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0 Introduction.

We consider Itô’s stochastic differential equation (SDE). First, we would review
a standard theory under standard assumptions. Then we would see how such a
standard theory should be modified under different and more general assumptions
and how and what new notions need be introduced to discuss such modifications.

Consider the following SDE on Rd

dX i(t) = σi
k(X(t))dBk(t) + bi(X(t))dt, X(0) = x (1)

where X(t) = (X1(t), · · · , Xd(t)) is a d-dimensional continuous process and
x = (x1, · · · , xd) ∈ Rd. σi

k(x) and bi(x), i = 1, · · · , d, k = 1, · · · , r, are real
Borel functions on Rd. We allow the case r = ∞ and then we always assume

that ||σ(x)|| :=
√∑d

i=1

∑r
k=1 σi

k(x)2 < ∞ for each x. Set |b(x)| =
√∑d

i=1 bi(x)2.

B(t) = (Bk(t)) is an r-dimensional Wiener process with B(0) = 0.

The assumption Itô posed in his first work on SDE ([I 2], 1942; [I-Sel.], p.63) is
the following Lipschitz condition of coefficients:

Assumption 0.1 There exist positive constants A and B such that

||σ(x)− σ(y)|| ≤ A|x− y| and |b(x)− b(y)| ≤ B|x− y| for all x, y ∈ Rd. (2)

Itô established the existence and uniqueness of solutions Xx = (Xx(t)) for SDE
(1) and, furthermore, the fact that the solution defines a diffusion process (i.e.
a strong Markov process with continuous paths) such that u(t, x) = E[f(Xx(t))]
satisfies the Kolmogorov differential equation

∂u

∂t
(t, x) = Lu(t, x) with the intial condition u(0+, x) = f(x) (3)

where L is a second order semi-elliptic differential operator on Rd given by

L =
1

2

d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑

i=1

bi(x)
∂

∂xi
with aij(x) =

r∑

k=1

σi
k(x)σj

k(x). (4)

Now we would discuss various aspects of developments in Itô’s theory. We would
start by making precise the notion of solutions and their uniqueness



1 Solutions and uniqueness. Strong and non-strong(weak) solutions

Definition 1.1. Let x ∈ Rd be fixed. A solution Xx = (Xx(t)) of SDE (1) is a
continuous Rd-valued stochastic process defined on a probability space (Ω,F , P )
with a filtration F = {Ft}t≥0, which satisfies the following conditions:

(i) Xx is F-adapted; i.e., Xx(t) is Ft/B(Rd)-measurable for each t ∈ [0,∞).

(ii) ∫ t

0

[
||σ(Xx(s))||2 + |b(Xx(s))|

]
ds < ∞ for each t ∈ [0,∞) a.s..

(iii) B(t) = (Bk(t)) is an r-dimensional F-Wiener process with B(0) = 0, i.e.,
F-adapted and the increment B(t)−B(s) is independent of Fs for every s < t.

(iv) The following holds for every t, a.s.:

(Xx(t))i = xi +
r∑

k=1

∫ t

0
σi

k(X(s))dBk(s) +
∫ t

0
bi(X(s))ds, i = 1, · · · , d,

where the integral by dBk(s) is understood in the sense of Itô’s stochastic
integral.

In this definition, the initial value x may be replaced by any d-dimensional F0-
measurable random variable.

Let Wd be the space of all continuous functions w : [0,∞) 3 t 7→ w(t) ∈ Rd with
the topology of uniform convergence on finite intervals. From now on, we assume
that a solution Xx of SDE (1) exists for every x ∈ Rd.

Definition 1.2. (i) We say that the uniqueness in law of the solution of (1)
holds if the law of a solution Xx of (1) on Wd is uniquely determined by x for
every x.

(ii) We say that the pathwise uniqueness of the solution of (1) holds if, for any
fixed x ∈ Rd, Xx and X̃x are two solutions of (1) on a same probability space
with a same filtration F and with respect to a same r-dimensional F-Wiener
process (B(t)), then it holds Xx(t) = X̃x(t) for all t, a.s..

