ON ITÔ'S ONE POINT EXTENSIONS OF MARKOV PROCESSES

Masatoshi Fukushima

Symposium in Honor of Kiyosi Itô: Stocastic Analysis and Its Impact in Mathematics and Science, IMS, NUS

July 10, 2008

§1. Itô's point processes and related problems

[IM] K. Itô and H. P. McKean, Jr., Brownian motions on a half line,
Illinois J. Math. 7(1963), 181-231
[I-1] K. Itô, Poisson point processes and their application to Markov processes,
Lecture note of Mathematics Department, Kyoto University (unpublished), September 1969
[I-2] K. Itô, Poisson point processes attached to Markov processes,
in: Proc. Sixth Berkeley Symp. Math. Stat. Probab. III, 1970, pp225-239

In [I-2], Kiyosi Itô showed the following.
$X=\left(X_{t}, \mathbf{P}_{x}\right)$: a standard Markov process on a state space E.
a : a point of E such that a is regular for itself;

$$
\mathbf{P}_{a}\left(\sigma_{a}=0\right)=1, \quad \sigma_{a}=\inf \left\{t>0: X_{t}=a\right\}
$$

$\left\{\ell_{t}, t \geq 0\right\}$: a local time at a, namely, a PCAF of X with support $\{a\}$.
Its right continous inverse is defined by

$$
\tau_{t}=\inf \left\{s: \ell_{s}>t\right\}, \quad \inf \emptyset=\infty .
$$

Define the space W of excursion paths around a by $W=\left\{w:[0, \infty) \mapsto E, 0<\sigma_{a}(w), w_{t}=a, \forall t \geq \sigma_{a}(w)\right\}$

Define a W-valued point process (Itô's point process) p by

$$
\begin{gathered}
\mathcal{D}(\mathbf{p})=\left\{s: \tau_{s}>\tau_{s-}\right\} \\
\mathbf{p}_{s}(t)=\left\{\begin{array}{ll}
X_{\tau_{s-}+t} & t \in\left[0, \tau_{s}-\tau_{s-}\right) \\
a & t \geq \tau_{s}-\tau_{s-},
\end{array} \quad s \in \mathcal{D}(\mathbf{p}) .\right.
\end{gathered}
$$

If $\ell_{\infty}<\infty$, then $\mathbf{p}_{\ell_{\infty}}$ is a non-returning excursion.
Assume additionally that a is a recurrent point;

$$
\mathbf{P}_{x}\left(\sigma_{a}<\infty\right)=1, \quad \forall x \in E,
$$

then $\left\{\tau_{t}\right\}$ is a subordinator and
\mathbf{p} is a W^{+}-valued Poisson point process under \mathbf{P}_{0}

Denote by \mathbf{n} the characteristic measure of \mathbf{p}, \mathbf{n} is a σ-finite measure on W. Let
$\mu_{t}(B)=\mathbf{n}\left(w_{t} \in B, t<\sigma_{a}(w)\right) \quad t>0, \quad B \in \mathcal{B}(E \backslash\{a\})$.
Let X^{0} be the process obtained from X by stopping at time σ_{a} and $\left\{p_{t}^{0} ; t \geq 0\right\}$ be its transition function.

1. X is determined by X^{0} and \mathbf{n}.
2. $\int_{U}\left(1-e^{-\sigma_{a}}\right) \mathbf{n}(d w) \leq 1$.
3. $\left\{\mu_{t} ; t>0\right\}$ is a $\left\{p_{t}^{0}\right\}$-entrance law: $\mu_{t} p_{s}^{0}=\mu_{t+s}$
4. \mathbf{n} is Markovian with semigroup p_{t}^{0} and entrance law $\left\{\mu_{t}\right\}$:

$$
\begin{aligned}
& \int_{W} f_{1}\left(w\left(t_{1}\right)\right) f_{2}\left(w\left(t_{2}\right)\right) \cdots f_{n}\left(w\left(t_{n}\right)\right) \mathbf{n}(d w) \\
= & \mu_{t_{1}} f_{1} P_{t_{2}-t_{1}}^{0} f_{2} \cdots P_{t_{n-1}-t_{n-2}}^{0} f_{n-1} P_{t_{n}-t_{n-1}}^{0} f_{n} .
\end{aligned}
$$

