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Introduction

In environmental sciences, deterministic models (ODE’s,
PDE’s) are predominant. Different sources of uncertainty are

Measurement errors,
Uncertain initial or boundary conditions,
Unknown parameters and inputs,
Model uncertainties (unresolved processes, discretization
error)

Challenges:
Estimate unknown quantities from data,
Make predictions,
Quantify uncertainties of estimates and predictions,
Suggest ways to improve the models.
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Notation

Let x be the state vector of an environmental system. Evolution
given by the ODE

dx(t)
dt

= g(x(t); θ, φ(t)); x(0) = x0.

θ denotes parameters, φ(.) inputs or boundary conditions.

x(t) is usually not observed. Observations are given by

yi = h(x(ti)) + εi (i = 1, 2, . . . , n)

where εi is measurement error with density fε (often assumed
to be normal).
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Unknown time-varying inputs
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Model uncertainty

Least squares estimation

If only parameters are unknown, standard procedure is
weighted least squares (maximum likelihood for normal
measurement error):

θ̂ = arg min
∑

i

(yi − h(x(ti ; θ)))2.

(can use weights to account for different precisions). Problems:
Complicated shape of sum of squares as a function of θ (the
log likelihood), leading to local minima and collinearity
problems. Computation of the solution of the ODE as limiting
factor. Similar remarks apply for Bayesian methods.

For non-chaotic systems, can add unknown initial conditions to
the unknown parameters.
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Model deficits

In many applications systematic errors often dominate random
errors. This invalidates uncertainty estimates of unknown
parameters.
Next slide: Comparison of observations and fitted model for a
sewage plant The variables are phosphate and ammonia in 3
reactors.
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Unknown inputs

If unknown input φ(.) is a function of time (or space), need to
regularize maximum likelihood, e.g. by putting a prior on φ(.).
Simplest priors are Gaussian (if necessary after some
transformation).

A popular choice for the prior mean is the best available guess
φ̄(t) and for the prior covariance

Cov(φ(t), φ(s)) = C0 exp(−γ|t − s|α).

One then needs an algorithm to sample from the posterior for
(θ, φ(.)) and a way for choosing the hyperparameters C0, γ and
α.
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Sampling from the posterior

Use Metropolis-Hastings. Updates of φ(.) are proposed by
modifying the current value locally. For α = 1, the prior is
Markovian. Thus we can propose φ(.) on (u, v) from the prior
given φ(u) and φ(v).

Drawbacks: One has to solve the ODE each time a new φ(.) is
proposed. Would prefer to take the observations into account
already in the proposal. Can we construct simple approximate
solutions ?
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Selecting hyperparameters

Putting a prior on the hyperparameters and updating them
together with θ and φ(.) is a bad idea. The priors for different
values of some combinations of hyperparameters are mutually
singular. This invalidates most MCMC algorithms.

In practice, one can consider φ(.) only on a fine grid. Then the
priors are only close to singularity. MCMC converges, but very
slowly.

In the example below, we determine the hyperparameters by
Bayesian crossvalidation, i.e. by maximizing∑

i

log p(yi |yj ; j 6= i).

The terms on the right can be estimated from the MCMC
output.
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Tracer transport in porous media

Tracer concentration C in a flow can be described by the
conservation equation with inputs u and q:

∂C
∂t

+
∑

i

∂(uiC)

∂xi
= q

q is a known source term.u = (u1, u2, u3) is the velocity of the
flow. u depends on the unknown permeability and the pressure
equation. A Gaussian prior is used for log permeability.

In fluid dynamics particle methods can approximate the
corresponding pior distribution of C that are more efficient than
Monte Carlo.
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Predictive and filter distribution

Initial condition x(0) uncertain, has distribution ν0. If system is
chaotic, uncertainty increases as time increases. Use data up
to time ti to reduce uncertainty about x(ti). In geophysical
sciences, this is called data assimilation.

Notation:
Predictive distribution µi = law of x(ti) given y1, . . . yi−1 .
Filter distribution νi = law of x(ti) given y1, . . . yi .
νi is used as initial condition for integrating from time ti to ti+1.
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Basic recursions

In principle, we can compute predictive and filter distributions
recursively in two steps.
Propagation according to the model

µi(A) = νi−1({x ; R(ti − ti−1, x) ∈ A})

where R(t , x) is the solution of the ODE with initial condition x
at time t .
Update by Bayes formula

νi(dx) =
µi(dx)fε(yi − h(x))∫
µi(dx)fε(yi − h(x))

.
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Implementation of recursions

Typically, dimension of x is huge (up to 109). Analytical or
numerical computations rarely feasible.

