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1. Historical Introduction

The Korteweg-de Vries (KdV) equation is

At + 6AAx + Axxx = 0 , (1)

written here in canonical form. In (1) A(x , t) is an appropriate field
variable, t is time, and x is a space coordinate in the direction of
propagation. The KdV equation is widely recognised as a paradigm
for the description of weakly nonlinear long waves in many
branches of physics and engineering. It describes how waves evolve
under the competing but comparable effects of weak nonlinearity
and weak dispersion. Indeed, if it is supposed that x-derivatives
scale as ε where ε is the small parameter characterising long waves
(i.e. typically the ratio of a relevant background length scale to a
wavelength scale), then the amplitude scales as ε2 and the time
evolution takes place on a scale of ε−3.



2. Solitary Wave

The KdV equation is characterised by its solitary wave solutions,

A = a sech2(γ(x − Vt)) , (2)

where V = 2a = 4γ2 . (3)

This solution describes a family of steady isolated wave pulses of
positive polarity, characterized by the wavenumber γ; note that the
speed V is proportional to the wave amplitude a, and to the square
of the wavenumber γ2. Thus the larger waves are thinner and
travel faster.



3. History

The KdV equation (1) owes its name to the famous paper of
Korteweg and de Vries, published in 1895, in which they showed
that small-amplitude long waves on the free surface of water could
be described by the equation

ζt + cζx +
3c

2h
ζζx +

ch2

6
(1− Bo

3
)ζxxx = 0 . (4)

Here ζ(x , t) is the elevation of the free surface relative to the
undisturbed depth h, c = (gh)1/2 is the linear long wave phase
speed, and Bo = T/gh2 is the Bond number measuring the effects
of surface tension (ρT is the coefficient of surface tension and ρ is
the water density). Transformation to a reference frame moving
with the speed c (i.e. (x , t) is replaced by (x − ct, t), and
subsequent rescaling readily establishes the equivalence of (1) and
(4). Although equation (1) now bears the name KdV, it was
apparently first obtained by Boussinesq in 1877.



4. Cnoidal Waves

Korteweg and de Vries found the solitary wave solutions (2) and,
importantly, they showed that they are the limiting members of a
two-parameter family of periodic travelling wave solutions,
described by elliptic functions and commonly called cnoidal waves,

A = b + a cn2(γ(x − Vt); m) , (5)

where V = 6b + 4(2m − 1)γ2 , a = 2mγ2 . (6)

Here cn(x ; m) is the Jacobian elliptic function of modulus m
(0 < m < 1). As m→ 1, cn(x ; m)→ sech(x) and then the cnoidal
wave (5) becomes the solitary wave (2), now riding on a
background level b. On the other hand, as m→ 0, cn(x ; m)
→ cos 2x and so the cnoidal wave (5) collapses to a linear
sinusoidal wave (note that in this limit a→ 0).



5. Russell’s Observations

This solitary wave solution found by Korteweg and de Vries had
earlier been obtained directly from the governing equations (in the
absence of surface tension) independently by Boussinesq in
1871,and Rayleigh in 1876, who were motivated to explain the now
very well-known observations by John Scott Russell in the Union
Canal in 1834, and his subsequent experiments.

 



6. Solitons

After this ground-breaking work of Korteweg and de Vries, interest
in solitary water waves and the KdV equation declined until the
dramatic discovery of the soliton by Zabusky and Kruskal in 1965.
Through numerical integrations of the KdV equation they
demonstrated that the solitary wave (2) could be generated from
quite general initial conditions, and could survive intact collisions
with other solitary waves, leading them to coin the term soliton.
Their remarkable discovery, followed almost immediately by the
theoretical work of Gardner, Greene, Kruskal and Miura showing
that the KdV equation was integrable through an inverse
scattering transform, led to many other startling discoveries and
marked the birth of soliton theory as we know it today. The
implication is that the solitary wave is the key component needed
to describe the behaviour of long, weakly nonlinear waves. In
particular, a general localized initial condition will lead as t →∞
the generation of a finite number of solitons and some dispersing
radiation.



