ON ITÔ'S ONE POINT EXTENSIONS OF MARKOV PROCESSES

Masatoshi Fukushima

Symposium in Honor of Kiyosi Itô: Stocastic Analysis and Its Impact in Mathematics and Science, IMS, NUS

July 10, 2008

§1. Itô's point processes and related problems

[IM] K. Itô and H. P. McKean, Jr., Brownian motions on a half line, *Illinois J. Math.* 7(1963), 181-231

[I-1] K. Itô, Poisson point processes and their application to Markov processes,

Lecture note of Mathematics Department, Kyoto University (unpublished), September 1969

[I-2] K. Itô, Poisson point processes attached to Markov processes,

in: Proc. Sixth Berkeley Symp. Math. Stat. Probab. III, 1970, pp225-239 In [I-2], Kiyosi Itô showed the following.

 $X = (X_t, \mathbf{P}_x)$: a standard Markov process on a state space E.

a: a point of E such that a is regular for itself;

$$\mathbf{P}_{a}(\sigma_{a}=0) = 1, \quad \sigma_{a} = \inf\{t > 0 : X_{t} = a\}$$

 $\{\ell_t, t \ge 0\}$: a local time at a, namely, a PCAF of X with support $\{a\}$.

Its right continous inverse is defined by

$$\tau_t = \inf\{s : \ell_s > t\}, \quad \inf \emptyset = \infty.$$

Define the space W of excursion paths around a by $W = \{w : [0, \infty) \mapsto E, \ 0 < \sigma_a(w), \ w_t = a, \ \forall t \ge \sigma_a(w)\}$

Define a W-valued point process (Itô's point process) \mathbf{p} by

$$\mathcal{D}(\mathbf{p}) = \{s : \tau_s > \tau_{s-}\}$$
$$\mathbf{p}_s(t) = \begin{cases} X_{\tau_{s-}+t} & t \in [0, \tau_s - \tau_{s-}) \\ a & t \ge \tau_s - \tau_{s-}, \end{cases} \quad s \in \mathcal{D}(\mathbf{p}).$$

If $\ell_{\infty} < \infty$, then $\mathbf{p}_{\ell_{\infty}}$ is a non-returning excursion. Assume additionally that *a* is a recurrent point;

 $\mathbf{P}_x(\sigma_a < \infty) = 1, \quad \forall x \in E,$

then $\{\tau_t\}$ is a subordinator and

 \mathbf{p} is a W^+ -valued Poisson point process under \mathbf{P}_0

Denote by **n** the characteristic measure of **p**, **n** is a σ -finite measure on W. Let

 $\mu_t(B) = \mathbf{n}(w_t \in B, \ t < \sigma_a(w)) \quad t > 0, \quad B \in \mathcal{B}(E \setminus \{a\}).$

Let X^0 be the process obtained from X by stopping at time σ_a and $\{p_t^0; t \ge 0\}$ be its transition function.

- 1. X is determined by X^0 and **n**.
- 2. $\int_{U} (1 e^{-\sigma_a}) \mathbf{n}(dw) \le 1.$
- 3. $\{\mu_t; t > 0\}$ is a $\{p_t^0\}$ -entrance law: $\mu_t p_s^0 = \mu_{t+s}$
- 4. **n** is Markovian with semigroup p_t^0 and entrance law $\{\mu_t\}$:

$$\int_{W} f_1(w(t_1)) f_2(w(t_2)) \cdots f_n(w(t_n)) \mathbf{n}(dw)$$

= $\mu_{t_1} f_1 P_{t_2-t_1}^0 f_2 \cdots P_{t_{n-1}-t_{n-2}}^0 f_{n-1} P_{t_n-t_{n-1}}^0 f_n.$

5. When $\mathbf{n}(w_0 = a) = 0$ (discontinuous entry), then $\mu_t = k p_t^0$ for some σ -finite measure k on $E \setminus \{a\}$ with

$$\int_{E\setminus\{a\}} \mathbf{E}_x \left[1 - e^{-\sigma_a}\right] k(dx) < \infty,$$

and conversely any such measure gives rise to a jumpin extension of X^0 .

