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Last week

Statistical methods to handle uncertainty in differential equation
models:

Least squares estimation of unknown parameters (finite
dimensional).
Bayesian estimation of unknown inputs (infinite
dimensional).
Recursive estimation of state of a system with incomplete
and noisy data (filtering, data assimilation).
Explicit inclusion of a bias term.
Time-varying parameters.
Stochastic differential equations (SDE’s): Noise is included
in the dynamics.
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Today

Take up two topics in some more detail
Filtering for state space models: Kalman, Ensemble
Kalman and Particle Filters.
SDE’s: Ito formula, Simulation, Girsanov’s theorem,
Estimation of parameters.
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General state space models

Consist of an unobserved state sequence (xt) and an
observation sequence (yt) of the following form

xt = g(xt−1) + Ut ,

yt = h(xt) + Vt

where the system noises Ut and observation noises Vt are all
mutually independent.

Graphical representation:

. . . → xt−1 → xt → xt+1 → . . .
↓ ↓ ↓

. . . yt−1 yt yt+1 . . .
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Scope of the model

(xt) is Markovian, (yt) is not.
Usually xt is high-dimensional.
Often components of xt associated with some spatial
location.
State evolution can be deterministic, i.e. Ut = 0.
In a fluid model, xt can be the velocity field on a fine grid,
yt velocity measured on a coarse grid.
Noise need not be additive.
g, h and noise distributions could depend on t .
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Goals

Use observations (y1, . . . ys) and knowledge about the
dynamics to determine an unobserved state xt

s < t Prediction, Forecasting

s = t Filtering, Nowcasting, Analysis

s > t Smoothing, Backcasting, Reanalysis.

Both available information and unknown variable change with
time.
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Predictive and filter distributions: Recursions

Describe imperfect knowledge about xt by probability
distributions.
Predictive distribution µt = distribution of xt given y1, . . . yt−1 .
Filter distribution νt = distribution of xt given y1, . . . yt .
ν0 = initial distribution of x0.

Propagation, Forecast

µt(dxt) =

∫
fU(xt − g(xt−1))νt−1(dxt−1) dxt .

Update, Analysis

νt(dxt) =
fV (yt − h(xt))µt(dxt)∫

fV (yt − h(x))µt(dx)
.
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Linear Gaussian model: Kalman filter

Exact solution is available if

g(x) = Gx , h(x) = Hx , Ut ∼ N (0, R), Vt ∼ N (0, Q).

If ν0 = N (0, P f
0), then for all t

µt = N (mp
t , Pp

t ), νt = N (mf
t , P f

t ).

Recursions for means and covariances:

mp
t = Gmf

t−1, Pp
t = GP f

t−1GT + R

and
mf

t = mp
t + Kt(yt − Hmp

t ), P f
t = (I − KtH)Pp

t

where Kt is the gain matrix

Kt = Pp
t HT (Q + HPp

t HT )−1.
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Monte Carlo propagation and update

Monte Carlo methods represent µt and νt by samples
(ensembles) (x̃t ,j ; 1 ≤ j ≤ N) and (xt ,j ; 1 ≤ j ≤ N) which evolve
in time.

Propagation: From (xt−1,j) to (x̃t ,j).

x̃t ,j = g(xt−1,j) + Ut ,j

where Ut ,j are independent replicates of Ut .

Update: From (x̃t ,j) to (xt ,j). Two methods, particle and
ensemble filters.
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Particle filter update

If µt is discrete with values (x̃t ,j) and weights 1/N, then by
Bayes formula νt is also discrete with the same values, but
weights

wt ,j =
fV (yt − h(x̃t ,j))∑
k fV (yt − h(x̃t ,k ))

.

Could propagate a weighted discrete νt , but weights
degenerate quickly during the iterations. To overcome this, use
resampling: Choose x̃t ,j approximately Nwt ,j times. High weight
particles are multiplied, low weight particles die out. See
separate figure.

If the evolution of states is stochastic, ties are broken during the
next propagation step. Otherwise, need to add a bit of noise.
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Illustration

Consider

xt = 0.5xt−1 + 25
xt−1

1 + x2
t−1

+ γ cos(1.2t) + Ut , yt =
x2

t
20

+ Vt .

which goes back to Andrade Netto et al., IEEE Trans. Autom.
Control (1978). yt carries no information about the sign of xt .

In another window a simulation from the model and 10% and
90% filter quantiles are shown.
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Improving the performance of particle filters

Particle filter is inefficient if weights before resampling vary
widely. As in importance sampling, can use a wrong transition
density q(xt | xt−1,j) in the propagation step and correct with
the weights

wt ,j ∝
fV (yt − h(x̃t ,j))fU(x̃t ,j − g(xt−1,j))

q(x̃t ,j | xt−1,j)
.

Various ideas for constructing good q′s (that depend on yt )
exist.
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Ensemble filter update

Assume a linear observation function with Gaussian noise:

h(x) = Hx , V ∼ N (0, Q).

