
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1.4. Algebraicity

• “α = 0 is algebraically integrable” or “F(α) is algebraic”

⇐⇒ All solutions C ∈ F(α) are algebraic curves

⇐⇒ F(α) = Λ(ϕ) for some rational function ϕ

⇐⇒ α = ψdϕ for some rational functions ϕ and ψ

• Definition:

1) ϕ is called the rational first integral of α = 0 or F .

2) ϕ : X 99K P1 is birational to some fibration f : X → B of
genus g .

g(ϕ) = g(F) = g .
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2. Poincaré Problem and

Painlevé Problem



2.1. Poincaré Problem

• Poincaré Problem: Is it possible to decide if a differential
equation α = 0 is algebraically integrable?

Part 1: Find a height inequality for ϕ = f /g ,

h(ϕ) := max{deg f , deg g} ≤ H = H(dϕ).

H = H(dϕ) depends only on the differential equation dϕ = 0.

Part 2: Algebraic computation.
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2.1. Poincaré Problem

• Poincaré’s Height Formula: If Ct =
∑

i ni (t)Ct,i , then

2h(ϕ)− 2 = d +
∑
t

∑
i

(ni (t)− 1) deg Ct,i

• Poincaré’s Genus Formula: If the DE dϕ = 0 has
d2 + d + 1 distinct singularities and d ≥ 4, then

g(ϕ) =
d − 4

4
h(ϕ) + 1.
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2.1. Poincaré Problem

Darboux’s Solution:

• Theorem: If F contains at least N algebraic curves, then all
of the curves in F are algebraic.

1. Darboux (1878): N =
1

2
d(d + 1) + 2

2. Jouanolou (1979): N = h0(X ,KF ) + h1,1(X )− h1,0(X ) + 2
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2.2. Painlevé’s Problems

[1] ”Sur les intégrales algébriques des équations différentielles du
premier ordre” and ”Mémoire sur les équations différentielles du
premier ordre”, 1890s.

• Problem 1: Is it possible to decide if α = 0 admits a rational
first integral ϕ of genus 0? (Solved by Miyaoka)

• Problem 2: Is it possible to decide if α = 0 admits a rational
first integral ϕ which is an elliptic function? (g = 1)

• Problem 3: Is it possible to decide if α = 0 admits a rational
first integral ϕ which is a hyperelliptic function? (g ≥ 2)
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2.2. Painlevé’s Problems

• Painlevé’s Problem: For a given g , is it possible to decide if
α = 0 admits a rational first integral ϕ of genus g?

• Equivalent Problem: Find an inequality

g(ϕ) ≤ G = G (dϕ),

G depends only on the CDE dϕ = 0.



2.2. Painlevé’s Problems
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(A) The study of differential equations dϕ = 0.

(B) The study of one dimensional families of curves Λ(ϕ).

Poincaré’s suggestion:

1) Study the properties of families of algebraic curves Λ(ϕ).

2) Check if these are the properties of the CDE dϕ = 0.

3) Generalize them to arbitrary differential equations α = 0.
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of differential equations.

2) Find numerical invariants of complex differential equations

3) Classify complex differential equations according to their
invariants.

4) Characterize those complex differential equations which are
algebraically integrable.

5) Apply to some problems on real differential equations.
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AG: Singular points of Λ(ϕ) = F(dϕ).

1) ∂ϕ
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∂y (p) = 0.
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2) Base points of Λ(ϕ).

3) Singular points of a curve in Λ(ϕ).

DE: Singular points of F(ω),
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)

1) f (p) = g(p) = 0. (Darboux 1878)

2) Dicritical points p of F(ω): There are infinite many curves in
F(ω) passing through p. (Poincaré 1891)

3) Non-dicritical singular points of F(ω).
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• Base point of Λ(ϕ) or dicritical singular point of F .
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• There is a resolution σ : S → X such that Λ(σ∗(ϕ)) is a
fibration f : S → B.