Itô stated 5 explicitly in a unpublished lecture note [I-1] and, as an application, he determined all possible extensions of the absorbed diffusion process on a half line with exit but non-entrance boundary yelding a generalization of a part of his joint paper [IM] with McKean. P.A. Meyer, Processus de Poisson ponctuels, d'apré K. Itô,

Séminaire de Probab. V, in: Lecture Notes in Math. Vol 191, Springer, Berlin, 1971, 177-190

removed the recurrence condition for a from [I-2], and proved that Itô's point process **p** is equivalent to an *absorbed(stopped) Poisson point process* in the following sense:

Decompose the excursion space as $W = W^+ + W^- + \{\partial\}$. There exists a σ -finite measure $\widetilde{\mathbf{n}}$ on W such that

- $\widetilde{\mathbf{n}}$ is Markovian with transition function $\{p_t^0\}$
- $\widetilde{\mathbf{n}}(W^- \cup \{\partial\}) < \infty$
- Let $\widetilde{\mathbf{p}}$ the *W*-valued Poissson point process with characteristic measure $\widetilde{\mathbf{n}}$ and \widetilde{T} be the first occurance time of $W^- \cup \{\partial\}$. $\{\mathbf{p}_{\cdot}\}$ is then equivalent to the stopped point process $\{\widetilde{\mathbf{p}}_{\cdot\wedge\widetilde{T}}\}$.

X is said to be of continuous entry from a if $\widetilde{\mathbf{n}}(w(0) \neq a) = 0$.

Problem I (Uniqueness): when and how is the measure $\widetilde{\mathbf{n}}$ on W uniquely determined by the minimal process X^0 ?

Problem II (Construction): when and how does X^0 admit extentions X with continuous entry from a ?

L. C. G. Rogers, Itô excursion theory via resolvents, Z. Wahrsch. Verw. Gebiete 63 (1983), 237-255
T. S. Salisbury, On the Itô excursion process, PTRF 73 (1986), 319-350.
T. S. Salisbury, Construction of right processes from excursions, PTRF 73 (1986), 351-367
R. M. Blumenthal, Excursions of Markov Processes, Birkhäuser, 1992

These important articles have dealt with generalzations of [I-2] but the dependence and independence on X^0 of the involved quantities were not clearly separated. [FT] M. Fukushima and H. Tanaka, Poisson point processes attached to symmetric diffusions, Ann. Inst. Henri Poincaré Probab.Statist. 41 (2005), 419-459

[CFY] Z.-Q. Chen, M. Fukushima and J. Ying, Extending Markov processes in weak duality by Poisson point processes of excursions.

in: *Stochastic Analysis and Applications* The Abel Symposium 2005 (Eds) F.E. Benth; G. Di Nunno; T. Lindstrom; B. Oksendal; T. Zhang, Springer, 2007, pp153-196.

give affirmative answers to **Problem I**, **II** under a symmetry or weak duality setting for X.

• If a pair of standard processes X, \hat{X} is in weak duality with respect to an excessive measure m, then $\tilde{\mathbf{n}}$ is uniquely determined by X^0 , \hat{X}^0 and $m_0 = m|_{E \setminus \{a\}}$ up to non-negaive parameters δ_0 , $\hat{\delta}_0$ of the killing rate at a.

In particular, if X^0 is m_0 -symmetric, then its symmetric extension with no sojourn nor killing at a is unique.

• If X^0 , \hat{X}^0 are in weak duality with respect to m_0 and with no killing inside $E \setminus \{a\}$ and approachable to a, then they admit a pair of duality preserving extensions X, \hat{X} with continuous entry from a (by a time reversion argument).

§2. Uniqueness statements from [CFY]

§2.1. Description of \tilde{n} by exit system

 $\widetilde{\mathbf{n}}$ can be described in terms of the exit system due to

[Mai] B.Maisonneuve, Exit systems. Ann. Probab. **3** (1975), 399-411.

 $X = (\Omega, X_t, \mathbf{P}_x)$: a right process on a Lusin space E. A point $a \in E$ is assumed to be regular for itself. ℓ_t : a local time of X at a $\{p_t^0; t \ge 0\}$: the transition function of X^0 obtained from

X by killing at σ_a

 Ω : the space of all paths ω on $E_{\Delta} = E \cup \Delta$ which are cadlag up to the life time $\zeta(\omega)$ and stay at the cemetery Δ after ζ .

 $X_t(\omega)$: t-th coordinate of ω .

The shift operator θ_t on Ω is defined by $X_s(\theta_t \omega) = X_{s+t}(\omega), \ s \ge 0.$ The killing operator $k_t, \ t \ge 0$, on Ω defined by

$X_s(k_t\omega) = \bigg\{$	$\int X_s(\omega)$	if	s < t
	Δ	if	$s \ge t$.