7. Soliton Generation

The generation of three solitons from a localized initial condition
for the KdV equation (1).
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8. Kadomtsev-Petviashvili Equation

The KdV equation is uni-directional. A two-dimensional version of
the KdV equation is the KP equation, obtained by Kadomtsev and
Petviashvili in 1970,

(At + 6AAx + Axxx)x ± Ayy = 0 . (7)

This equation includes the effects of weak diffraction in the
y -direction, in that y -derivatives scale as ε2 whereas x-derivatives
scale as ε. Like the KdV equation it is an integrable equation.
When the “+”-sign holds in (7), this is the KPII equation, and it
can be shown that then the solitary wave (2) is stable to transverse
disturbances. On the other hand if the “−”-sign holds, this is the
KPI equation for which the solitary wave is unstable; instead this
equation supports “lump” solitons. Both KPI and KPII are
integrable equations. Water waves belong to the KPII case.



9. KdV as a Canonical Model Equation

Although the KdV equation (1) is historically associated with
water waves, it occurs in many other physical contexts, where it
can be derived by an asymptotic multi-scale reduction from the
relevant governing equations. Typically the outcome is

At + cAx + µAAx + λAxxx = 0 . (8)

Here c is the relevant linear long wave speed for the mode whose
amplitude is A(x , t), while µ and λ, the coefficients of the
quadratic nonlinear and linear dispersive terms respectively, are
determined from the properties of this same linear long wave mode
and, like c depend on the particular physical system being
considered. Note that the linearization of (8) has the linear
dispersion relation ω = c k − λk3 for linear sinusoidal waves of
frequency ω and wavenumber k; this expression is just the
truncation of the full dispersion relation for the wave mode being
considered, and immediately identifies the origin of the coefficient
λ. Similarly, the coefficient µ can be identified with the an
amplitude-dependent correction to the linear wave speed.



10. KdV as a Canonical Model Equation

Transformation to a reference frame moving with a speed c and
subsequent rescaling shows that (8) can be transformed to the
canonical form (1). Specifically, let

µA = 6UÃ , x − ct =

(
λ

U

)1/2

x̃ , t =

(
λ

U3

)1/2

t̃ . (9)

Here U is a constant velocity scaling factor inserted to make the
transformed variables dimensionless; a convenient choice is often
U = |c | provided c 6= 0. Then, after removing the superscript,
equation (8) collapses to the canonical form (1). Equations of the
form (8) arise in the study of internal solitary waves in the
atmosphere and ocean, mid-latitude and equatorial planetary
waves, plasma waves, ion-acoustic waves, lattice waves, waves in
elastic rods and in many other physical contexts. Later we shall
give a brief outline of the derivation of (8) for surface and internal
waves.



11. Generalized Solitary Waves

The strict validity of the asymptotic expansion leading to the KdV
equation (8) is that there should be no resonance between the
linear long wave mode with speed c , and any other part of the
linear spectrum of the system being considered. There is an
implicit assumption in deriving (8) that the solitary wave is
spatially localized. In the far-field of any solution linearized
dynamics apply, we can use the dispersion relation ω = ω(k) of the
full linearized system for sinusoidal waves of wavenumber k and
frequency ω to test this.. Since all solutions of (8) travel with a
speed close to the linear long wave speed c , spatial localization
requires that there be no resonance between c and any linear phase
speed C (k) = ω(k)/k ; that is, there are no real solutions for any
finite real-valued non-zero k of the resonance condition c = C (k).
Pure solitary waves exist in the gaps in the linear spectrum.
Otherwise, any attempt to construct a solitary wave may lead to
co-propagating small-amplitude oscillations at infinity, the so-called
generalized solitary wave.



12. Effect of Surface Tension

The dispersion relation for water waves with surface tension is

C 2(k)

gh
=

(1 + Boq2) tanh q

q
q = kh ,

where the plots are for Bo = 0.0, 0.2, 0.4.



13. Effect of Surface Tension

For water waves without surface tension, Bo = 0, pure solitary
waves can exist for speeds greater than c . However, if the Bond
number is such that 0 < Bo < 1/3 then a resonance occurs
between a long gravity wave and a short capillary wave. In this
case, the full system cannot support a spatially localized solitary
wave and instead there exist generalized solitary waves. They have
a central core, described by the KdV solitary wave (2) for small
amplitudes, but in the far-field have co-propagating non-decaying
oscillations with a wavenumber approximately given by the
resonance condition. The amplitudes of these oscillations are
exponentially small relative to the amplitude of the central core,
and this is why any multi-scale asymptotic expansion leading to
the KdV equation (8) cannot find them. But note that when
Bo > 1/3 the graph is again monotonic and there again exist
genuine solitary waves, now for speeds less than c.