Definition 1.3. A solution Xx of (1) with the accompanying Wiener process
B = (Bk(t)) is called a strong solution if it is adapted to the natural filtration FB

of B. Otherwise, it is called a non-strong solution or a weak solution.
We say that SDE (1) has a unique strong solution if there exists a function

F : Rd ×Wr
0 3 (x,w) 7→ F (x,w) ∈ Wd,

where Wr
0 = {w ∈ Wr|w(0) = 0}, with the following properties:

(i) F is Borel-measurable and, for each t ≥ 0 and x ∈ Rd, the map Wr
0 3 w 7→

F (x,w)(t) ∈ Rd is Bt(W
r
0)/B(Rd)-measurable.
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(ii) For any x ∈ Rd and an r-dimensional Wiener process B = (Bk(t)), Xx =
F (x,B) is a solution of (1),

(iii) Conversely, for any solution Xx with respect to B, it holds that Xx = F (x,B),
a.s..

If a unique strong solution F (x,w) exists, then Xx(w) = F (x,w) itself is a strong
solution of SDE (1) realized on the r-dimensional Wiener space (Wr

0,B(Wr
0), P

W )
with the initial value x and with respect to the canonical Wiener process W (t) =
(wk(t)). It is obvious that the existence of a unique strong solution implies the
pathwise uniqueness of solutions. Its converse is also true. Namely we have the
following

Theorem 1.1. ([YW], [ZK], [Ka]; also standard texts, [IW], [KS], [RW], [RY])
(i) The pathwise uniqueness of solutions implies the uniqueness in law of solu-

tions.
(ii) If the pathwise uniqueness for (1) holds and if a solution of (1) exists for

any given initial value, then there exists a unique strong solution of (1).

A standard sufficient condition for the pathwise uniqueness of solutions is the
Lipschitz condition (2). In this case, Itô constructed a unique strong solution directly
by using Picard’s method of successive approximations ([I 2], 1942; [I-Sel.], pp. 63-
70, also [I 3], 1951; [I-Sel.], pp.117-167) . G. Maruyama ([Mar], 1955) applied
Cauchy’s method of polygonal approximations, which is now well-known as Euler-
Maruyama’s scheme in numerical analysis of SDE’s.

The Lipschitz condition has been improved by later works; particularly in the
one-dimensional case of d = 1, sharp improvements have been obtained. We mention
here the work of J. F. Le Gall ([L], 1981), who, following E. Perkins’s idea, recovered
Yamada-Watanabe’s condition ([YW], 1971) in terms of the modulus of continuity
of coefficients, and also, in the case r = 1, improved Nakao’s condition ([N], 1972)
of the (local) uniform positivity and of bounded variation property of the diffusion
coefficients to the second-order bounded variation property. Le Gall’s method is
based on the stochastic calculus for continuous semimartingales under a non-smooth
transformation like x → |x|, of which main ingredients are Itô-Tanaka’s formula and
local times (cf. [RW], [RY]). We can see a sharpness of his result by a famous
counter-example of the pathwise uniqueness given by M. Barlow ([B], 1982).

Example 1.1. (Tanaka’s Equation) This is a simplest example of SDE for which
the uniqueness in law holds but the pathwise uniqueness does not hold. Consider
the case d = 1 and r = 1 with the coefficients given by

σ1
1(x) = 1[0,∞)(x) + (−1)1(−∞,0)(x) =

x

|x|1[x6=0](x) + 1[x=0](x), b1(x) = 0,

so that SDE is given by

dX(t) = σ1
1(X(t))dB(t), X(0) = x. (5)
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Since |σ1
1(x)| ≡ 1, a solution Xx(t) = x +

∫ t
0 σ1

1(X
x(s))dB(s) is a Brownian

motion starting at x and hence, the uniqueness in law holds. However, the Itô-
Tanaka formula applied to (Xx(t)), we have

B(t) =
∫ t

0
σ1

1(X
x(s))dXx(s) = |Xx(t)| − |x| − lim

ε→0
(2ε)−1

∫ t

0
1[0,ε)(|Xx(s)|)ds

and hence, the natural filtration F|X
x| of {|Xx(t)|} satisfies that FB ⊂ F|X

x| so that
FXx ⊂ FB is impossible.