The excursion space W is specified by

$$W = \{k_{\sigma_a}\omega : \omega \in \Omega, \sigma_a(\omega) > 0\},\$$

which can be decomposed as

$$W = W^+ \cup W^- \cup \{\partial\}$$

with

 $W^+ = \{ w \in W : \sigma_a < \infty \}, W^- = \{ w \in W : \sigma_a = \infty \text{ and } \zeta > 0 \}.$

- ∂ : the path identically equal to Δ .
 - k_{σ_a} is a measurable map from Ω to W.

Define the random time set $M(\omega)$ by

$$M(\omega) := \overline{\{t \in [0,\infty) : X_t(\omega) = a\}}.$$

The connected components of the open set $[0, \infty) \setminus M(\omega)$ are called the *excursion intervals*.

 $G(\omega)$: the collection of positive left end points of excursion intervals

By [Mai], there exists a unique σ -finite measure \mathbf{P}^* on Ω carried by $\{\sigma_a > 0\}$ and satisfying

$$\mathbf{E}^* \left[1 - e^{-\sigma_a} \right] < \infty$$

such that

$$\mathbf{E}_{x}\left[\sum_{s\in G} Z_{s}\cdot\Gamma\circ\theta_{s}\right] = \mathbf{E}^{*}(\Gamma)\cdot\mathbf{E}_{x}\left[\int_{0}^{\infty} Z_{s}d\ell_{s}\right] \quad \text{for } x\in E,$$

for any non-negative predictable process Z and any non-negative random variable Γ on Ω .

(\mathbf{E}^* : the expectation with respect to \mathbf{P}^*).

Let $Q^* = \mathbf{P}^* \circ k_{\sigma_a}^{-1}$. Q^* is a σ -finite measure on W and Markovian with semigroup $\{p_t^0; t \ge 0\}$.

Proposition 1 $Q^* = \widetilde{\mathbf{n}}$.

§2.2 Unique determination of \tilde{n} by X^0 , \tilde{X}^0

m: a σ -finite Borel measure on E with $m(\{a\}) = 0$. $(u, v) = \int_E u(x)v(x)m(dx)$ $X = (X_t, \zeta, \mathbf{P}_x)$ and $\widehat{X} = (\widehat{X}_t, \widehat{\zeta}, \widehat{\mathbf{P}}_x)$: a pair of Borel right processes on E that are in weak

duality with respect to
$$m$$
; their resolvent G_{α} , G_{α} satisfy
 $(\widehat{G}_{\alpha}f,g) = (f,G_{\alpha}g), \quad \forall f,g \in \mathcal{B}^{+}(E), \ \forall \alpha > 0,$

A point
$$a \in E$$
 is assumed to be regular for itself and
non-*m*-polar with respect to X and \hat{X} .

$$\varphi(x) = \mathbf{P}_x(\sigma_a < \infty), \quad u_\alpha(x) = \mathbf{E}_x \left[e^{-\alpha \sigma_a} \right], \quad x \in E.$$

The corresponding functions for \widehat{X} is denoted by $\widehat{\varphi}$, \widehat{u}_{α} X^{0} , \widehat{X}^{0} : the killed processes of X, \widehat{X} upon σ_{a} . They are in weak duality with respect to m_{0} . $\{p_{t}^{0}; t \geq 0\}$: the transition function of X^{0}

For an excessive measure η and an excessive function v of X^0 , the *energy functional* is defined by

$$L^{(0)}(\eta, v) = \lim_{t \downarrow 0} \frac{1}{t} \langle \eta, v - p_t^0 v \rangle.$$

Let $\{\mu_t; t > 0\}$ be the $\{p_t^0\}$ -entrance law associated with $\widetilde{\mathbf{n}}$:

$$\mu_t(B) = \widetilde{\mathbf{n}}(w_t \in B; t < \zeta(w)), \quad B \in \mathcal{B}(E \setminus \{a\})$$

Then

$$\int_{W} f_1(w(t_1)) f_2(w(t_2)) \cdots f_n(w(t_n)) \mathbf{n}(dw)$$

= $\mu_{t_1} f_1 P_{t_2-t_1}^0 f_2 \cdots P_{t_{n-1}-t_{n-2}}^0 f_{n-1} P_{t_n-t_{n-1}}^0 f_n.$

We let $\delta_0 = \widetilde{\mathbf{n}}(\{\partial\})$

Theorem 2 (i) $\{\mu_t\}$ satisfies

$$\widehat{\varphi} \cdot m = \int_0^\infty \mu_t dt.$$

- (ii) $\widetilde{\mathbf{n}}(W^{-}) = L^{(0)}(\widehat{\varphi} \cdot m, 1 \varphi)$
- (iii) It holds that

$$L^{(0)}(\widehat{\varphi} \cdot m, 1 - \varphi) + \delta_0 = L^{(0)}(\varphi \cdot m, 1 - \widehat{\varphi}) + \widehat{\delta}_0.$$

