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Outline

General perspectives

Coupled Global Climate Model (CGCM)

Precipitation extremes

Review extreme value theory-shortcomings

Alternate approach: basic theory

Application: Coupled Global Climate Model

Monitoring fields of extremes:

Conclusions
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Retrospective week 1:

Talks

Discussion

New research directions

Opportunities for the future?
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Retrospective week 1:

Oreskes et al. :

“The primary purpose of models in heuristic...useful
for guiding further study but not susceptible to
proof... [Any model is] a work of fiction. ... A model,
like a novel may resonate with nature, but is not the
‘real thing’.”
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Retrospective week 1:

Why Model?
To:

impute unmeasured responses

temporal forecasting
spatial prediction, eg of systematically unmeasured
responses eg species at certain sites

integrate physical and statistical models

integrate “misaligned” response measurements
(upscaling and downscaling)

detect spatial or temporal gradients or trends

to understand environmental processes (“heuristics”)

test model hypotheses, current beliefs
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Retrospective week 1:

Why Model?
To:

optimize location of monitoring stations to be added or
deleted

generate inputs for environmental impact models

smooth noisy data

disease mapping

facilitate REGULATION, CONTROL,PREDICTION OF
“HOTSPOTS”

to examine “what if” scenarios (e.g. climate change)
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Post-normal science

Funtowicz, Ispra Ravetz (2004?) Nusap.net:

"...key properties of complex systems, radical
uncertainty and plurality of legitimate
perspectives....When facts are uncertain, values in
dispute, stakes high, and decisions urgent the
...guiding principle of research science, the goal of
achievement of truth,...must be modified. In
post-normal conditions, such products may be ...an
irrelevance.”
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Post-normal science

From Funtowicz et al:
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Retrospective week 1

Physical - statistical modeling
THEME 1: Statistics can help assess physical (simulation)
models (if you must)

The US EPA says you must!!

Fuentes, Guttorp, Challenor (2003). NRCSE TR # 076.
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Retrospective week 1

Physical - statistical modeling

THEME 2: Physical and statistical models can produce
synergistic benefits by ”melding” them.

Wikle, Milliff, Nychka, Berliner (2001). JASA.
Example: how can simulated (modeled) and real
rainfall data be usefully combined?
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Retrospective week 1

Physical - statistical modeling
THEME 3: Statistics can help interpret, analyze, understand,
exploit outputs of complex physical models.

Nychka (2003). Workshop presentation

Example: statistical analysis of CGCM precipitation
(precip) extremes gives coherent return values over
space for design
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Week 2!

Extremes
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What’s “extreme”?

For dams, hydro electric, water storage or flood control:
1000 year return period

NOTE: Meaning

P [Dam failure in a given year] = 1/1000
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What’s “extreme”?

Highway bridges:
100 year return period

NOTE: Not too extreme - 99th percentile
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What’s “extreme”?

EPA regulations for particulate pollution (PM2.5):

At each monitoring site, compute daily concentration
averages

Compute 98th percentile of these

Compute T = 3 year average of these

Requirement: T ≤ 65 µg m−3 at each site
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Precipitation extremes

EG: The 100 year rain!

return values for annual max precipitation levels
important - but Canada little monitored

solution : simulate precipitation extreme fields using
CGCM: 312 Canadian grid cells.

Required:

spatially coherent cell return values!
joint 312 dimensional distribution to

enable prediction of T = number of 312 return
value exceedances with E(T), SD(T), etc
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Coupled Global Climate Model

ocean and atmosphere models run separately

over centuries
then coupled thru 14 yr “integration” periods

output forced by input of greenhouse gas scenarios

eg as observed up to 1990 and 1% per yr increase in
CO2 to 2100

Extremes IMS2 2008 – p. 12/35



Coupled Global Climate Model

ocean and atmosphere models run separately

over centuries
then coupled thru 14 yr “integration” periods

output forced by input of greenhouse gas scenarios

eg as observed up to 1990 and 1% per yr increase in
CO2 to 2100

GCM Coordinates 150 48

180 Longitudinal Coordinates

1

48

180

87.159

-87.159

1.855
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Coupled Global Climate Model

ocean and atmosphere models run separately

over centuries
then coupled thru 14 yr “integration” periods

output forced by input of greenhouse gas scenarios

eg as observed up to 1990 and 1% per yr increase in
CO2 to 2100

precipitation & latent heat released when local rel
humidity hi enough

liquid water falls to the surface as precipitation
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Coupled Global Climate Model