5. When $\mathbf{n}\left(w_{0}=a\right)=0$ (discontinuous entry), then $\mu_{t}=k p_{t}^{0}$ for some σ-finite measure k on $E \backslash\{a\}$ with

$$
\int_{E \backslash\{a\}} \mathbf{E}_{x}\left[1-e^{-\sigma_{a}}\right] k(d x)<\infty,
$$

and conversely any such measure gives rise to a jumpin extension of X^{0}.

Itô stated 5 explicitly in a unpublished lecture note [I-1] and, as an application, he determined all possible extensions of the absorbed diffusion process on a half line with exit but non-entrance boundary yelding a generalization of a part of his joint paper [IM] with McKean.
P.A. Meyer, Processus de Poisson ponctuels, d'apré K. Itô,
Séminaire de Probab. V, in: Lecture Notes in Math. Vol 191, Springer, Berlin, 1971, 177-190
removed the recurrence condition for a from [I-2], and proved that Itô's point process \mathbf{p} is equivalent to an absorbed(stopped) Poisson point process in the following sense:
Decompose the excursion space as $W=W^{+}+W^{-}+\{\partial\}$. There exists a σ-finite measure $\widetilde{\mathbf{n}}$ on W such that

- $\widetilde{\mathbf{n}}$ is Markovian with transition function $\left\{p_{t}^{0}\right\}$
- $\widetilde{\mathbf{n}}\left(W^{-} \cup\{\partial\}\right)<\infty$
- Let $\widetilde{\mathbf{p}}$ the W-valued Poissson point process with characteristic measure $\widetilde{\mathbf{n}}$ and \widetilde{T} be the first occurance time of $W^{-} \cup\{\partial\} .\{\mathbf{p}$.$\} is then equivalent to the$ stopped point process $\left\{\widetilde{\mathbf{p}}_{\cdot \wedge \widetilde{T}}\right\}$.
X is said to be of continuous entry from a if $\widetilde{\mathbf{n}}(w(0) \neq$ $a)=0$.

Problem I (Uniqueness): when and how is the measure $\widetilde{\mathbf{n}}$ on W uniquely determined by the minimal process X^{0} ?

Problem II (Construction): when and how does X^{0} admit extentions X with continuous entry from a ?
L. C. G. Rogers, Itô excursion theory via resolvents, Z. Wahrsch. Verw. Gebiete 63 (1983), 237-255
T. S. Salisbury, On the Itô excursion process, PTRF 73 (1986), 319-350.
T. S. Salisbury, Construction of right processes from excursions, PTRF 73 (1986), 351-367
R. M. Blumenthal, Excursions of Markov Processes, Birkhäuser, 1992

These important articles have dealt with generalzations of [I-2] but the dependence and independece on X^{0} of the involved quantities were not clearly separated.
[FT] M. Fukushima and H. Tanaka, Poisson point processes attached to symmetric diffusions, Ann. Inst. Henri Poincaré Probab.Statist. 41 (2005), 419-459
[CFY] Z.-Q. Chen, M. Fukushima and J. Ying, Extending Markov processes in weak duality by Poisson point processes of excursions.
in: Stochastic Analysis and Applications The Abel Symposium 2005 (Eds) F.E. Benth; G. Di Nunno; T. Lindstrom; B. Oksendal; T. Zhang, Springer, 2007, pp153196.
give affirmative answers to Problem I, II under a symmetry or weak duality setting for X.

- If a pair of standard processes X, \widehat{X} is in weak duality with respect to an excessive measure m, then $\widetilde{\mathbf{n}}$ is uniquely determined by X^{0}, \widehat{X}^{0} and $m_{0}=\left.m\right|_{E \backslash\{a\}}$ up to non-negaitve parameters $\delta_{0}, \widehat{\delta}_{0}$ of the killing rate at a.
In particular, if X^{0} is m_{0}-symmetric, then its symmetric extension with no sojourn nor killing at a is unique.
- If X^{0}, \widehat{X}^{0} are in weak duality with respect to m_{0} and with no killing inside $E \backslash\{a\}$ and approachable to a, then they admit a pair of duality preserving extensions X, \widehat{X} with continuous entry from a (by a time reversion argument).

