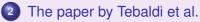
Regional climate predictions: Uncertainty and biases

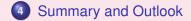
Christoph Buser, Hans R. Künsch and Christoph Schär

Seminar für Statistik and Institute for Atmosphere and Climate ETH Zürich


Singapore, January 2008

・ロ・ ・ 四・ ・ 回・ ・ 日・

Contents



Introduction

Our approach

- The model for the present
- Future biases
- Results

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Starting point

- Predicting the future climate is important for policy making, but difficult because of the complexity of the processes in the ocean, the atmosphere and on the land surface.
- Global models for atmosphere and ocean have a coarse resolution. Regional models allow downscaling by using the output of global models for initial and boundary conditions.
- The number of global and regional models in use is increasing. Each model is run under different emission scenarios. The number of different answers becomes confusing.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Model selection vs. model combination

- Not all models are equal. A good model should be able to reproduce the current climate and be within the range of other models with its prediction.
- Selecting a single "best" model is not adequate in view of the uncertainty.
- Weighted averaging seems intuitive plausible, but choice of weights is not clear.
- Bayesian methods allow model combinations in a coherent and transparent way.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Data and distributions

See: Tebaldi et al., J. Climate 18 (2005).

They onsider 4 seasons, 22 regions and different scenarios separately. For each season, region and scenario

- Mean of observed temperatures 1961-1990 $\sim \mathcal{N}(\mu, \sigma_0^2)$.
- Mean of temperatures 1961-1990 from model $i \sim \mathcal{N}(\mu, \sigma_i^2)$ (i = 1, ..., 9).
- μ is present mean temperature.
- σ_0^2 is variance of current climate.
- σ_i^2 is uncertainty of model *i* about present.
- σ_0^2 is assumed to be known. Expect $\sigma_i^2 > \sigma_0^2$.

・ロ ・ ・ 日 ・ ・ 回 ・ ・ 日 ・

Data and Distributions, ctd.

- Mean of temperatures for 2071-2100 from model $i \sim \mathcal{N}(\mu + \Delta \mu, (q\sigma_i)^2)$ (i = 1, ..., 9).
- $\Delta \mu$ is climate change.
- *q* is increase of uncertainty of model *i* about future.

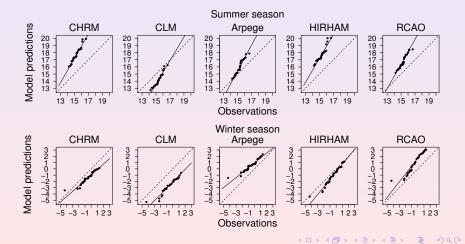
All variables are independent given the parameters. A variant introduces correlation between the mean for present and future for the same *i*.

Put a noninformative prior on all parameters (except σ_0) and compute posterior by MCMC. See results on a separate figure.

Criticism

- Interannual variability (for a fixed season and region) is not considered.
- Independence of different models is questionable.
- Biases of the models are not explicitly estimated, but subsumed under the variances σ²_i.
- Regional models should give better predictions.

The model for the present Future biases Results


Our approach

- We do not average over 30 years. Need to include possible trends in the model.
- We consider regional models for the alpine region only: $44^{\circ} 48^{\circ}N$, $5^{\circ} 15^{\circ}E$.
- Observations and model output are transformed to the same grid of 0.5° (\approx 56km) in both directions.
- Use only 5 models which are based on different global models (or at least different runs of the same model). Otherwise need a hierarchical model because of high correlation between GCM and RCM.