“Confirmation” Run: modelled & observed global annual
average surface temperature, 1900 - 1990. Scenario: like
that above.
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Coupled Global Climate Model

Looking ahead under various scenarios
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CGMC Data

3 independent simulation runs of hourly precipitation
(mm/day)

in 21-year windows (to look for trends)
1975-1995 2040-2060 2080-2100

26 × 12 grid covers Canada, cell size = (3.75◦)2

gives 21 × 3 = 63 annual precipitation maxima per cell ×
time window
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Modelling extreme fields

E.G.: annual precip maxima. Assume no year-to-year
correlation in sequence

Approach 1: multivariate extreme value theory. (Why it
fails!)

Approach 2: use hierarchical Bayes (HB) (Why it
works!)
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Tutorial on HB

For Bayesians:

uncertainty = probability.

knowledge = belief

data = information; alters degrees of uncertainty

prior knowledge expressed through prior probability
distribution

information in data expressed through the likelihood
function

change in state of uncertainty expressed through the
posterior probability distribution
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Tutorial on HB

More precisely:

data = y = (y1, . . . , yn)

degree of prior belief in hypothesis i.e. model
parameters θ = (θ1, ,̇θ2), = π(θ|α) = prior probability
given hyperparameter α

information expressed by the likelihood of y if θ were
correct = L(θ)

the posterior probability distribution is given by
application of Bayes rule:

π(θ|y, α) = posterior prob of θ given y and α

.
=

L(θ) × π(θ|α)
∫

L(θ′) × π(θ′|α)dθ′
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Tutorial on HB Cont’d

But what is the hyperparameter α is also unknown?
Answer: it also have a prior probability π1(α). The
unconditional prior probability of θ becomes
π(θ) =

∫

π(θ|α)π1(α)dα and the posterior for θ is

π(θ|y) = posterior prob of θ

.
=

L(θ) × π(θ)
∫

L(θ′) × π(θ′)dθ′
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Tutorial on HB Cont’d

Notes

The hierarchical Bayes model allows uncertainty to be
modeled in layers, making specifying uncertainty easier

The posterior is an updated prior updated by “Bayes
rule” given new information in y and it shows the impact
of the information on our uncertainty about θ.

The posterior of α given y can also be found.
(Exercise! )

Extremes IMS2 2008 – p. 20/35



Theory: Single cell (site)

Assume X1, X2, · · · , Xn iid. Let Mn = max{X1, X2, · · · , Xn}.
Fisher-Tippett (1928)showed:

P (
Mn − bn

an
≤ x) → H(x), as n → ∞

where H has GEV distribution

H(x) =

{

exp
[

−
{

1 + ξ
(x−µ

σ

)}−1/ξ
]

, 1 + ξ
(x−µ

σ

)

> 0, ξ 6= 0

exp
[

− exp
(

−x−µ
σ

)]

ξ = 0
.
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Theory: Single cell (site)

Alternatives: Generalized Pareto (GPD) model: For large
x:

P (X > x) ≃ λ

[

1 + ξ

(

x− u

σ

)]−1/ξ

+

, x > u

for parameters, λ > 0, σ > 0, and ξ ∈ (−∞,∞).

NOTES: If number of exceedances over time is Poisson you
get for x > u the Poisson–GPD model:

P (max1≤i≤NXi ≤ x) = exp {−λ

[

1 + ξ

(

x− u

σ

)]−1/ξ

}

Extremes IMS2 2008 – p. 21/35



Theory: Single cell (site)

Alternatives:
Peak over Threshold (POT) model:
Model only values above a “threshold” u :

P [X > x+ u | X > u] =

[

1 + ξ

(

x− u

σ

)]−1/ξ

+

, x > u

Good idea since only extremes of interest

Small ξ gives
P [X > x+ u | X > u] ≃ exp {−

(

x−u
σ

)

}, x > u
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Theory: Single cell (site)

Alberta Climate Example
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Locations of precipitation monitoring sites in the Province of
Alberta.
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Theory: Single cell (site)