Remark 1.1. If we consider the case σ1
1(x) = 1{x 6=0}(x) · x/|x| so that SDE (5) is

replaced by the following

dX(t) = 1{X(t)6=0}
X(t)

|X(t)|dB(t), X(0) = x,

then, even the uniqueness in law of solutions no longer holds. Indeed, if x = 0,
for example, X(t) ≡ 0 is a solution and there exist many nonzero solutions: A
solution X = {X(t)} with x = 0, having the strong Markov property in the sense
of Def.3.1 in Section 3, is parametrized uniquely (up to the equivalence in law) by
a constant m ∈ [0,∞]. If m ∈ (0,∞), the solution Xm corresponding to m is
characterized by the property that the local time L0

t at 0 of Xm (cf. [RY], p.207)
satisfies L0

t = m−1
∫ t
0 1{0}(Xm(s))ds. Xm is constructed from a one-dim. Brownian

motion β(t) as Xm(t) = β(A−1(t)) where A(t) = t + ml0t , l0t being the local tome at
0 of β(t). If m = ∞, then Xm ≡ 0. If m = 0, then Xm is the law unique solution of
SDE (5) with x = 0, so that

∫ t
0 1{0}(Xm(s))ds = 0 in this case.

Example 1.2. (SDE for Brownian motion with sticky boundary) Let θ be a given
positive constant. Consider the case d = 1 and r = 1 with the discontinuous
coefficients given by

σ1
1(x) = 1(0,∞)(x), and b1(x) =

θ

2
1[x=0](x),

so that the SDE is given by

dX(t) = 1{X(t)>0}dB(t) +
θ

2
1{X(t)=0}dt, X(0) = x. (6)

If x < 0, then the solution Xx(t) ≡ x so that this is essentially SDE on the half
line R+ = [0,∞). We can show that a solution exists for every x ≥ 0 uniquely in
law: We can show more precisely that the joint law (Xx, B) on W1×W1 is unique.
However, the pathwise uniqueness does not hold; it holds 0 ≤ X0(t) ≤ r(t), a.s.,
where r(t) = B(t)−min0≤s≤t B(s) and

P (X0(t) ≤ y|FB
t ) · 1{0≤y≤r(t)} = exp{−θ(r(t)− y)} · 1{0≤y≤r(t)}

([War.1], [Wat. 2]). Hence, X0 cannot be a strong solution. If x > 0, then setting
τ = inf{t > 0|x + B(t) = 0}, Xx(t) = x + B(t) for t < τ . Also, {Xx(τ + t); t ≥ 0}
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is independent of Fτ and is identically distributed as X0, so that Xx cannot be a
strong solution as well.

When θ = ∞, the equation (6) is to be understood by the Skorohod equation on
R+ = [0,∞):

dX(t) = dB(t) + dφ(t), X(0) = x ∈ R+, (7)

φ(t) being a continuous F-adapted increasing process such that
∫ t
0 1{0}(X(s))dφ(s) =

φ(t). In this case, the pathwise uniqueness holds: If x = 0, then the solution X0(t)
is given by X0(t) = r(t) := B(t) −min0≤s≤t B(s). If x > 0, then Xx(t) = x + B(t)
when t < τ := inf{t > 0|x + B(t) = 0} and Xx(t) = B(t) − minτ≤s≤t B(s) when
t ≥ τ . Thus, a unique strong solution can be given directly and explicitly.

Example 1.3. (SDE’s generating Harris’s stochastic flows) Consider the case
d = 1 and 1 ≤ r ≤ ∞ and so, we are dealing with one-dimensional SDE’s, although
a similar equation may be defined in the higher dimensional case. Let b(x) be
a continuous real positive definite function on R such that b(0) = 1. Note that
b(x) = b(−x). Let H(⊂ Cb(R → R)) be the (real) reproducing kernel Hilbert
space associated with b(x) so that, defining fx ∈ H by fx(y) = b(x − y), linear
conbinations

∑
cifxi

are dense in H and (fx, fy)H = b(x − y). Let dim H = r and
choose an orthonormal basis (ONB) {ek}1≤k≤r in H. Set

σ1
k(x) = ek(x), k = 1, · · · , r, b1(x) = 0,

so that SDE is given by

dX(t) =
r∑

k=1

ek(X(t))dBk(t), X(0) = x. (8)

Note that we have
∑

k ek(x)ek(y) = b(x− y). Hence

||σ(x)− σ(y)||2 =
∑

k

|ek(x)− ek(y)|2 = 2(1− b(x− y)).