A general theorem due to Fitzsimmons (1987):

For a transient right process with transition function $\{q_t; t \geq 0\}$, any excessive measure η which is pure in the sense that $\eta q_t \to 0, t \to \infty$, can be represented by a unique $\{q_t\}$ -entrance law $\{\nu_t; t > 0\}$ as

$$\eta = \int_0^\infty \nu_t dt.$$

Theorem 2 (i) means that the entrance law determining $\tilde{\mathbf{n}}$ is uniquely decided by \hat{X}^0 and m.

Theorem 2 means that the Itô point process **p** is uniquely determined by X^0, \hat{X}^0, m up to a pair of non-negative constants $\delta_0, \ \hat{\delta}_0$ satisfying the above indentity.

Theorem 2 is a consequence of recent works by

P. J. Fitzsimmons and R. G. Getoor, Excursion theory revisited. *Illinois J. Math.* **50**(2006), 413-437

Z.-Q. Chen, M. Fukushima and J. Ying, Entrance law, exit system and Lévy system of time changed processes. *Illinois J. Math.* **50**(2006), 269-312

§3. One point extensions of Brownian motions on \mathbb{R}^d

Example 1

 $D \subset \mathbb{R}^d$: bounded domain $X^0 = (X_t^0, \zeta^0, \mathbf{P}_x^0)$: absorbing Brownian motion on DThe Dirichlet form of X^0 on $L^2(D)$ is the Sobolev space $(\frac{1}{2}\mathbf{D}, W_0^{1,2}(D))$, where $\mathbf{D}(u, u) = \int_D |\nabla u|^2(x) dx$. Let

$$\mathcal{F} = \{ w = u + c : u \in W_0^{1,2}(D), c \text{ is constant} \}$$
$$\mathcal{E}(w, w) = \frac{1}{2} \mathbf{D}(u, u),$$

which is readily seen to be a regular Dirichlet form on $L^2(D^*; m)$

where $D^* = D \cup a$ is the one point compactification of D and

$$m(dx) = 1_D(x)dx$$

The associated diffusion process X on D^* extends X^0 . a is regular for itself and recurrent with respect to X. By Theorem 2 (i), the associated entrance law $\{\mu_t; t > 0\}$ equals

$$\mu_t(B)dt = \int_B \mathbf{P}_x^0(\zeta^0 \in dt)dx, \quad b \in \mathcal{B}(D).$$

Example 2(a current work with Zhen -Qing Chen)

 $D \subset \mathbb{R}^d, d \geq 3$; unbounded uniform domain. For instance, D can be an infinite cone or \mathbb{R}^d itself.

Let $X = (X_t, \mathbf{P}_x)$ be the reflecting Brownian motion on \overline{D} . Then X is transient; it is conservative but, if a denotes the point at ifinity of \overline{D} , then

$$\lim_{t \to \infty} X_t = a \quad \mathbf{P}_x - \text{a.s.}$$

Let m(dx) = m(x)dx be a finite measure with positive density $m \in L^1(\mathbb{R}^d)$.

Let $Y = (Y_t, \zeta, \mathbf{P}_x)$ be the time change of X by its PCAF $A_t = \int_0^t m(X_s) ds.$

Then $\mathbf{P}_x(\zeta < \infty) > 0$ and Y_t approaches to a as $t \to \zeta$.

Question How many symmetric conservative extensions does Y admit ?

Answer Only one, that can be realized as a one point extension of Y to $\overline{D} \cup a$ by Itô's ppp.

Define

$$BL(D) = \{ u \in L^2_{loc}(D) : \frac{\partial u}{\partial x_i} \in L^2(D), \ 1 \le i \le d \}$$
$$W^{1,2}_e(D) = \overline{BL(D) \cap L^2(D)}^{\mathbf{D}}.$$

Then, $W_e^{1,2}(D)$ does not contain non-zero constants and

 $\mathrm{BL}(D) = \{u + c : u \in W_e^{1,2}(D), c \text{ is constant}\}$

 $(\frac{1}{2}\mathbf{D}, W_e^{1,2}(D) \cap L^2(D; m))$: Dirichlet form of Y on $L^2(D; m)$

 $(\frac{1}{2}\mathbf{D},\mathrm{BL}(D)\cap L^2(D;m))\colon$ its maximal Dirichlet extension on $L^2(D;m)$