Alberta Climate Example
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Distributions of daily rainfall totals (mm) exceeding each of 4
thresholds corresponding to sample %-iles for daily rainfall
(for days with rain exceeding 2 mm.
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Theory: Single cell (site)

Alberta Climate Example
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Locations of temperature monitoring sites in the Province of
Alberta.
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Theory: Single cell (site)

Alberta Climate Example
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Distributions of daily max temperatures exceeding each of 4
thresholds corresponding to sample %-iles for max
temperature.
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Theory: Single cell (site)

However:

for large threshold “u” little data
for small “u” poor tail approximation

tail model parameters depend on “u”

results sensitive to the choice of “u”
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Theory: Single cell (site)

Alternatives:

Probability Weighted Moment (PWM) model: unduly
complex for certain purposes
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Theory: Multiple cells

Approaches:

Extend Fisher-Tippett

Problems : leads to a big class of possible limit
distributions. Moreover, extremes must be asymptotically
dependent for large return periods.
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Theory: Multiple cells

An example: Small inter - site correlations Inter- site
dependence declines with increasing extreme’s“range” for many (not all!)
site pairs [London and Vancouver analyses]

raw data, daily, weekly, monthly (30 days) (please look at points 1, 2, 3, and 4 only)

co
rre

lat
ion

s

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0
0.2

0.4
0.6

Inter-site correlations for Vancouver’s PM10 decline with max
range.
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Theory: Multiple cells

Approaches:

Specify individual cell (parametric) distributions. Put a joint
distribution over their parameters

Problems: ah hoc and complex. No compelling
dependence structure
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Theory: Multiple cells

Point process (PP) approach:
Space–time points where threshold exceedance occurs is
non-homogeneous Poisson process, intensity function:

Λ(A) = (t2 − t1)Ψ(y;µ, ψ, ξ)

where
A = (t1, t2) × (y,∞)

Ψ(y;µ, ψ, ξ) =

[

1 + ξ

(

y − µ

ψ

)]−1/ξ

, 1 + ξ

(

y − µ

ψ

)

> 0

Problems: Complicated distribution; unclear how to extend to
multivariate responses; what about fixed site monitors?
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Theory: Multiple cells

Approaches:

Our hierarchical Bayesian method:

Approximate transformed cell max precip data by joint
multivariate t distribution

Very flexible & lots of available theory

Problems:

may not work for "extreme extremes".

asymptotically independent sites
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Our method: Assumptions

Yj : p× 1 annual precipitation maxima; p cells, years
j = 1, . . . , n.

Likelihood construction:

Conditional on parameters (µ,Σ)

Xj
.
= log Yj

iid
∼ MVNp(µ,Σ)
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Our method: Assumptions

Yj : p× 1 annual precipitation maxima; p cells, years
j = 1, . . . , n.

Prior distribution:

µ|Σ ∼MVN(ν, F−1Σ)

Σ ∼W−1(Σ|Ψ,m)

Ψ and m are the hyperparameters

F−1 re-scales Σ to mean’s level of uncertainty
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Implications

Posterior distribution (of precip max field):

Xp×1|D ∼ t

(

x̃, Σ̃, l

)

with

x̃ = ν + (x̄− ν)Ê

Σ̃ = 1+nF−1−nÊF−1

l Ψ̂ and

l = m+ n− p+ 1,
Ψ̂ = Ψ + (n− 1)S + (x̄− ν)(n−1 + F−1)−1(x̄− ν)′
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The Hyperparameters

ν: estimated by smoothing spline over all cells

Ψ = c× Φ, Φ a covariance matrix estimated by
semivariogram

Φij = Cov(Xi, Xj) = σ2 − γ(hij)

σ2 = common sample variance
hij = Euclidean distance between sites i, j
γ(h) = isotropic semivariogram model fitted to data

EM algorithm estimates c & degrees of freedom, m

F−1 estimated by method of moments
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The Hyperparameters

Justifying empirical Bayes:

Posterior must be well-calibrated w.r.t. real max precip
fields. Hence prior must be fitted to enable good match

simplicity

equates with using diffuse prior
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Diagnostic tool