The Kalman filter update gives νt = N (mf
t , P f

t ) where

mf
t = mp

t + Kt(yt − Hmp
t ), P f

t = (I − KtH)Pp
t .

Note: This is only correct if also µt is Gaussian.

The ensemble Kalman filter estimates mp
t and Pp

t from (x̃t ,j),
computes mf

t and P f
t and then samples (xt ,j) from N (mf

t , P f
t ).
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Implementing the ensemble filter

Sampling is possible without computing P f
t or taking its square

root. Can take zj ∼ N (mp
t , Pp

t ) and Vj ∼ N (0, Q) and put

xt ,j = zj + Kt(yt − Hzj + Vj).

To reduce the error due to the Gaussian assumption and to
avoid taking the square root of Pp

t , take zj = x̃t ,j . (Still need to
estimate Pp

t to compute Kt ).

Changing yt results in an additive shift of the filter sample. Not
correct if the shape of νt depends on yt .
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Illustration of particle and ensemble updates
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Difficulties in high dimensions

Size of the sample N is typically much smaller than dimensions
of the state vector x and observation vector y .

Ensemble filter can cope with this. Can reduce the error in
estimating Pp

t by sparsity assumptions.

Particle filter typically degenerates: Updating puts all the
weights on one value in the sample. Challenge: Modify the
particle filter so that it also works in high dimensions.
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The likelihood function

Let g, h, fU and fV depend on an unknown parameter θ.

Cannot compute the log likelihood function:

log L(θ) =
∑

t

log p(yt | y1, . . . yt−1, θ)

=
∑

t

log
∫

fV (yt − h(xt))dµt(xt)

(In the last expression both the integrand and µt depend on θ.)
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Offline estimation

This means: All observations are available at the beginning.
Options

Estimate θ and (xt) by MCMC,
Estimate θ by stochastic EM,
Approximate the likelihood by filtering and maximize it.

Efficient implementations of all these options are challenging.
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Online estimation

Observations become available sequentially.
Options

Take θ as part of the state vector with deterministic
evolution θt = θt−1.
Approximate νt and its derivative w.r. to θ by Monte Carlo
methods and use recursive optimization.

Again, this is not easy.
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An SDE has the following form

dxt = g(xt)dt + σ(xt)dBt

where the increments dB(t) of Brownian motion are jointly
Gaussian with

E [dBt ] = 0, E [dBtdBT
s ] = δts I dt

(I is the identity matrix, xt and g are vectors, σ is a matrix).

Rigorously, an SDE is defined as an integral equation. I use the
Ito version of the stochastic integral.

The solution of an SDE is a Markov process in continuous time.
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Ito formula

ODE’s and SDE’s are different! E.g. the “intuitive” result

d(f (xt)) =
∂f
∂x

(xt)dxt

is no longer correct. One has to expand f up to second order,
using

dxtdxT
t = σ(xt)σ(xt)

T dt .

Example: If zt = exp(λt + σBt), then

dzt = (λ + σdBt)zt +
1
2
σ2ztdt .
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Simulating an SDE

To simulate the solution of an SDE, the easiest method is the
Euler approximation

xt+h = xt + h g(xt) +N (0, h σ(xt)σ(xt)
T )).

There are better alternatives, but these are different from those
used to solve ODE’s.

H.R. Künsch, ETHZ Filtering, data assimilation, SDE’s



Summary of last week’s lecture
State space models

Some basic results on SDE’s

Exact simulation

Gareth Roberts and coworkers found a way to simulate
“exactly” the solution from an SDE of the following form

dxt = g(xt)dt + dBt , g =
∂G
∂x

.

Exactly means that we can generate values xti on an arbitrary
grid which can be refined later on.

This can be done by simulating Brownian motion and using
importance sampling. The importance weights are given by the
density of the distribution of x with respect to that of B. For this,
we need Girsanov’s formula.
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Girsanov’s formula

This density is equal to

exp
(∫ t

0
g(Bs)dBs −

1
2

∫ t

0
g(Bs)

2ds
)

.

Ito’s formula allows to get rid of the stochastic integral:∫ t

0
g(Bs)dBs = G(Bt)−G(B0)−

1
2

∫ t

0
∆G(Bs)ds.

To compute this, we still need the whole path of B. But can
generate random unbiased weights that need B only at a finite
number of (random) time points.
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Statistics for SDE’s

A key quantity in statistical applications of SDE’s are the
transition densities for p(xt | xs). Exact computation requires
solving a PDE (Fokker-Planck). Aproximate computations

Euler approximation

p(xt |xs) ≈ φ(xt ; xs + (t − s)g(xs), (t − s)σ(xs)σ(xs)
T ).

Importance sampling approximations with additional
intermediate time points.
Unbiased estimation as in the case of exact simulation.
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The End

Thank you for your attention.
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