14. Extended Korteweg-de Vries Equation

In some physical situations, it is necessary to extend the KdV
equation (8) with a higher-order cubic nonlinear term of the form
σA2Ax . After transformation and rescaling, the amended equation
(8) can be transformed to the so-called extended KdV (or Gardner)
equation

At + 6AAx + 6βA2Ax + Axxx = 0 . (10)

Like the KdV equation, the Gardner equation is integrable by the
inverse scattering transform. Here the coefficient β can be either
positive or negative, and the structure of the solutions depends
crucially on which sign is appropriate.



15. Extended Korteweg-de Vries Equation

The solitary wave solutions are given by

A =
a

b + (1− b) cosh2 γ(θ − V τ)
, (11)

where V = a(2 + βa) = 4γ2 , b =
−βa

(2 + βa)
. (12)

There are two cases to consider. If β < 0, then there is a single
family of solutions such that 0 < b < 1 and a > 0. As b increases
from 0 to 1, the amplitude a increases from 0 to a maximum of
−1/β while the speed V also increases from 0 to a maximum of
−1/β. In the limiting case when b → 1 the solution (11) describes
the so-called “thick” solitary wave, which has a flat crest of
amplitude am = −1/β.
The figure shows solitary wave solutions (11) of the extended KdV
equation; upper panel for β < 0; lower panel for β > 0.



16. Solitary Waves of the Extended KdV Equation
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17. Solitary Waves of the Extended KdV Equation

For the case when β > 0, b < 0 and there are two families of
solitary waves. One is defined by −1 < b < 0, has a > 0, and as b
decreases from 0 to −1, the amplitude a increases from 0 to ∞,
while the speed V also increases from 0 to ∞. The other is defined
by −∞ < b < −1, has a < 0 and, as b increases from −∞ to −1,
the amplitude a decreases from −2/β to ∞. In the limit b → −1

A = a sech 2γ(θ − V τ) , V = βa2 = 4γ2 ,

where here a can take either sign. On the other hand, as b → −∞,
γ → 0 and the solitary wave (11) reduces to the algebraic form

A =
a0

1 + βa2
0θ

2/4
, a0 = − 2

β
.

The parameter space between this lower amplitude limit of −2/β
and 0 is occupied by breathers .



18. Solitary Waves in a Variable Environment

In many physical situations it is necessary to take account of the
fact that solitary waves propagate through a variable environment.
This means that the coefficients c , µ andλ in (8) are functions of
x , while an additional term c(Qx/2Q)A needs to be included,
where Q(x) is a magnification factor. Thus (8) is replaced by

At + cAx + c
Qx

2Q
A + µAAx + [σA2Ax ] + λAxxx = 0 . (13)

After transforming to new variables, X = (
∫ x

dx/c)− t, B =
Q1/2A, the variable-coefficient KdV equation (when we ignore the
cubic nonlinear term, σ = 0) is obtained for B(x ,X ),

Bx + ν(x)BBX + δ(x)BXXX = 0 . (14)

where ν = µ/cQ1/2, δ = λ/c3 .

It is assumed here that ∂
∂x <<

∂
∂X . In general, equation (14) is not

an integrable equation and must be solved numerically, although
we shall exhibit some asymptotic solutions. There are two distinct
limiting situations to be considered.



19. Fission of Solitary Waves

First, let it be supposed that the coefficients ν(x), δ(x) in (14)
vary rapidly with respect to the wavelength of a solitary wave, and
consider then the case when these coefficients make a rapid
transition from the values ν−, δ− in x < 0 to the values
ν+, δ+in x > 0. Then a steady solitary wave can propagate in the
region x < 0, given by

B = b sech2(γ(X −Wx))where W =
ν−b

3
= 4δ−γ

2 . (15)

It will pass through the transition zone x ≈ 0 essentially without
change, but on arrival into the region x > 0 it is no longer a
permissible solution of (14), which now has constant coefficients
ν+, δ+. Instead, with x = 0, the expression (15) forms an effective
initial condition for the new constant-coefficient KdV equation.
Using the inverse scattering transform, the solution in x > 0 can
now be constructed; indeed in this case the spectral problem has
an explicit solution. The outcome is that the initial solitary wave
fissions into N solitons, and some radiation.