Theorem 1.2. For SDE (8), the pathwise uniqueness of solutions holds if and
only if ∫

0+

1

1− b(x)
dx = ∞. (9)

Here is an outline of the proof: the condition (9) is just Yamada-Watanabe’s con-
dition for the diffusion coefficients σ so that the ’if part’ follows fromYamada-
Watanabe’s theorem. The ’only if part’ follows from the following couplng argument:
We assume that (9) fails; namely, we assume

∫

0+

1

1− b(x)
dx < ∞. (10)

Let 0 ≤ ρ ≤ 1. We mean, by a ρ-coupling of the solutions of (8), a pair
(Xx, B), (X̃x, B̃) of solutions of (8) given on a same probability space with a same
filtration F such that F-Wiener processes are ρ-correlated; i.e., E(dBk(t)dB̃l(t)) =
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ρδk,l · dt. A ρ-coupling always exists and, if ρ < 1, its joint law is unique. Further-
more, if we set ξρ(t) = Xx(t)− X̃x(t), then the process ξρ = {ξρ(t)} is a Feller diffu-
sion on R with the canonical scale s(x) = x and the speed measure (1− ρb(x))−1dx
which starts at the origin (cf. [IM] for a general theory of one-dimensional Feller
diffusions). Then ξρ can be represented, by a one-dimensional Brownian motion β(t)
with β(0) = 0, as

ξρ(t) = β(A−1(t)), A(t) =
1

2

∫ t

0

1

1− ρb(β(s))
ds,

(t → A−1(t) is the inverse function of t → A(t).) Thus, E[ξρ(t)
2] = E[A−1(t)].

Under the assumption (10), it holds that limρ↑1 E[A−1(t)] > 0 so that we have
limρ↑1 E[ξ(t)2] > 0. On the other hand, if the pathwise uniqueness holds, this limit
must vanish and hence, the pathwise uniqueness fails under (10). Cf. [WW 2004],
for details.

2 Stochastic flows associated with SDE’s

Under the standard assumption of Lipschitz condition (2), the unique strong so-
lution F (x,w) (cf. Def. 1.3) satisfies that x ∈ Rd 7→ F (x,w) ∈ Wr

0 is contin-
uous, a.a. w (PW ) (PW being the r-dimensional Wiener measure), so that the
map Xt : x ∈ Rd 7→ Xt(x) := F (x,w)(t) ∈ Rd is continuous for every t, a.a. w
(PW ). Under a more stringent assumption on the smoothness of coefficients, this
map can be shown to be invertible and Xt is homeomorphism or diffeomorphism of
Rd. Spaces of homeomorphisms or diffeomorphisms can be given a topology by a
family of Sobolev norms and, denoting such a space as G(Rd), we have a continuous
map t ∈ [0,∞) 7→ Xt ∈ G(Rd). This continuous process with values in G(Rd) is
called a stochastic flow of homeomorphisms or diffeomorphisms on Rd because it
has the flow property: Xt+s = Xt ◦ Xs, t, s ∈ [0,∞), a.s., (cf. [Ku] for details, also
standard texts, e.g., [IW], [RW]).

If we relax the smoothness of coefficients, it may happen that a unique strong
solution does not exist; it is even unclear if we can realize whole family of solutions
with different initial values on a same probability space with a same filtration. In
order to discuss stochastic flows generated by solutions of SDE’s in general, it seems
natural and useful to introduce the following notion and assumption.

Definition 2.1. By a system of coalescing solutions of SDE (1), we mean a family
{Xx; x ∈ Rd} of d-dimensional continuous processes defined on a probability space
with a filtration F such that, for an r-dimensional F-Wiener process B = {B(t)}
with B(0) = 0, (Xx, B) is a solution of (1) for each x ∈ Rd and, further more,
for every x, y ∈ Rd, x 6= y, Xx and Xy have the following coalescing property: if
Xx(t) = Xy(t) for some t > 0, then Xx(s) = Xy(s) for all s ≥ t, a.s..