DE: Resolution of dicritical singular points of F(α)

• There is a resolution σ : S → X such that F(σ∗α) has no
dicritical singular points. (Seidenberg 1968)
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Eigenvalue of a singular point p of
dy

dx
=

q(x , y)

p(x , y)

• Assume p = (0, 0){
ẋ = p(x , y) = ax + by + P2(x , y)

ẏ = q(x , y) = cx + dy + Q2(x , y)

• λ1, λ2 are the eigenvalues of the following matrix

M =

(
a b
c d

)
• If λ1 6= 0 or λ2 6= 0, then the eigenvalue of α at p is defined by

λp =
λ2
λ1

or λp =
λ1
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ẋ = p(x , y) = ax + by + P2(x , y)
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AG: Resolution of Singularities of Λ(ϕ)

1) The simplest singularities of Λ(ϕ) are normal-crossing
singularities xayb = 0.

2) There is a resolution σ : S → X such that Λ(σ∗(ϕ)) is a
normal-crossing fibration f : S → B.

3) There is a minimal normal-crossing model.

DE: Resolution of Singularities of α = 0

1) The simplest singularities of α = 0 are the reduced
singularities

2) There is a resolution σ : S → X such that all singularities of
σ∗α = 0 are reduced. (Seidenberg 1968)

3) There is a minimal reduced model.
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AG: Uniqueness of minimal model f : X → B

• If the minimal normal-crossing model of a fibration is not
unique, then the genus g = 0.

DE: Uniqueness of minimal reduced model F(α)

• (Marco Brunella, 1999) If the reduced foliation F(α) has
two minimal models, then

1) F(α) is a genus g = 0 fibration.

2) F(α) is a Riccarti foliation (i.e., a foliation transverse to a
genus g = 0 fibration).

3) F(α) is a very special foliation on P2.
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Birational invariants of a minimal CDE α = 0

• Usually, for any differential equation α = 0, we use one of its
minimal model α = 0 to define its birational invariants:

I (α) := I (α)

• The invariant I (α) is said to be a birational invariant if its
definition is independent of the choice of the minimal models.
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AG: Global data (Serrano 1990s)

1) Modular canonical divisor of a minimal f : X → B

K (f ) = KX/B −
∑
F

(F − Fred)

2) Pluri-canonical linear systems |nK (f )|.
3) Zariski decomposition K (f ) = P + N, P nef and PN = 0.

DE: Global data
(M. Brunella, L.G. Mendes, M. McQuillan, Y. Miyaoka)

1) Canonical divisor of α = 0: K (α) = KX − D(α)

2) Pluri-canonical linear systems |nK (α)|.
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6. New Birational Invariants

• For a complex number u ∈ C, we define

β(u) =

{
gcd(a,b)2

ab , if u =
a

b
∈ Q \ {0} ,

0, otherwise .

χ(u) =
1

12

(
u +

1

u
+ β(u)

)
− 1

4
, (u 6= 0).

• χ(u) is called the Dedekind number of u

• Let ϕ = xayb. Then dϕ = 0 is aydx + bxdy = 0, the
eigenvalue of the singular point p = (0, 0) is

λp = −a

b
, or λp = −b

a



6. New Birational Invariants

AG: Local invariants

• Let p = (0, 0) be a singular point: xayb = 0. r =
a

b
6= 0,

βp = β(r), χp = χ(r)

DE: Local invariants

• For a reduced singular point p of α = 0,

βp(α) : = β(−λp),

χp(α) : = − 1

12

(
BBp(α) + mp(α)− βp(α)

)
,

where BBp(α) is the Baum-Bott index.
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AG: Global invariants of f : X → B

1) The genus g of f : X → B. (Painlevé’s Problem)

2) The modular invariants of f , (J : B →Mg )

κ(f ) = deg J∗κ, δ(f ) = deg J∗δ, λ(f ) = deg J∗λ

DE: Global invariants of α = 0

1) The genus g can not be recognized by its differential
equations. (Lins Neto, 2002)

2) The modular invariants can be recognized by their differential
equations. So we can define the Chern numbers of α = 0.

