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Origins

f.’ Need to model environmental space -time fields over T
large space - time domains that challenge physical and
statistical modelers

#® Space time research study group: Statistical and
Applied Mathematical Sciences Institute, Jan - May,

2003.

o -
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What'sa Model?
W

‘an abstract, analogue representation of the prototype
whose behavior is being studied” (Steyn & Galmarini 2003)

=

o -
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Physical M odeler’s Per spectives
5

Phys model classification T

® Analytic Models:

s Vvariables in tractable math equations represent
measurable attributes of the real thing

® Physical Scale Models

s physical behavior of their measurable properties
analogous to that of the real thing

» Numerical Models

s variables obtained by numerical solution thought to

be analogous to measurable attributes of the real
thing

L s Example: Climate Models: IMS Talk 2 J
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Controversy! The Oreskes Paper

fThe paper (OSB) . Oreskes, Schrader-Frechette & Belitz (1994) T
Science, 263, 641-646

# highly influential

» says physical models cannot be shown to represent
reality - validation meaningless/pointless

s still cited over 40 times per yr
» used to justify not validating!

! -
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Controversy! The Oreskes Paper

fThe paper (OSB) . Oreskes, Schrader-Frechette & Belitz (1994) T
Science, 263, 641-646

# dismisses common assessment practices

verification

validation

verifying numerical solutions
calibration

confirmation

© o o o @

o -
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Oreskes
R o

® Confirmation: concluding that simulated - real data match
= truth is logical fallacy : “affirming the consequence”

EXAMPLE: Hypothesis H : “It is raining.” Model: “If
H, | will stay home and revise the paper.” You find
me at home and conclude H valid since data
matches prediction under model hypothesis!

n “confirmation” for example.

#® poor predictions = bad model!
# good predictions = good model!

» many good models possible
» bad hypotheses could cancel each other

o -
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Oreskes
| . o

ummary:

“The primary purpose of models in heuristic...useful
for guiding further study but not susceptible to

proof... [Any model is] a work of fiction. ... A model,
like a novel may resonate with nature, but is not the

‘real thing’.

11
o -
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Steyn & Galmarini Counterattack!
B o

# reject alternative: pure empiricism

# go for an compromise between pure empiricism models
and “true” models:

» models have predictive & heuristic value

o but define “success” before assessment to avoid
“gradualism”

s they provide evidence of predictive value of models

# current hot topic in phys modelling & other communities

o -
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Phys - Stat M odelling Themes
=

THEME 1. Statistics can help assess physical (phys)
(simulation) models (if you must)

=

# The US EPA says you must!!
#® Fuentes, Guttorp, Challenor (2003). NRCSE TR # 076.

o -
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Phys - Stat M odelling Themes
=

THEME 2. Statistics can help interpret, analyze, understand,
exploit outputs of complex phys models [Nychka 2003].

=

# Example: statistics on modeled precipitation (precip)
extremes gives coherent return values over space for
design

15
o -
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Phys - Stat M odelling Themes

- .

#® THEME 3. Physical (phys) and statistical (stat) models
can produce synergistic benefits by "melding” them.

» Wikle, Milliff, Nychka, Berliner (2001). JASA.

s Example: how can simulated (modelled) and real
ozone data be usefully combined?

o -
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Theme 3: SSmulated + Real Data
-

Does this make sense?

=

# Example:
(2 + 1 )/2=1.5

Seems correct. But its actually nonsensical.



Theme 3: SSmulated + Real Data
-

Does this make sense?

=

# Example:
(2 + 1 )/2=1.5

Seems correct. But its actually nonsensical.

(2cm + 1 apple)/2 =1.5

Phys model data scales differ from real data

o -
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Model Dynamic Scales
-

The problem (Steyn & Galmarini 2003): T
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Continuous real data monitors: scale just 1 m?x few
minutes - lower left hand corner!!
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Time Scale (s)

Model Dispersion Scales
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Time Scale (5)
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Model Chemical Scales
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lime Scale (s)

Model Human Scales
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Physvs Stat Models

- .