Assumption 2.1 A system {Xx; x ∈ Rd} of coalescing solutions exists and its
joint probability law is unique.

Assumption 2.1 is obviously satisfied if a unique strong solution F (x,w) exists:
Indeed, setting up an r-dimensional F-Wiener process B on a probability space with
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an filtration F, we define Xx = F (x,B), x ∈ Rd. Then, {Xx; x ∈ Rd} is a system
of coalescing solutions. Its law uniqueness is obvious as well.

Example 2.1. (Tanaka’s Equation) We consider the SDE (5) in Ex.1.1. Then
Assumption 2.1 is satisfied. To see this, we first set up a solution (X0, B) of (5)
with the intial value 0 and define Xx, for x 6= 0, by setting

Xx(t) = x +
x

|x|B(t) for t < τ and Xx(t) = X0(t) for t ≥ τ

where τ = inf{t|x + (x/|x|)B(t) = 0}. It is easy to see that the family {Xx} is a
system of coalescing solutions of (5) which is unique in law.

Example 2.2. (SDE for Brownian motion with sticky boundary) We consider the
SDE (6) in Ex.1.2. Then Assumption 2.1 is satisfied. This can be shown in a similar
way as in Ex.2.1

Example 2.3. We consider here the case of SDE (8) in Ex.1.3.; In this case,
Assumption 2.1 holds if we assume further that the positive definite function b(x)
satisfies, either that it is C2 on R \ {0}, or that, for any finite different points
x1, · · · , xn in R, the matrix (b(xi − xj)) is strictly positive definite. (We omit the
details, cf. Harris [H].) Then we have the system {Xx} of coalescing solutions of
(8) and, for fixed t, the map Xt : x 7→ Xx(t) is increasing because of the coalescing
property of solutions. Concerning this map, we have the following (cf. Harris [H],
Matsumoto [M]):

(i) If ∫

0+

x

1− b(x)
dx = ∞,

then Xt : x ∈ R 7→ Xt(x) := Xx(t) is a homeomorphism of R for every t, a.s.

(ii) If ∫

0+

x

1− b(x)
dx < ∞,

then, for every t > 0, Xt is not invertible and, under a slight additional
assumption on b(x), Xt(x) is an increasing step function of x for each t > 0,
a.s.. (In fact, it holds that E[]{Xt(x); x ∈ I}] < ∞ for every t > 0 and every
bounded interval I ⊂ R.)

(iii) If b(x) is C∞, then x 7→ Xt(x) is a diffeomorphism of R for every t, a.s..

We give here a general definition of stochastic flows on a general topological
space S. Let G(S) be a space formed of mappings φ : S → S which is closed
under the composition, be given a topology under which it is a standard Borel
space (in the sense of [P]; in the terminology of Bourbaki, it is a Lusin space) such
that the evaluation map at x ∈ S; φ ∈ G(S) 7→ φ(x) ∈ S and the composition
( (φ ◦ ψ)(x) := φ[ψ(x)], φ, ψ ∈ G(S) ) are all Borel operations. Furthermore,
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we assume that id(the identity map)∈ G(S) and satisfies the following continuity
property:

φn → id and ψn → id imply that ψn ◦ ρ ◦ φn → ρ for all ρ ∈ G(S).

Definition 2.2. By a G(S)-stochastic flow on S, we mean a family {Xs,t}s,t∈R,s≤t

of G(S)-valued random variables which possesses the following properties:

(i) (flow property) If s ≤ t ≤ u, then Xs,u = Xt,u ◦Xs,t and Xs,s = id.

(ii) (independence property) For any t0 < t1 < · · · < tn, the random variables
{Xti−1,ti} are mutually independent.

(iii) (stationarity) For s ≤ t and h ∈ R, Xs,t
d
= Xs+h,t+h.

(iv) (continuity) X0,h → id in prob. as h → 0.