20. Fission of Solitary Waves

The number N of solitons produced is determined by the ratio of
coefficients R = ν+δ−/ν−δ+. If R > 0 (i.e. there is no change in
polarity for solitary waves), then N = 1 + [((8R + 1)1/2 − 1)/2]
([· · · ] denotes the integral part); as R increases from 0, a new
soliton (initially of zero amplitude) is produced as R successively
passes through the values m(m + 1)/2) for m = 1, 2, · · · . But if
R < 0 (i.e. there is a change in polarity) no solitons are produced
and the solitary wave decays into radiation.

For instance, for water waves,

c = (gh)1/2, µ = 3c/2h, λ = ch2/6,Q = c ,

and so ν = 3/(2hc1/2) , δ = h2/(6c2) ,

where h is the water depth. It can then be shown that a solitary
water wave propagating from a depth h− to a depth h+ will fission
into N solitons where N is given as above with R = (h−/h+)9/4; if
h− > h+, N ≥ 2, but if h− > h+ then N = 1 and no further
solitons are produced.



21. Fission of a water wave at a step

Fissionong of a solitary water wave at a step change in the bottom
topography.
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22. Slowly-varying Solitary Wave

Next, consider the opposite situation when the coefficients
ν(x), δ(x) in (14) vary slowly with respect to with respect to the
wavelength of a solitary wave. In this case a multi-scale
perturbation technique can be used in which the leading term is

B ∼ b sech2γ(X −
∫ x

x0

W dx) , (16)

where W =
νb

3
= 4δγ2 . (17)

Here the wave amplitude b(x), and hence also W (x), γ(x), are
slowly-varying functions of x .



23. Slowly-varying Solitary Wave

Their variation is most readily determined by noting that the
variable-coefficient KdV equation (14) possesses a conservation
law, ∫ ∞

−∞
B2dX = constant . (18)

which expresses conservation of wave-action flux. Substitution of
(16) into (18) gives

2b2

3γ
= constant , so that b = constant(

δ

ν
)1/3 . (19)

This is an explicit equation for the variation of the amplitude b(x)
in terms of ν(x), δ(x).



24. Slowly-varying Solitary Wave

However, the variable-coefficient KdV equation (14) also has a
conservation law for mass ,∫ ∞

−∞
BdX = constant . (20)

Thus, although the slowly-varying solitary wave conserves
wave-action flux it cannot simultaneously conserve mass. Instead,
it is accompanied by a trailing shelf of small amplitude but long
length scale given by Bs , so that the conservation of mass gives∫ φ

−∞
Bs dX +

2b

γ
= constant ,

where φ =
∫ x
x0

W dx (X = φ gives the location of the solitary
wave) and the second term is the mass of the solitary wave (16).



25. Slowly-varying Solitary Wave

The amplitude of the shelf at the rear of the solitary wave is then

B− = Bs(X = φ) =
3γx

νγ2
. (21)

This shows that if the wavenumber γ increases (decreases) as the
solitary wave deforms, then the trailing shelf amplitude B− has the
same (opposite) polarity to the solitary wave.

For a solitary water wave propagating over a variable depth h(x)
these results show that the amplitude varies as h−1, while the
trailing shelf has positive (negative) polarity relative to the wave
itself according as hx < (>)0.



26. Critical Point

A situation of particular interest occurs if the coefficient ν(x)
changes sign at some particular location (note that in most
physical systems the coefficient δ of the linear dispersive term in
(14) does not vanish for any x). This commonly arises for internal
solitary waves in the coastal ocean, where typically in the deeper
water, ν < 0, δ > 0 so that internal solitary waves propagating
shorewards are waves of depression. But in shallower water, ν > 0
and so only internal solitary waves of elevation can be supported.
The issue then arises as to whether an internal solitary wave of
depression can be converted into one or more solitary waves of
elevation as the critical point, where ν changes sign, is traversed.
The solution depends on how rapidly the coefficient ν changes
sign. If ν passes through zero rapidly compared to the local width
of the solitary wave, then the solitary wave is destroyed, and
converted into a radiating wavetrain.