Physical models:

# prior knowledge expressed by math equations (de’s)
# can lead to big computer models

# yield deterministic response predictions

# can fail because of:

s butterfly effect

s nonlinear dynamics

» lack of background knowledge
s lack of computing power

25
o -
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Physvs Stat Models

. .

Statistical models:

# prior knowledge expressed thru stat models & priors
# can lead to big computer models

# yield predictive distributions

# can fall because of:

s too simplistic off-the-shelf models
s lack of background knowledge
s lack of computing power

o -
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Physvs Stat Models
=

May be strength in unity but:

#® approaches differ

# Dbig gulf between two cultural “attitudes”
& communication between camps strained
o

route to reconciliation unclear

29
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Physvs Stat Models
=

#® General framework [Berliner (2003)]:

» Mmeasurement model
s process model
s parameter model

# fits nicely with hierarchical Bayesian modeling

o -
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Physvs Stat Models
=

Strategies for combining depend on:

® purpose
& context
# # of mathematical equations involved



Physvs Stat Models

fCase 1: Only a few de’s:
Example: dX(t)/dt = AX ().

® solve it and make constants random:
X(t) = Brexp At + By

(Wikle et al 2001)

# discretize the de and add noise to get a state space
model: X(t+1)=(1+ MN)X(t) + ¢ (Wikle et al 2001)

# use functional data analytic approach - incorporate de’s
via penalty term (as in splines; Ramsay & Silverman
19987?)
> (Ye — Xi)? + [(DX(t) — AX(t))*dt

-
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Physvs Stat Models
o

# construct better predictive density:

=

ase 2. Many mathematical (differential) equations, e.g. 1  00:

s f(real|simulated) eg input simulated value as prior
mean

s Mayer Alvo (19907?7?)

# view simulated data as real - build joint density
(“Bayesian melding ”):

s f(real, simulated) =

[ f(real|truth) f(simulated|truth) x w(truth)d(truth)
s Fuentes & Raftery (2005). Biometrics.

o -
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°

© o o o o

Bayesian melding

ombining measurement & and model data with different scale

Instrument ensemble:=1,....D

Model ensemble:=1,..., M

s = spatial location

B = grid cell

/\

Zi(s) =
Z;(B) =
Z(s) =

measurement ; at site s

model 5 output for cell B

truth links measurement and model

Extends Montserrat Fuentes and Adrian E. Raftery 2005 Biome  trics

o

-
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Bayesian melding

-

Combining measurement & and model data with different scale S.
Measurement equations:
For all instruments, i:

Zi(s) = aj(s)+bi(s)Z(s) + ei(s)

Here
Z(s) = “truth”
ei(s) ~ N(0,0%) L Z(s) = measurement error
a;(s) = additive bias instrument i
bi (s) = multiplicative bias instrument i

o -
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Bayesian melding

-

fCombining measurement & and model data with different scale S.
Truth:

Z(s) = pu(s)+ €(s) where

u(s) = spatial trend = linear polynomial in lat, long
e(s) = trend mispecification error
~ N(0,%)
>, = spatial covariance matrix

o -
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Bayesian melding

-

Combining measurement & and model data with different scale S.
Simulated data equations:

For model j:
7 M M
j(s) = aj (s)+ b5 (s)Z(s) + 0;(s)
aj-w (s) = additive mispecification error, model j
bj-w (s) = multiplicative mispecification error, model j
0;(s) = model mispecification error

~ N(0,0gj) 1L Z(s),e(s)

o -
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| mplementation

- .

# Truth assumed as locally stationary (“convolution
approach " of Fuentes - variation of Higdon):

/ K(x — s)Zys)(x)ds
D

Z(s)(x) = stationary spatial process over x for each
fixed s. But Z not stationary! In fact:

® C(s1,52;0) = [ K(s1 —5)K(s2 — 5)Cy(s) (51 — 52)ds With
s D= Whole region

o -
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- .