Now, assuming that Assumption 2.1 is satisfied, we would associate with SDE
(1) a G(Rd)-stochastis flow on Rd, for a suitable space G(Rd) of mappings with
the properties mentioned above. A difficulty in this problem is how to choose the
space G(Rd) properly. We would not be much involved in this problem and, instead,
would assume that SDE(1) satisfies the following

Assumption 2.2 Assuming that SDE satisfies Assumption 2.1, we assume further
that there exists a space G(Rd) of mapping on Rd with the properties mentioned
above such that the following holds:

the map Xt := [x 7→ Xx(t)] ∈ G(Rd), a.s., for every t ≥ 0. (11)

In one-dimensional case of d = 1, there is no problem concerning Assumption
2.2; we may take as G(R) the canonical space formed of all right continuous non-
decreasing functions with the topology of convergence at all continuity points of the
limit function. However, there are many cases in which we may choose, as G(R), a
space much smaller than the canonical one.

Example 2.4. (1) In the case of SDE (5) in Ex.1.1 and Ex.2.1, Assumption 2.2
is satisfied and (11) holds if we take as G(R) the following space of mapping
on R, which forms a finite dimensional semigroup under the composition:

G(R) = {φa,b,c; a, b ∈ R, c ∈ {1,−1}, such that b ≥ 0 and a; b ≥ 0}

where φa,b,c := [x ∈ R 7→ φa,b,c(x) ∈ R] is given by

φa,b,c(x) = (x− a)1(−∞,−b)(x) + c(a + b)1[−b,b)(x) + (x + a)1[b,∞)(x).

Indeed, Xx(t) = φa,b,c(x) with

a = B(t), b = − min
0≤s≤t

B(s) and c = 1{Xx(0)≥0} − 1{Xx(0)<0}.
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(2) In the case of SDE (6) in Ex.1.2 and Ex.2.2, Assumption 2.2 is satisfied.
Note that this is a case of SDE on R+ = [0,∞) and (11) holds if we take as
G(R+) the following space of mappings on R+, which forms a finite dimen-
sional semigroup under the composition:

G(R+) = {ψa,b,c; a, b, c ∈ R such that b ≥ 0, 0 ≤ c ≤ a + b and c = a if b = 0}
where ψa,b,c := [x ∈ R+ 7→ ψa,b,c(x) ∈ R+] is given by

ψa,b,c(x) = c1[0,b)(x) + (x + a)1[b,∞)(x), x ∈ R+.

Indeed, Xx(t) = ψa,b,c(x) with

a = B(t), b = − min
0≤s≤t

B(s) and c = Xx(0).

Now, we have the following theorem on the existence and uniqueness of stochastic
flows associated with SDE (1).

Theorem 2.1. If SDE satisfies Assumptions 2.1 and 2.2 with a space G(Rd) of
mappings on Rd, there exists a G(Rd)-stochastic flow {Xs,t}s≤t on Rd such that

Xs,t
d
= X(t−s) :=

[
x 3 Rd 7→ Xx(t− s) ∈ Rd

]
for all s ≤ t.

Furthermore, the law of {Xs,t}s≤t is uniquely determined.

This theorem covers SDE (5) in Ex.1.1, SDE (6) in Ex.1.2 and SDE (8) in Ex.1.3,
so that we have stochastic flows in each cases; these are called splitting flow, sticky
flow and a Harris flow, respectively.

If a unique strong solution F (x, w) exists and there is a nice space G(Rd) of
mappings on Rd such that [x 7→ F (x,w)] ∈ G(Rd), then a G(Rd)-stochastic flow can
be obtained directly by setting Xs,t = [x 7→ F (x,W (t) −W (s))], where {W (t); t ∈
R} is an r-dim. Wiener process. In the case of an invertible flow (such as flow
of homeomorphisms or diffeomorphisms), we have Xs,t = X0,t ◦ X−1

0,s so that it is
determined by Xt := X0,t and Xt(x) is essentially a solution of SDE with the initial
value x.

3 Examples of two-dimensional SDE’s

First, we consider two-dimensional version of SDE’s in Ex. 1.1 and Rem. 1.1. Its
solution is a well-known Walsh’s Brownian motion. We identify R2 with the complex
plane C and denote its point z ∈ C as z = reiθ, r = |z| ∈ [0,∞), θ = arg z ∈ [0, 2π).

Example 3.1. Let

σ(z) = 1{z 6=0}(z)
z

|z| .