・ロ・ ・ 四・ ・ 回・ ・ 回・

The model for the present Future biases Results

Biases of control runs

The model for the present Future biases Results

Model assumptions

• Observed data for *t* = 1961,..., 1990

$$\sim \mathcal{N}(\mu + \gamma(t - t_0), \sigma^2).$$

• Outputs from control run of model *i* for the same years

$$\sim \mathcal{N}(\mu + \beta_i + \gamma(t - t_0), b_i^2 \sigma^2).$$

(β_i is additive bias, b_i multiplicative bias)

- All variables are independent: RCM's attempt to reproduce the climate, not the weather of a specific year.
- Unobserved data for $t = 2071, \ldots, 2100$

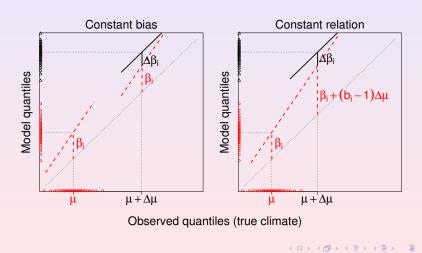
$$\sim \mathcal{N}(\mu + \Delta \mu + (\gamma + \Delta \gamma)(t - t_0), q^2 \sigma^2).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The model for the present Future biases Results

Assumptions about scenario runs

Two key questions


- How to extrapolate biases to the future?
- Can we allow for changes in the future biases?

Answers

- At least two extrapolations are possible, that we call constant bias and constant relation.
- Allowing bias changes leads to non-identifiability. Informative priors provide a reasonable solution.

The model for the present Future biases Results

Graphical illustration

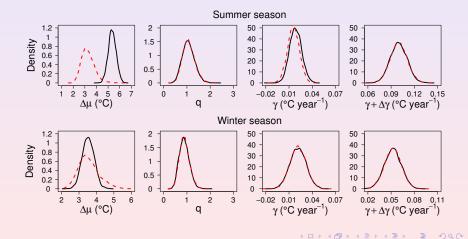
The model for the present Future biases Results

Mathematical Formulation

Constant bias:

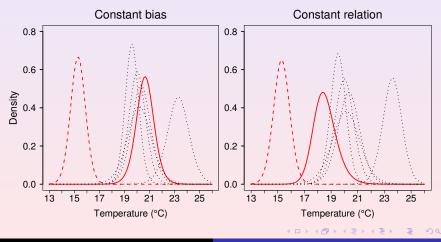
Outputs from run of model *i* for years $t = 2071, \ldots, 2100$:

$$\sim \mathcal{N}(\mu + \Delta \mu + \beta_i + \Delta \beta_i + (\gamma + \Delta \gamma)(t - t_0), (qb_iq_{b_i})^2\sigma^2).$$

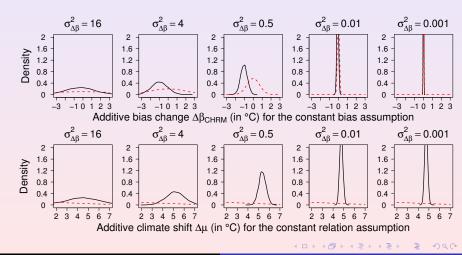

 $\Delta\beta_i$ is change in additive bias, q_{b_i} change in multiplicative bias: Put an informative prior on these to keep them near 0 and 1 respectively.

Constant relation replaces $\Delta \mu$ by $b_i \Delta \mu$.

・ロ・ ・ 四・ ・ 回・ ・ 回・


The model for the present Future biases Results

Posteriors for main parameters


The model for the present Future biases Results

Posterior predictive densities

The model for the present Future biases Results

Sensitivity to priors

Summary

- Statistics for model output from complex data raises new questions.
- Studying distributions instead of mean values gives more information.
- Correcting for biases is important, but assumptions are necessary to do this also for future predictions.
- Is this variance inflation by all models a special feature of the alpine region ?

Future plans

- More than one scenario. This might help to distinguish between constant bias and constant relation.
- Cross validation for information about reasonable choice of priors for bias changes Δβ_i and q_{bi}.
- Less temporal and spatial averaging.
- Other variables than temperature (multivariate ?)
- Hierarchical modeling for different GCM/RCM combinations (unbalanced designs).