Validating joint normality assumption

Method
For any given year:

delete data from selected sites

predict them by x̂u = νu + (x̂g − νg)
′Ψ−1

gg Ψgu where

u means ungauged (missing) and g, gauged
(νu,νg) partitioned prior mean conformably
likewise for Ψgg and Ψgu
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Diagnostic tool

Validating joint normality assumption

Method
Now see if vector of missing values falls into 95% credibility
interval:

{Xu : (Xu − x̂u)′Ψ−1

u|g
(Xu − x̂u) < b} where

b = (u× Pu|g × F1−α,u,m−u+1) × (m− u+ 1)−1

Ψu|g = Ψuu − ΨugΨ
−1
gg Ψgu and

Pu|g = 1 + F−1 + (xg − νg)
′Ψ−1

gg (xg − νg)
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Diagnostic tool

Validating joint normality assumption

Method

do this repeatedly. Randomly remove subsets of sites
of fixed size

compute the relative coverage frequency - it should be
around 95%!! Offers check on the validity of the model.
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Estimating Return Values

Definition: T year return value, XT

P (X > XT ) = 1

T

can be estimated for each cell from the joint posterior t
distribution

approximation: use log normal instead of log t
distribution, x1−T,i = x̃i + Φ(1 − T ) × σ̃i
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CGCM Analysis

BEFORE ANALYSIS: log - transform, de-trend

RESIDUALS:

symmetric empirical marginal distribution
slightly heavier than normal tails
no significant autocorrelation

AFTER ANALYSIS: re-trend, antilog-transform
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CGCM Statistical Model

HIERARCHICAL BAYES : Normal - Inverted Wishart
model for residuals

estimated variogram for 312*312 dimensional
hypercovariance

RESULTING POSTERIOR: 312 dimens’l, multivariate
t-distribution, m = 355, c = 49 (for Ψ estimate)
Posterior:

yields estimates of 312 marginal return values
enables simulation of 312 dim’l annual max precip
field and

distribution of stat’s computed from it
· EG: T = # of (312) cells above return values,
E(T ), predictive interval for T
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Results

Contour, perspective plots of estimated 10-year return
values (mm/day).
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CGGM Stats Model Assessment

CROSS VALIDATION:

randomly omit 30 of 312 cells repeatedly

predict their values from rest from the joint t distribution.

CONCLUSION: The joint t distribution fits the simulated
data quite well

Credibility Level Mean Median
30% 35 35
95% 96 97

99.9% 99.9 99.9

Table 1: SUMMARY: cred’y ellips’d coverage probs
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Discussion

Joint distribution fits well. Also worked in another study
on real air pollution data.

Allows answers to complex question like chances of say
10 simultaneous exceedances of cell return values

Suggests model could be used to design extreme
precip monitoring networks

the return value index reveals reasonable joint fit but
needs further study
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Concluding Remarks

multivariate t distribution promising model for extreme
space-time fields. Data needs to be transformable. But
wealth of existing theory for multinormal makes pursuit
worth it!

empirical checking/diagnostics vital before using the
method

general theory allows extension to multivariate
responses in each site & covariates too!

Can posterior be trusted for extreme-extremes? Can
any distribution?
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Other PIMS CRG events in 2008

Banff International Research Station for
Mathematical Innovation and Discovery (BIRS): The
Climate Change Impacts on Ecology and the
Environment May 4 -9, 2008.

The 2008 annual International Environmetrics
Society Conference:
Quantitative Methods for Environmental
Sustainability
June 8-13, 2008, Kelowna, Canada.
http://people.ok.ubc.ca/zhrdlick/ties08/call.htm
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Other PIMS CRG events in 2008

The PIMS International Graduate Institute’s Summer
School
Computation in environmental statistics
Tentatively: Jul 28-Aug 1, 2008, National Center for
Atmospheric Research (NCAR), Boulder Colorado

Workshop on extreme climate events
Winter, 2008, Lund University
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References & Contact Info

email: jim@stat.ubc.ca

internet: http://www.stat.ubc.ca/<LINK Faculty
Members>

tech reports: http://www.stat.ubc.ca/<LINK Research
Activities>

R-based software: http://enviro.stat.ubc.ca

Companion to Nhu D Le & James V Zidek (2006)
Statistics analysis of environmental space–time
processes. Springer. To Appear May 12.

NOTE: Chap 14 gives a tutorial on its use.
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