Let B = {B(t)} be a one-dimensional Wiener process with B(0) = 0 and consider
the following SDE for continuous process Z = {Z(t)} on C:

dZ(t) = 1{Z(t)6=0} · Z(t)

|Z(t)|dB(t), Z(0) = z. (12)
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We consider the case z = 0 exclusively; if z = reiθ 6= 0, then setting τ =
inf{t; r + B(t) = 0}, the solution Zz = {Zz(t)} of (12) is given, for 0 ≤ t ≤ τ , by
Zz(t) = eiθ(r + B(t)), so that the whole solution Zz is obtained by extending this
to the time interval [τ,∞) with an independent solution starting from 0 at time τ .

So we consider a solution Z = {Z(t)} of (12) with z = 0. Obviously, the
uniqueness of solutions does not hold; Z(t) ≡ 0 is a solution and also there are
many non zero solutions. We are only interested in the solutions having the strong
Markov property:

Definition 3.1. A solution Z = {Z(t)} of (12) with z = 0 is said to have the
strong Markov property if, for any F-stopping time ρ such that P (ρ < ∞, Z(ρ) =
0) > 0 and any A ∈ Fρ such that P ({ρ < ∞, Z(ρ) = 0} ∩ A) > 0, the process
{Z(ρ + t); t ≥ 0}, under the conditional probability P ( ∗ |{ρ < ∞, Z(ρ) = 0} ∩ A),
has the same law as Z.

Theorem 3.1. A solutions Z = {Z(t)} of (12) with z = 0 having the strong
Markov property is parametrized uniquely (up to the equivalence in law) by a
constant m ∈ [0,∞] and a Borel probability measure µ(dθ) on [0, 2π) such that∫
[0,2π) eiθµ(dθ) = 0.

Here we give a construction of the solution Z := Zm,µ corresponding to a given
pair (m, µ). A basic tool in this construction is a Posson point process of Brownian
excursions, a notion introduced by Itô ([I 4], 1970); [It-Sel.], pp 543-557). Similar
constructions have been discussed in the case of Brownian motions in [IW], in the
case of diffusions in a domain with Wentzell’s boundary conditions in [Wat 1] and
[TW].

If m = ∞, then Zm,µ(t) ≡ 0. So we assume m ∈ [0,∞).
We introduce the following path space W+ which we call the space of excursions

on [0,∞) away from 0;

W+ = {w ∈ C([0,∞) → [0,∞)); ∃0 < σ(w) < ∞ such that

w(0) = 0, w(t) > 0 if t ∈ (0, σ(w)), and w(t) = 0 if t ≥ σ(w)}.

Let n+ be a σ-finite measure on (W+,B(W+)), called the Itô excursion measure,
which is a Markovian measure associated with the absorbing Brownian motion on
[0,∞) with an entrance law at 0: (cf. [IW], p. 125; and a beautiful description by
D. Williams using dim-3 Bessel processes, p. 144).

Let W = W+ × [0, 2π) and define a σ-finite measure n on W by n = n+ ⊗ µ.
Let p = (p(t)) be a stationary Poisson point process on W with the characteristic

measure n. So each sample p is a map

p : t ∈ Dp ⊂ (0,∞) 7→ p(t) ∈ W

from a countable subset Dp of (0,∞) to W . Note that the counting measure

Np(dt, dw, dθ) := ]{ t | t ∈ dt, p(t) ∈ dw × dθ }
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is a Poisson random measure on [0,∞)×W with intensity dt,n(dw, dθ).
We write p(t) ∈ W = W+ × [0, 2π) as p(t) = (p1(t), p2(t)) so that p1(t) ∈ W+

and p2(t) ∈ [0, 2π).
Being set up such a point process p = (p1(t), p2(t)), we deine a C-valued conti-

nous process {Z(t)} and R-valued continous process {B(t)}as follows:
First, define an increasing process t 7→ A(t) by

A(t) =
∑

s∈Dp,s≤t

σ(p1(s)) + mt.

Given t ∈ [0,∞), we can find unique s := φ(t) such that A(s−) ≤ t ≤ A(s).
If A(s−) = A(s), then we set Z(t) = 0 and B(t) = 0.
If A(s−) < A(s), then this implies that s ∈ Dp and we set

Z(t) = eip2(s) · [p1(s)](t− A(s−)), and B(t) = [p1(s)](t− A(s−))− φ(t).