(Tan, 2015)
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2) The modular invariants of f , (J : B →Mg )

κ(f ) = deg J∗κ, δ(f ) = deg J∗δ, λ(f ) = deg J∗λ

DE: Global invariants of α = 0

1) The genus g can not be recognized by its differential
equations. (Lins Neto, 2002)

2) The modular invariants can be recognized by their differential
equations. So we can define the Chern numbers of α = 0.

(Tan, 2015)

c2
1 (α), c2(α), χ(α).



6. New Birational Invariants

AG: Global invariants of f : X → B

1) The genus g of f : X → B. (Painlevé’s Problem)
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• Suppose α = 0 is minimal, K (α) = P + N is the Zariski
decomposition.

c2
1 (α) = K (α)2 +

∑
p∈N

βp(α),

c2(α) =
∑
p 6∈N

βp(α),

χ(α) = χ(OX )− 1

4
K (α)D(α) +

∑
p

χp(α).

• For an arbitrary differential equation α = 0, we define the
Chern numbers of α = 0 as those of a minimal model.

• The definition of Chern numbers is independent of the choice
of the minimal models.
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• Birationality: Chern numbers are birational invariants.

• Modularity: If α = 0 is algebraically integrable, and
f : X → B is the corresponding fibration, then

c2
1 (α) = κ(f ), c2(α) = δ(f ), χ(α) = λ(f ).

• Rationality (Miyaoka, 1985): K (α) is not pseudo-effective
⇐⇒ F(α) is a rational fibration.

• Zariski’s decomposition: Suppose K (α) is pseudo-effective
and K (α) = P + N is the Zariski’s decomposition. Then

c2
1 (α) = P2 ≥ 0.

c2
1 (α) > 0 iff α = 0 is of general type, i.e., κ(α) = 2.
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• Theorem: Suppose c2
1 (α) < 4χ(α). If α = 0 is algebraically

integrable with a rational first integral ϕ of genus g , then

g ≤ 4χ(α)

4χ(α)− c2
1 (α)

In particular, if c2
1 (α) <

4a

a + 1
χ(α), then g ≤ a.

• (G. Xiao, 1984) For any g ≥ 2, there is a fibration f : X → B
of genus g such that α = df satisfies c2

1 (α) = 4χ(α).

• Theorem: A CDE α = 0 satisfying 0 < c2
1 (α) < 2χ(α) is not

algebraically integrable.
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7. Classification

Non-general type α = 0 or foliations F : c2
1 (α) = 0.

I) κ(α) = −∞.

1) Rational Foliations (ν = −∞)
2) Hilbert modular foliations (ν = 1)

II) κ(α) = 0. (ν(α) = 0.)

3) K(α)
num∼ 0

III) κ(α) = 1. (ν(α) = 1.)

4) Riccati foliations
5) Turbulent foliations
6) Non-isotrivial elliptic fibrations
7) Isotrivial fibrations of genus g ≥ 2
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7. Classification

• A rational foliation is a rational fibration f : X → C , i.e., the
genus g = 0.

• A Hilbert modular foliation is induced by one factor H of a
Hilbert modular surface X = H×H/Γ.

• A Riccati equation is an equation of the following type on
some ruled surface

dy

dx
= a0(x)y2 + a1(x)y + a2(x).

• α = 0 is induced by a vector field if and only if

K (α)
num.∼ 0

• A Turbulent foliation is the foliation of a Turbulent equation.
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8. Effective Behavior

Theorem. Let c2
1 (α) > 0, let K (α) = P + N, and let r be

the index. Suppose τ0(α) = 2 or ∞, and m is divided by r .
Then we have

1) If m ≥ r · (η0(α) + 1) , then H1(mP) = H2(mP) = 0.

Pm(α) = dim H0(mP) = χ(OX )+
1

2
m(m−1)c2

1 (α)−1

2
mP·D(α).

2) If m ≥ r · (η0(α) + 2), then |mP| is base point free and
|mK (α)| = |mP|+ mN.

3) If m ≥ r · (η0(α) + 3), then the m-canonical map
Φm : X → Pn, n = Pm(α)− 1 is just the contraction morphism
of the exceptional set of α = 0.



Thank you very much!