# For simplicity:

K(u) = h?Ky(h tu)lonly choice of h being critical

3 N 2

—(1 - U1)+Z(1 — uj)+

Ko(u) 1

and
® (ys=Matern covariance kernel with

s 0(s) = (vs, 05, ps)

50
o .
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M atern covariance mode

L .

etd =s1 — s9. Then

Cov|Z(s1), Z(s2)] = Cy(d)

= gty Rl ) K2 Pl )

Here:
#® o = sill parameter

#® p =range parameter (rate of decay of spatial
correlation)

# v = smoothness parameter (v = 1/2 yields exponential
decay model)

o -
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Integralsto sums

=

fDraw systematic location sample s,,, € D, m =1,2,..., M.
Then

M
O(Sl, 59; (9) ~ M1 Z K(81 — Sm)K(SQ — Sm)Oe(sm)(Sl — SQ)

m=1

54

o -
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°

s

Prior - posterior modelling

All variances assumed inverted gamma priors

All multiplicative biases b(s) = b’s assumed spatially

iInvariant (based on expert input) with joint Gaussian
prior. Additive biases vary over space and get a joint
Gaussian prior.

The sill and range parameters for Matern get ANOVA
forms over a regular grid indexed by (¢, j):
Oij = QTTiTCjTE,;

/ / / /
Pij = &+ Ct€;

the {r; ;}, etc, getting a joint Gaussian prior distribution

All linear mean parameters get joint Gaussian
parameters.

=

-
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Prior - posterior modelling

- .

® 71 monitoring sites & measurements Z
# sample L grid points in each of m grid cells, B;:
{s1,B:s - 5L,B,}

L

1
Z(Bi) = —+ > Z(sj,) +6(s;B,)
j=1

# split truth vector Z for n + mL sites into Z; (n monitoring
sites) Zs (mL sampling sites).

o -
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Prior - posterior modelling

O .

oint posterior distribution:

(ZZZﬁeab, Oe 5)
= p(Z|Z,02)p(Z|Z,a,b,03)p(Z|3,0)7 (03, 03, 3,6)
= Dy21(Z — Z2)®y2(Z — Za)

Py p)(Z — Xﬁ)ﬂ(ag)ﬂ(ag)ﬂ(ﬁ)w(ﬁ).

Now go to MCMC

60
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Spatial prediction
f.o Kriging: an alternative using data or simulated data

# unmonitored sites simple to predict with melding

s part of MCMC

s Yields predictive distribution with 95% credibility
(predictive) intervals

o -
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The Ozone Project

-

Air pollution transportation models:

# mathematical - computer models:
s capture nonlinear photochemical interactions
s predict/simulate air pollution
s URM 1994, UAM-V 1995, CAMx 1997, SAQM 1997,
MAQSIP 1996, MODELS-3 1998
# developed for variety of purposes:
» assessing success of abatement strategies
s regulation & control

# yield “simulated data”

o -
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Ozone Chem Trans M ods

=

hourly concentrations of ground level O3 (ozone) over
eastern US for 120 days from May 15 - Sept 11 1995.

simulated concentrations from the MULTISCALE AIR
QUALITY SIMULATION PLATFORM (MAQSIP) model

measured concentrations from > 200 monitoring sites
from US EPA’s AIRS database.

BASIC QUESTIONS:

» Can simulated data help in spatial prediction of data?
» Can data help recalibrate the simulated data?

s Can simulated data be substituted for data?

s How might they be combined?

-
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Simulated Data (MAQSIP) cells

e,

-
N

IMS 1 = D. 26/~
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Real Data Ozone Sites




Comparisons

-

fTS plots of 3 real & 1 simulated data series. Simulated
more variable than real!
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fS

Ozone application results

ite and grid cell locations.