27. Critical Point

On the other hand, if ν changes sufficient slowly for the present
theory to hold (i.e. (19) applies), we find that as

ν → 0 then A ∼ |ν|1/3 → 0 ,

while B− ∼ |ν|−8/3 →∞ .

Thus, as the solitary wave amplitude decreases, the amplitude of
the trailing shelf, which has the opposite polarity, grows indefinitely
until a point is reached just prior to the critical point where the
slowly-varying solitary wave asymptotic theory fails. A combination
of this trailing shelf and the distortion of the solitary wave itself
then provide the appropriate “initial” condition for one or more
solitary waves of the opposite polarity to emerge as the critical
point is traversed.



28. Passage through a critical point



29: Passage through a Critical Point, Extended KdV
Equation

However, it is clear that in situations, as here, where ν ≈ 0, it will
be necessary to include a cubic nonlinear term in (13), thus
converting it into a variable-coefficient Gardner equation. The
outcome depends on the sign of the coefficient (σ) of the cubic
nonlinear term at the critical point. If σ > 0 so that solitary waves
of either polarity can exist when ν = 0, then the solitary wave
preserves its polarity (i.e. remains a wave of depression) as the
critical point is traversed. On the other hand if σ < 0 so that no
solitary wave can exist when σ = 0 then the solitary wave of
depression may be converted into one or more solitary waves of
elevation.



30. Passage through a Critical Point, Extended KdV
Equation

Solitary wave transitions as µ, σ change sign.



31. The generation of solitary waves by flow over
topography

To this point, we have considered only the situation when solitary
waves arise as a solutions of the initial value problem for the KdV
equation (1). This is appropriate in many cases. For instance, in
the ocean or atmosphere, or in laboratory experiments, internal
solitary waves can be generated when the pycnocline is given a
localized displacement. This gives an initial condition for the KdV
equation. When this initial displacement has the correct polarity, it
will evolve into a finite number of solitary waves. This scenario
often occurs in the coastal oceans when the barotropic ocean tide
interacts with the continental shelf to generate an internal tide,
which provides the necessary pycnocline displacement. This, in
turn, evolves into propagating internal solitary waves.



32. The generation of solitary waves by flow over
topography

However, KdV solitary waves can also arise by direct forcing
mechanisms. A common such situation is when a fluid flow
interacts with a localized topographic obstacle in a situation of
near criticality. Here a critical flow is one which supports a linear
long wave of zero speed. In this case, the waves generated are
unable to escape the vicinity of the obstacle, and hence can be said
to be directly forced. The inability of the waves to propagate away
rapidly from the forcing region means that nonlinearity is needed
from the outset. As we will show below the KdV equation (1) is
then replaced by a forced KdV equation, whose principal solutions
resemble “undular bores”. Hence, we first provide a description of
the “undular bore”.



33. Undular Bore

The term “undular bore ” is widely used in the literature in a
variety of contexts and several different meanings. Here, we need
to make it clear that we are concerned with non-dissipative flows,
in which case an undular bore is intrinsically unsteady. In general,
an undular bore is an oscillatory transition between two different
basic states. A simple representation of an undular bore can be
obtained from the solution of the KdV equation (1) with the initial
condition that

A = A0H(−x) , (22)

where we assume at first that A0 > 0. Here H(x) is the Heaviside
function (i.e. H(x) = 1 if x > 0 and H(x) = 0 if x < 0). The
solution can in principle be obtained through the inverse scattering
transform.



34. Undular Bore

However, it is more instructive to use the asymptotic method
developed by Gurevich & Pitaevskii and Whitham independently in
1974. In this approach, the solution of (1) with this initial
condition is represented as the modulated periodic wave train (5)
supplemented here with a mean term d , that is

A = a{b(m) + cn2(γ(x − Vt); m)}+ d , (23)

where b(m) =
1−m

m
− E (m)

mK (m)
, a = 2mγ2 , (24)

and V = 6d + 2a

{
2−m

m
− 3E (m)

mK (m)

}
. (25)

We recall that as the modulus m→ 1, this becomes a solitary
wave, but as m→ 0 it reduces to sinusoidal waves of small
amplitude.