§2. Uniqueness statements from [CFY]

§2.1. Description of \widetilde{n} by exit system

 $\widetilde{\mathbf{n}}$ can be described in terms of the exit system due to [Mai] B.Maisonneuve, Exit systems. Ann. Probab. 3 (1975), 399-411.$X=\left(\Omega, X_{t}, \mathbf{P}_{x}\right)$: a right process on a Lusin space E.
A point $a \in E$ is assumed to be regular for itself.
ℓ_{t} : a local time of X at a
$\left\{p_{t}^{0} ; t \geq 0\right\}$: the transition function of X^{0} obtained from X by killing at σ_{a}
Ω : the space of all paths ω on $E_{\Delta}=E \cup \Delta$ which are cadlag up to the life time $\zeta(\omega)$ and stay at the cemetery Δ after ζ.
$X_{t}(\omega)$: t-th coordinate of ω.
The shift operator θ_{t} on Ω is defined by
$X_{s}\left(\theta_{t} \omega\right)=X_{s+t}(\omega), s \geq 0$.
The killing operator $k_{t}, t \geq 0$, on Ω defined by

$$
X_{s}\left(k_{t} \omega\right)=\left\{\begin{array}{lll}
X_{s}(\omega) & \text { if } & s<t \\
\Delta & \text { if } & s \geq t .
\end{array}\right.
$$

The excursion space W is specified by

$$
W=\left\{k_{\sigma_{a}} \omega: \omega \in \Omega, \sigma_{a}(\omega)>0\right\},
$$

which can be decomposed as

$$
W=W^{+} \cup W^{-} \cup\{\partial\}
$$

with
$W^{+}=\left\{w \in W: \sigma_{a}<\infty\right\}, W^{-}=\left\{w \in W: \sigma_{a}=\infty\right.$ and $\left.\zeta>0\right\}$.
∂ : the path identically equal to Δ.
$k_{\sigma_{a}}$ is a measurable map from Ω to W.
Define the random time set $M(\omega)$ by

$$
M(\omega):=\overline{\left\{t \in[0, \infty): X_{t}(\omega)=a\right\}}
$$

The connected components of the open set $[0, \infty) \backslash M(\omega)$ are called the excursion intervals.
$G(\omega)$: the collection of positive left end points of excursion intervals

By [Mai], there exists a unique σ-finite measure \mathbf{P}^{*} on Ω carried by $\left\{\sigma_{a}>0\right\}$ and satisfying

$$
\mathbf{E}^{*}\left[1-e^{-\sigma_{a}}\right]<\infty
$$

such that
$\mathbf{E}_{x}\left[\sum_{s \in G} Z_{s} \cdot \Gamma \circ \theta_{s}\right]=\mathbf{E}^{*}(\Gamma) \cdot \mathbf{E}_{x}\left[\int_{0}^{\infty} Z_{s} d \ell_{s}\right] \quad$ for $x \in E$,
for any non-negative predictable process Z and any nonnegative random variable Γ on Ω.
$\left(\mathbf{E}^{*}\right.$: the expectation with respect to $\left.\mathbf{P}^{*}\right)$.
Let $Q^{*}=\mathbf{P}^{*} \circ k_{\sigma_{a}}^{-1} . Q^{*}$ is a σ-finite measure on W and Markovian with semigroup $\left\{p_{t}^{0} ; t \geq 0\right\}$.

Proposition $1 Q^{*}=\widetilde{\mathbf{n}}$.