Exception: Linear ODE, linear measurement h, Gaussian noise
ε and Gaussian initial distribution ν0, leads to the Kalman filter.
Variational methods or Monte Carlo methods are used for an
approximate solution. Monte Carlo methods to be discussed
later.

Same structure if ODE is replaced by an SDE.
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Accounting for the bias

Add an explicit model bias term to the observation equation

yi = h(x(ti)) + b(ti) + εi ,

where b has a Gaussian prior. (If E [b(t)] = 0 for all t , this
means that we assume correlated errors.) Then estimate the
posterior of b(.) and θ by MCMC.

Allows to judge adequacy of the model for the data and to give
more realistic uncertainty estimates for θ or for model
predictions.
More in the lecture by David Higdon (presumably).
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Time-varying parameters

Possible reason for systematic errors of deterministic models:
Some parameters are not constant, but vary in time. Strategy to
deal with this:

Replace a selected component of θ by an unknown
function of time and put a (Gaussian) prior on it.
Sample the posterior of the time-varying and the constant
components of θ.
Look how posteriors of constant parameters change and
how much the systematic errors are reduced.
Analyze the posterior mean of the time-varying component
for correlations with external or internal variables.
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From ODE’s to SDE’s

Introduce a white noise term into the ODE as an additional
forcing term:

dx
dt

= g(x(t)) + σ(x(t))N(t).

But white noise in continuous time is pathological. Integrated
white noise

B(t) =

∫ t

0
N(s)ds

(Brownian motion, Wiener process) is continuous, but not
differentiable. The above equation can be treated rigorously as
an integral equation. To keep this in mind, write

dx(t) = g(x(t))dt + σ(x(t))dB(t).
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Posterior mode estimation of an SDE

If we consider an SDE model as a prior for x(.), then the mode
of the posterior (MAP) is the minimizer of

1
σ2

ε

∑
i

(yi − h(x(ti)))2 +

∫
||σ(x(t))−1

(
dx(t)

dt
− g(x(t), θ)

)
||2dt

with respect to θ and x(.).

Can approximate this numerically by choosing a set of basis
functions (Ramsay).
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Time varying inputs

Time-varying inputs:
A simple global climate model

Joint work with L. Tomassini, P. Reichert, M. Borsuk and Ch.
Buser.

Model of Wigley and Raper (1987, 1992) for deviations of
surface and ocean temperature from equilibirum.
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Essential features of the Wigley-Raper model

Consists of 4 boxes, one each for land/ocean and
northern/southern hemisphere.
Assumes a tendency to return to equilibrium.
Incoming radiation power absorbed over the ocean only.
Heat exchanged between ocean surface and land in each
hemisphere and between the two ocean surfaces.
Heat transported in the ocean by diffusion and by a
simplified thermohaline circulation.
Observed variables are global mean surface temperature
and heat uptake of the ocean down to 700 meters.
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Illustration of the model

Fig. 1: Schematic figure of the si~nple cliruatc rnodel that is used to exemplify the srrlootllirlg 
algorithm. 
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Inputs and parameters

The model has radiative forcing F as input. This is the incoming
power per unit area due to direct and indirect radiation. It is
reconstructed from the past as a sum of 9 different components
like greenhouse gas forcing, solar forcing, volcanic forcing etc.

The model has two main unknown parameters:
Climate sensitivity measures the effect of changes in radiative
forcing on temperature. Defined as temperature increase in
equilibrium due to doubling of the CO2 content of the
atmosphere.
Ocean diffusivity describes how fast heat is transported in the
ocean due to diffusion.
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Fitting the model with reconstructed input

We assume correlated observation errors. The covariance
matrix of these errors is estimated from a control run of a
complex climate model. It is assumed to be known in our
analysis.