35. Undular Bore

The asymptotic method of Gurevich & Pitaevskii and Whitham is
to let the expression (23) describe a modulated periodic wavetrain
in which the amplitude a, the mean level d , the speed V and the
wavenumber γ are all slowly varying functions of x and t. The
cnoidal wave contains three free parameters, and so three
equations are needed. The Whitham method obtains these by
averaging three conservation laws of the KdV equation. The
outcome is three modulation equations, whose form is nonlinear
hyperbolic. But, because the KdV equation is an integrable
equation, these equations can be put into diagonal Riemann form.
The general solution can then be obtained. Here the relevant
solution corresponding to the initial condition (22) is constructed
in terms of the similarity variable x/t, and is given by



36. Similarity Solution for an Undular Bore

x

t
= 2A0{1 + m − 2m(1−m)(K (m)

E (m)− (1−m)K (m)
} ,−6A0 <

x

t
< 4A0 ,

(26)

a = 2A0m , d = A0{m − 1 +
2E (m)

K (m)
} . (27)

Ahead of the wavetrain where x/t > 4A0,A = 0 and at this end,
m→ 1, a→ 2A0 and d → 0; the leading wave is a solitary wave of
amplitude 2A0 relative to a mean level of 0. Behind the wavetrain
where x/t < −6A0, A = A0 and at this end m→ 0, a→ 0, and
d → A0; the wavetrain is now sinusoidal with a wavenumber γ
given by 6γ2 ≈ A0. Further, it can be shown that on any individual
crest in the wavetrain, m→ 1 as t →∞. In this sense, the
undular bore evolves into a train of solitary waves.



37. Rarefraction wave

If A0 < 0 in the initial condition (22), then an “undular bore”
solution analogous to that described by (26, 27) does not exist.
Instead, the asymptotic solution is a rarefraction wave,

A = 0 for x > 0 ,

A =
x

6t
for A0 <

x

6t
< 0 ,

A = A0 , for
x

6t
< A0(< 0) . (28)

Small oscillatory wavetrains are needed to smooth out the
discontinuities in Ax at x = 0 and x = −6A0.

The generation of an undular bore requires an initial condition in
which A→ A± with A− > A+ as x → ±∞; note that (22) is the
simplest such condition. A common situation where this type of
initial condition may be generated occurs when a steady
transcritical flow encounters a localized topographic obstacle, in
the context of the flow of a density-stratified fluid.



38. Forced KdV Equation

A flow U0 > 0 is said to be critical if it can support a wave mode
whose speed c ≈ 0, in the frame of reference of the topographic
obstacle. Let us suppose that the bottom boundary of the stratified
fluid is given by z = −h + F (x), where F (x) is spatially localized,
and for a KdV balance F is order the wave amplitude squared. Let
the speed c = ∆ where ∆ << 1 is a detuning parameter of the
same order as the wave amplitude. Then it can be shown that the
KdV equation (??) is replaced by the forced KdV (fKdV) equation

AT + ∆AX + µAAX + λAXXX + ΓFX (X ) = 0 , (29)

Here the coefficients µ, λ, Γ are all known, and we can assume that
λ < 0. The ∆ > 0(< 0) defines supercritical (subcritical) flow
respectively. Also it then follows that µ < 0(> 0) for a solitary
wave of elevation (depression). The fKdV equation (29) has been
derived in many physical contexts, and is a canonical model
equation to describe transcritical flow interaction with an obstacle.



39. Forced KdV Equation

As for the KdV equation (8) we may now rescale the fKdV
equation (29) into a canonical form

−At −∆Ax + 6AAx + Axxx + Fx(x) = 0 . (30)

This is to be solved with the initial condition that A(x , 0) = 0,
which corresponds to a slow introduction of the topographic
obstacle. An important issue here is the polarity of the forcing in
(30), that is, whether it has positive (negative) polarity
F (x) ≥ 0(≤ 0). Taking account of the scaling positive polarity in
the original dimensional coordinates leads to positive (negative)
polarity in the dimensionless equation (30) according as
µΓ > 0(< 0).