§2.2 Unique determination of $\widetilde{\mathrm{n}}$ by $\mathrm{X}^{0}, \widetilde{\mathbf{X}}^{0}$

m : a σ-finite Borel measure on E with $m(\{a\})=0$.
$(u, v)=\int_{E} u(x) v(x) m(d x)$
$X=\left(X_{t}, \zeta, \mathbf{P}_{x}\right)$ and $\widehat{X}=\left(\widehat{X}, \widehat{\zeta}, \widehat{\mathbf{P}}_{x}\right)$:
a pair of Borel right processes on E that are in weak duality with respect to m; their resolvent $G_{\alpha}, \widehat{G}_{\alpha}$ satisfy

$$
\left(\widehat{G}_{\alpha} f, g\right)=\left(f, G_{\alpha} g\right), \quad \forall f, g \in \mathcal{B}^{+}(E), \forall \alpha>0,
$$

A point $a \in E$ is assumed to be regular for itself and non- m-polar with respect to X and \widehat{X}.

$$
\varphi(x)=\mathbf{P}_{x}\left(\sigma_{a}<\infty\right), \quad u_{\alpha}(x)=\mathbf{E}_{x}\left[e^{-\alpha \sigma_{a}}\right], \quad x \in E .
$$

The corresponding functions for \widehat{X} is denoted by $\widehat{\varphi}, \widehat{u}_{\alpha}$ X^{0}, \widehat{X}^{0} : the killed processes of X, \widehat{X} upon σ_{a}.
They are in weak duality with respect to m_{0}. $\left\{p_{t}^{0} ; t \geq 0\right\}$: the transition function of X^{0}

For an excessive measure η and an excessive function v of X^{0}, the energy functional is defined by

$$
L^{(0)}(\eta, v)=\lim _{t \downarrow 0} \frac{1}{t}\left\langle\eta, v-p_{t}^{0} v\right\rangle .
$$

Let $\left\{\mu_{t} ; t>0\right\}$ be the $\left\{p_{t}^{0}\right\}$-entrance law associated with $\widetilde{\mathbf{n}}$:

$$
\mu_{t}(B)=\widetilde{\mathbf{n}}\left(w_{t} \in B ; t<\zeta(w)\right), \quad B \in \mathcal{B}(E \backslash\{a\})
$$

Then

$$
\begin{aligned}
& \int_{W} f_{1}\left(w\left(t_{1}\right)\right) f_{2}\left(w\left(t_{2}\right)\right) \cdots f_{n}\left(w\left(t_{n}\right)\right) \mathbf{n}(d w) \\
= & \mu_{t_{1}} f_{1} P_{t_{2}-t_{1}}^{0} f_{2} \cdots P_{t_{n-1}-t_{n-2}}^{0} f_{n-1} P_{t_{n}-t_{n-1}}^{0} f_{n} .
\end{aligned}
$$

We let $\delta_{0}=\widetilde{\mathbf{n}}(\{\partial\})$
Theorem 2 (i) $\left\{\mu_{t}\right\}$ satisfies

$$
\widehat{\varphi} \cdot m=\int_{0}^{\infty} \mu_{t} d t .
$$

(ii) $\widetilde{\mathbf{n}}\left(W^{-}\right)=L^{(0)}(\widehat{\varphi} \cdot m, 1-\varphi)$
(iii) It holds that

$$
L^{(0)}(\widehat{\varphi} \cdot m, 1-\varphi)+\delta_{0}=L^{(0)}(\varphi \cdot m, 1-\widehat{\varphi})+\widehat{\delta}_{0} .
$$

A general theorem due to Fitzsimmons (1987):
For a transient right process with transition function $\left\{q_{t} ; t \geq 0\right\}$, any excessive measure η which is pure in the sense that $\eta q_{t} \rightarrow 0, t \rightarrow \infty$, can be represented by a unique $\left\{q_{t}\right\}$-entrance law $\left\{\nu_{t} ; t>0\right\}$ as

$$
\eta=\int_{0}^{\infty} \nu_{t} d t
$$

Theorem 2 (i) means that the entrance law determining $\widetilde{\mathbf{n}}$ is uniquely decided by \widehat{X}^{0} and m.

Theorem 2 means that the Itô point process \mathbf{p} is uniquely determined by $X^{0}, \widehat{X}^{0}, m$ up to a pair of non-negative constants $\delta_{0}, \widehat{\delta}_{0}$ satisfying the above indentity.