TRIANGLES- 51 monitored

=

sites, RECTANGLES - 100 grid cells, PLUSES- 30 unmonitored

sites

latitude in degrees

45

40

35

30

25

longitude in degrees

-
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Ozone application results

-

Substantial model bias at certain hours

upper panel) b (multiplicative bias - lower panel)

-20 <10 05 15

06 08 10 12

a (additive bias -

-
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Ozone application results

fComparison: melding ( Red)and kriging (Blue) - 2 differentT
hours 30 sites

stations

’ \
T T T T T T
o s 10 20 25 30
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Ozone application results

-

Comparison: melding ( Red) simulated data only &
kriging ( Blue) - 2 different hours 30 sites

=

0200¢ evels n b

10 0 kil i 5

0200¢ evels n b

10 0 kil I 5

T T T T T T
s 10 1s 20 25 30
stations
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Ozone application results

fComparison: melding & kriging - 1 hour 30 sites.Red plot
- bias adjusted melding improves prediction.
- no model bias adjustment. dashed turquoise plot -Kriging
the grid cell data

120

—— Observed
m ng p wi
melding prediction without calibration
s Kri
— Krging by 100 grid cells
o ]
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o
o
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o
2 8-
(5]
==
o
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o] 5 10 15 20 25 30
stations

Phvstat Modelina: IMS 1 = p. 29/~



Melding report card
. o

ros.

# permits meso - micro scales scale integration
# makes good use of model outputs

# includes model - only ensembles (probabilistic weather
forecasting)

# enables lots of model diagnostics - not merely
prediction!

# generally better than Kriging (smaller mean squared
prediction errors)

# implementation (R) software now online

80 -
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Melding report card
=

cons:

°

computationally intensive

# large nos of grid cells & monitoring sites means big,
numerically unstable covariance matrices

#® approach to misaligned data not supported by physics
# Kriging a lot simpler for spatial prediction

o -
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Melding report card
=

Alternatives: T
Two step regression:

Ost = Qs+ CsMst + Nst

Ng = pNgi—1 +7t21t + - + y2a:doat + €5

where the {Z;;} are 0 — 1 hour indicators.

This model can be fitted into a Bayesian framework and
works better for spatial prediction than melding since it
Includes all the data over time.

o -
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Other applications
f.’ Probabilistic weather forecasting T
# Setting error bars on climate model predictions

# Calibrating deterministic model outputs for point
Inference

o -
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Concluding remarks

- .

# Results for melding encouraging but work remains.

# Simulated data improves spatial predictive
performance, melding beats Kriging and can produce
better calibrated predictive intervals

# Physical statistical modelling part of a larger trend from
“normal science” to “post - normal science”

o -
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Concluding remarks

-

Funtowicz, Ispra Ravetz (20047?) Nusap.net:

"...key properties of complex systems, radical
uncertainty and plurality of legitimate
perspectives....When facts are uncertain, values in
dispute, stakes high, and decisions urgent the
...guiding principle of research science, the goal of
achievement of truth,...must be modified. In
post-normal conditions, such products may be ...an
Irrelevance.”

o -
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Concluding remarks
o

rom Funtowicz et al:
high

Decision Stakes

Lo - high
Sysiems Unceriainly
LExtended version of this talk to be posted. Follow links fromJ
http://www.stat.ubc.ca/<faculty members LINK>
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Concluding remarks

=

fOther PIMS CRG events in 2008

# Banff International Research Station for
Mathematical Innovation and Discovery (BIRS):  The
Climate Change Impacts on Ecology and the
Environment May 4 -9, 2008.

® The 2008 annual International Environmetrics
Society Conference:
Quantitative Methods for Environmental
Sustainability
June 8-13, 2008, Kelowna, Canada.

http://people.ok.ubc.ca/zhrdlick/tiesO08/call.htm

o -
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Concluding remarks

=

fOther PIMS CRG events in 2008

# The PIMS International Graduate Institute’s Summer
School
Computation in environmental statistics
Tentatively: Jul 28-Aug 1, 2008, National Center for
Atmospheric Research (NCAR), Boulder Colorado

# Workshop on extreme climate events
Winter, 2008, Lund University

o -
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Concluding remarks

=

Email: jim@stat.ubc.ca

Homepage: http://www.stat.ubc.ca/ jim

Tech reports:  http://www.stat.ubc.ca/Research/TechReports/
Melding software: http://enviro.stat.ubc.ca

o -
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