39. Solution of the Forced KdV Equation for Critical Flow

x

t

A

The solution of the fKdV equation (30) at exact criticality, ∆ = 0
an for isolated positive forcing, F (x) is positive, and non-zero only
in a vicinity of x = 0, with a maximum value of FM > 0.



40. Solution of Forced KdV Equation for
Subcritical/Supercritical Flow

Δ=-1.5

subcritical

Δ=1.5

supercritical



41. Solution of the Forced KdV Equation

The solution is characterised by upstream and downstream
wavetrains connected by a locally steady solution over the obstacle.
For supercritical flow (∆ < 0) the upstream wavetrain weakens,
and for sufficiently large |∆| detaches from the obstacle, while the
downstream wavetrain intensifies and for sufficiently large |∆|
forms a stationary lee wave field. On the other hand, for
supercritical flow (∆ > 0) he upstream wavetrain develops into
well-separated solitary waves while the downstream wavetrain
weakens and moves further downstream The origin of the upstream
and downstream wavetrains can be found in the structure of the
locally steady solution over the obstacle.



42. Solution of the Forced KdV Equation: Hydraulic
Approximation

In the transcritical regime this is characterised by a transition from
a constant state A− upstream of the obstacle to a constant state
A+ downstream of the obstacle, where A− > 0 and A+ < 0. It is
readily shown that ∆ = 3(A+ + A−) independently of the details
of the forcing term F (x). Explicit determination of A+ and A−
requires some knowledge of the forcing term F (x). However, in the
“hydraulic” limit when the linear dispersive term in (30) can be
neglected, it is readily shown that

6A± = ∆∓ (12FM)1/2 . (31)

This expression also serves to define the transcritical regime, which
is

|∆| < (12FM)1/2 . (32)

Thus upstream of the obstacle there is a transition from the zero
state to A , while downstream the transition is from A+ to 0; each
transition is effectively generated at X = 0.



43. Solution of the Forced KdV Equation: Undular Bores

Both transitions are resolved by “undular bore” solutions as
described above. That in x < 0 is exactly described by (26, 27)
with x replaced by ∆t − x , and A0 by A−. It occupies the zone

∆− 4A− <
x

t
< max{0, ∆ + 6A } . (33)

Note that this upstream wavetrain is constrained to lie in x < 0,
and hence is only fully realised if ∆ < −6A−. Combining this
criterion with (31) and (32)) defines the regime

− (FM)1/2 < ∆ < −1

2
(FM)1/2 , (34)

where a fully developed undular bore solution can develop
upstream.



44. Solution of the Forced KdV Equation: Undular Bores

On the other hand, the regime ∆ < −6A− or

− 1

2
(FM)1/2 < ∆ < (FM)1/2 , (35)

is where the upstream undular bore is only partially formed, and is
attached to the obstacle. In this case the modulus m of the
Jacobian elliptic function varies from 1 at the leading edge (thus
describing solitary waves) to a value m− (< 1) at the obstacle,
where m− can be found from (26) by replacing x with ∆ and A0

with A−.



45. Solution of the Forced KdV Equation: Undular Bores

The transition in x > 0 can also be described by (26, 27) where we
now replace x with (∆ + 6A+)t − x , A0 with −A+, and d with
d − A+. This “undular bore” solution occupies the zone

max {0, ∆− 2A+} <
x

t
< ∆− 12A+ . (36)

Here, this downstream wavetrain is constrained to lie in x > 0, and
hence is only fully realised if ∆ > 2A+. Combining this criterion
with (31) and (32) defines the regime (35), and so a fully detached
downstream undular bore coincides with the case when the
upstream undular bore is attached to the obstacle.



46. Solution of the Forced KdV Equation: Undular Bores

On the other hand, in the regime (34), when the upstream undular
bore is detached from the obstacle, the downstream undular bore is
attached to the obstacle, with a modulus m+(< 1) at the obstacle,
where m+ can be founding from (26) by replacing x with ∆− 6A+

and A0 with A+. Indeed now a stationary lee wavetrain develops
just behind the obstacle.

For the case when the obstacle has negative polarity (that is F (x)
is negative, and non-zero only in the vicinity of x = 0), the
upstream and downstream solutions are qualitatively similar to
those described above for positive forcing. However, the solution in
the vicinity of the obstacle remains transient, and this causes a
modulation of the “undular bore” solutions.
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