Theorem 2 is a consequence of recent works by
P. J. Fitzsimmons and R. G. Getoor, Excursion theory revisited. Illinois J. Math. 50(2006), 413-437
Z.-Q. Chen, M. Fukushima and J. Ying, Entrance law, exit system and Lévy system of time changed processes. Illinois J. Math. 50(2006), 269-312

§3. One point extensions of Brownian motions on

 \mathbb{R}^{d}
Example 1

$D \subset \mathbb{R}^{d}$: bounded domain
$X^{0}=\left(X_{t}^{0}, \zeta^{0}, \mathbf{P}_{x}^{0}\right)$: absorbing Brownian motion on D
The Dirichlet form of X^{0} on $L^{2}(D)$ is the Sobolev space
$\left(\frac{1}{2} \mathbf{D}, W_{0}^{1,2}(D)\right)$, where $\mathbf{D}(u, u)=\int_{D}|\nabla u|^{2}(x) d x$. Let

$$
\begin{gathered}
\mathcal{F}=\left\{w=u+c: u \in W_{0}^{1,2}(D), c \text { is constant }\right\} \\
\mathcal{E}(w, w)=\frac{1}{2} \mathbf{D}(u, u),
\end{gathered}
$$

which is readily seen to be a regular Dirichlet form on $L^{2}\left(D^{*} ; m\right)$
where $D^{*}=D \cup a$ is the one point compactification of D and
$m(d x)=1_{D}(x) d x$.
The associated diffusion process X on D^{*} extends X^{0}. a is regular for itself and recurrent with respect to X. By Theorem 2 (i), the associated entrance law $\left\{\mu_{t} ; t>0\right\}$ equals

$$
\mu_{t}(B) d t=\int_{B} \mathbf{P}_{x}^{0}\left(\zeta^{0} \in d t\right) d x, \quad b \in \mathcal{B}(D) .
$$

Example 2(a current work with Zhen -Qing Chen)
$D \subset \mathbb{R}^{d}, d \geq 3,:$ unbounded uniform domain. For instance, D can be an infinite cone or \mathbb{R}^{d} itself.

Let $X=\left(X_{t}, \mathbf{P}_{x}\right)$ be the reflecting Brownian motion on \bar{D}. Then X is transient; it is conservative but, if a denotes the point at ifinity of \bar{D}, then

$$
\lim _{t \rightarrow \infty} X_{t}=a \quad \mathbf{P}_{x}-\text { a.s. }
$$

Let $m(d x)=m(x) d x$ be a finite measure with positive density $m \in L^{1}\left(\mathbb{R}^{d}\right)$.
Let $Y=\left(Y_{t}, \zeta, \mathbf{P}_{x}\right)$ be the time change of X by its PCAF $A_{t}=\int_{0}^{t} m\left(X_{s}\right) d s$.
Then $\mathbf{P}_{x}(\zeta<\infty)>0$ and Y_{t} approaches to a as $t \rightarrow \zeta$.
Question How many symmetric conservative extensions does Y admit?

Answer Only one, that can be realized as a one point extension of Y to $\bar{D} \cup a$ by Itô's ppp.

Define

$$
\begin{gathered}
\operatorname{BL}(D)=\left\{u \in L_{l o c}^{2}(D): \frac{\partial u}{\partial x_{i}} \in L^{2}(D), 1 \leq i \leq d\right\} \\
W_{e}^{1,2}(D)={\overline{\operatorname{BL}(D) \cap L^{2}(D)}}^{\mathrm{D}} .
\end{gathered}
$$

Then, $W_{e}^{1,2}(D)$ does not contain non-zero constants and

$$
\operatorname{BL}(D)=\left\{u+c: u \in W_{e}^{1,2}(D), c \text { is constant }\right\}
$$

$\left(\frac{1}{2} \mathbf{D}, W_{e}^{1,2}(D) \cap L^{2}(D ; m)\right)$: Dirichlet form of Y on $L^{2}(D ; m)$ $\left(\frac{1}{2} \mathbf{D}, \mathrm{BL}(D) \cap L^{2}(D ; m)\right)$: its maximal Dirichlet extension on $L^{2}(D ; m)$