Estimating the unknown parameters gives reasonable
posteriors, but the residuals show systematic patterns, and the
posteriors for surface temperature and heat uptake are
unrealistically narrow. We conjecture that uncertainty about
climate sensitivity is too low because model deficits are not
taken into account.
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Posteriors for parameters

Fig. 2: Prior (dashetl lirlcs) aiitl 1)osterior (solitl 1irlc.s) distributiorls of constarlt ~)i~rameters 
witllo~it irlcl~ision of tir~le depcritl(~1it pararrleters (@(.) = 0). a. Cliriiat,~ serlsitivit,y S ;  b. 
Vertical ocean diffusivity IT; c. hfixed layer tlcptli I , ;  d. Volcar~ic forcing scale; c. Irlitial 
corrtlitiorl for surface trrnperaturc A ~ ~ ~ ' f ' L ' " ' ;  f. Irlitial corlditiori for oc:cx;rrl heat 11l)ti~k~ 
 AH^,",""'. See Table 1 for urlit,s. 
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Data and posterior for temperature

Fig. 4: hIodel output for global surface ternpcrature. The solid lines show the 59%. SO%, and 
95% posterior cluantiles. The shaded area shows an estimate of the 90% predictive interval. 
a. JVithout stochastic forcing (a(.) = 0): b. Stochastic forcing included. 0 = 0.2, T = 18; 
c. Stocllastic forcing included. a = 1.0. T = 18. 
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Data and posterior for ocean heat uptake

Fig. 5: IbIodcl ontl~iit  for orcail 1ic~;rt ~iptnkc down to 700 rrlc%cr.s tlcpth. T h r  solitl liric~s show 
tllv 5%. 50%, ~ L I I ~  95%) ~)ost,erior t~~iilrltil(:s. The s1i;~clrci iirc,n sl~ows ari est,irnatr o f  t,llc: 90%) 
pretlit,t,ivc: iiitrr.val. a. Witllout st,ocl~ast,it~ forcir~g (@(.) = 0). ; 1 ) .  St,ocllastic. forcirlg @(.O 
ir~cllidt~tl. (T = 0.2. T = 18; (.. St,oc.h;~st,ic forciiig (I)(.) ir~cl~ltlrtl. (T = 1.0. T = 18. 
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Uncertainty of radiative forcing

The input F is uncertain since it is reconstructed from the past.
Take this into account by adding an unknown disturbance Φ(.)

F (t) = Frecon(t) + Φ(t).

Prior for Φ(.): mean-reverting Ornstein-Uhlenbeck process (a
continuous time AR(1)-model). MCMC is used to approximate
the posterior distribution of Φ(.) and the unknown parameters.
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Forcing: Reconstruction and posterior for disturbance
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Fig. 3: a. Times series of the reconstrl~ct,ecl forcing AF,,,,,(t). h. The posterior 5%, 50% 
and 95% quantiles of the additional forcing term @(t)  for c = 1 . 0 ~ r n - ~ ,  T = 1%. c. 
Posterior rncdian of @(t)  for three values of a, narrlely c = 0.2 (dashed), 0.5 (dotted) and 
1.0 (solid). In all cases, T = 18a. 
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Posterior for diffusivity with different hyperparameters
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Fig. 7: Posterior tiistribution of vcrtical ocean diffilsivity I( with diffcrcrlt values for thc 
hypcrparalneters T and g .  a. No stochastic forcing (a(.) = 0 ) :  b. a = 0.2. r = 18: c.  
a = 0 , 5 , ~ = 1 8 : d .  g = 1 . 0 . ~ = 1 0 ; c .  a = 1 . 0 . ~ = 1 8 : f .  a = 1 . 0 : r = 2 5 .  
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Posterior for climate sensitivity with different
hyperparameters
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Fig. 6: Posterior distribution of climate sensitivity S with different values for the hyperpa- 
rameters T and a .  a. No stochastic forcing (@( t )  = 0); b. a = 0.2. T = 18: c. a = 0.5. 
~ = l 8 : d .  a = l . O . r = l O ; e .  a = l . O . r = 1 8 : f .  a = 1 . 0 . ~ = 2 5 .  

The figures correspond to different values of the
hyperparameters of the Ornstein-Uhlenbeck process.
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Effects of making forcing uncertain

Posterior for diffusivity becomes more spread out, but for
climate sensitivity it is shifted to the left and less spread out.

Why ?

Small sensitivity is gives better fit for short-time changes in the
forcing, e.g. volcanic eruptions. The temperature increase at
the end can also be explained with larger forcing and smaller
sensitivity.
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H.R. Künsch, ETHZ Uncertainty in ODE models


	Introduction
	Overview of approaches
	Unknown parameters
	Unknown time-varying inputs
	Unknown initial conditions
	Model uncertainty

	Unknown inputs: A simple climate model