Then, we can show as in [IW] that {B(t)} is one-dim. Brownian motion with
B(0) = 0 and {Z(t), B(t)} is a solution of SDE (12) with Z(0) = 0 with respect to
a suitably chosen filtration F.

Example 3.2. Let

σ(z) = 1{z 6=0}(z)
z

|z| and b(z) = 1{z 6=0}(z)
z

|z|3 ,

so that SDE is given by

dZ(t) = 1{Z(t)6=0} · Z(t)

|Z(t)|dB(t) + 1{Z(t)6=0} · Z(t)

|Z(t)|3dt, Z(0) = z. (13)

If z = reiθ 6= 0, then setting τ = inf{t; r + B(t) = 0}, the solution Zz = {Zz(t)}
of (13) is given, for 0 ≤ t ≤ τ , by Zz(t) = exp{i ∫ t

0(r + B(s))−3}(r + B(t)). So, as
in the previous example, we consider the case of z = 0 only.

Definition 3.2. Let Z = {Z(t)} by a C-valued continuous process with Z(0) =

0. Z is called rotationally invariant if {eiθZ(t); t ≥ 0} d
= {Z(t); t ≥ 0} for every

θ ∈ [0, 2π).

Theorem 3.2. A solutions Z = {Z(t)} of (13) with z = 0, having the strong
Markov property and is rotationally invariant, is parametrized uniquely (up to the
equivalence in law) by a constant m ∈ [0,∞].

If m = ∞, then Z(t) ≡ 0. So we assume m ∈ [0,∞). We give its construction
only: It can be given in a similar way as in the previous example.

We note that for almost all w ∈ W+ with respect to n+(dw), there exists unique
m(w) ∈ (0, σ(w)) such that max0≤s≤σ(w) w(s) = w(m(w)).

Let p = (p(t)) be a stationary Poisson point process on W = W+ × [0, 2π) with
the characteristic measure n = n+⊗µ0, µ0 being the uniform measure on [0, 2π): i.e.,
µ0 = (2π)−1dθ. We write p(t) = (p1(t), p2(t)) so that p1(t) ∈ W+ and p2(t) ∈ [0, 2π).
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We define the increasing process A(t) in the same way as in the previous example
and define a C-valued continuous process Z = (Z(t) with Z(0) = 0 in a similar
way; only we we modify the definition of Z(t) in the case A(s−) ≤ t ≤ A(s),
A(s−) < A(s), as

Z(t) = exp

[
i

(
p2(s) +

∫ t−A(s−)

m(p1(s))

1

[p1(s)](u)3
du

)]
· [p1(s)](t− A(s−)).

(Note that σ(p1(s)) = A(s)− A(s−) when s ∈ Dp.

For both Examples 3.1 and 3.2, solutions satisfy Assumptions 2.1 and 2.2 and
hence, by Th.2.1, we can have stochastic flows associated with them. On the other
hand, a stochastic flow generates a noise, a notion introduced by Tsirelson ([T 1], [T
2], [T 3]) and a noise defines a continuous product of Hilbert spaces, equivalently, an
E0-semigroup or an Arveson system, a notion attracting much attention and being
studied much in the fields of operator algebras and quantum dynamics. Noises asso-
ciated with SDE’s in Examples 3.1 and 3.2 are nonclassical, (equivalently, associated
continuous products are non-Fock). Tsirelson ([T 4], 2004) made, from a viewpoint
in Arveson systems, a deep study on a striking difference of noises associated with
SDE’s in Examples 3.1 and 3.2, respectively.

Classical noises are those familiar noises generated by Wiener processes (called
Gaussian or white noises) and by stationary Poisson point processes (called Poisson
noises). I believe that Itô always considered these classical noises as a most funda-
mental basis on which stochastic analysis can be developed; we can appreciate this
idea in his very first work on Lévy-Itô theorem concerning the structure of paths of
Lévy processes ([I 1], 1942) and in his many later works on SDE’s and Poisson point
processes formed of excursions of Markov process, and so on.
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[I-Sel.] K. Itô, Kiyosi Itô Selected Papers, (eds. D. W. Stroock and S. R. S.
Varadhan) Springer, 1987
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