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Introduction

• Dynamic data integration in subsurface applications consists of integrating
large-scale data (e.g., production data, tracer data) in order to reduce uncertainity
and achieve realistic sampling of subsurface properties.

• An integrated response is usually measured with some precision. Trying to obtain
hydraulic conductivity samples based on this integrated response is an ill-posed
problem.

• The problem reduces to sampling from a complicated distribition involving the
solutions of coupled nonlinear partial differential equations.

• Metropolis-Hasting Markov chain Monte Carlo (MCMC) methods can be used as
an umbrella sampling method. MCMC used in a straightforward way is very CPU
demanding.

• We propose and analyze approaches for efficient sampling which employ spatial
multi-scale models.
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Prototypical model

We consider two-phase flow in a reservoir under the assumption that the displacement
is dominated by viscous effects.

vj = −krj(S)

µj

k · ∇p, j = w, o

∇ · (λ(S)k∇p) = h,

∂S

∂t
+ v · ∇f(S) = 0, v = −λ(S)k∇p.

Measure coarse-scale data:

F (t) =

R

out
vf(S)dl

R

out
vdl

F(t)
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Coarse-scale spatial models (recap)

• We employ multiscale finite element methods as a single-phase upscaling
technique. Multiscale methods, as traditional upscaling techniques, pre-compute
effective parameters (basis functions) that are repeatedly used for different
boundary condition, sources and mobilities.

• The pressure equation is upscaled using multiscale finite volume method and
coarse-scale velocity field is calculated and used for solving the saturation
equation. Basis functions are constructed only at time zero.

• This provides a very inexpensive approximation for the solution.

Coarse−grid Fine−grid
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Multiscale methods (recap)

• Basis functions are constructed by solving the leading order homogeneous
equation in an element K (coarse grid or RVE)

div(k(x)∇φi) = 0 in K

• Boundary conditions are very important for accuracy of subgrid capturing error.
Choices: (1) local boundary conditions (the information only within the target
coarse block is taken into account); (2) oversampling (the information in slightly
larger than the target coarse block domain is taken into account); (3) limited global
information

• Pressure equation is solved on the coarse grid using φi and the saturation
equation is also solved on the coarse grid. The resulting approach is similar to
solving the system of equations with k replaced by k∗, div(λ(S∗)k∗∇p∗) = q,
S∗

t + v∗ · ∇f(S∗) = qw, v∗ = −λ(S∗)k∗∇p∗.

• Finally, the stochastic MsFEM is developed where a few realizations of k(x, ω) are
used to construct multiscale basis functions for the whole ensemble.
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Problem setting

• Given the fractional flow information (coarse-scale data) F (t) and some precision,
we would like to sample k from P (k|F ).

• From Bayes theorem
P (k|F ) ∝ P (F |k)P (k).

• Here P (k) is the prior information, P (F |k) is the likelihood and assumed given by

P (F |k) = exp(− ‖Fk(t)−F obs(t)‖2

σ2

f

).

• Typical prior can be P (k) = exp(− ‖k−kobs‖
2

σ2

k

), where kobs is a coarse-scale

permeability. Thus, the posterior distribution is

P (k|F ) ∝ exp(−‖Fk(t) − F obs(t)‖2

σ2
f

) exp(−‖k − kobs‖2

σ2
k

).
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Examples of prior

Y (x, ω) = log(k(x, ω)) is described by two-point correlation functions
R(x, y) = E(Y (x, ω)Y (y, ω)). In general, R(x, y) can be defined on the fine-grid. Here
are examples:

• Normal

R(x, y) = σ2 exp
“

−|x1 − y1|2
2L2

1

− |x2 − y2|2
2L2

2

”

,

where L1 and L2 are called correlation lengths and σ is the variance.
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Examples

Exponential variogram (less smooth).

R(x, y) = σ2 exp
“

−|x1 − y1|
L1

− |x2 − y2|
L2

”

.
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Representation of the conductivity fields

• Karhunen-Loeve expansion. Y (x) =
PM

i=1 θi

√
λiΦi(x), where λi and Φi(x) are

eigenvalues and eigenvectors of covariance matrix.

• For normal distribution, λi decay very fast and only a few terms survive in K-L
expansion, i.e., M is small.

• For rougher fields, λi decay slower and M is large.
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Eigenvalues and eigenvectors
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Difficulties

• π(k) = P (k|F ) can be multi-modal and high dimensional.

• π(k) = P (k|F ) is not given analytically and involves the solution of nonlinear pde
system.

P

k
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Metropolis-Hastings MCMC

Algorithm (Metropolis-Hastings MCMC)

• Step 1. At kn generate k from q(k|kn).

• Step 2. Accept k as a sample with probability

p(kn, k) = min

„

1,
q(kn|k)π(k)

q(k|kn)π(kn)

«

,

i.e. kn+1 = k with probability p(kn, k), and kn+1 = kn with probability 1 − p(kn, k).

Here π(k) is the distribution we would like to sample.

• Direct (full) MCMC simulations are usually prohibitively expensive, because each
proposal requires a fine-scale computation.

• We propose an algorithm, where the proposal distribution is modified using
coarse-scale spatial models.
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Remark

Coarse-scale posterior is smoother and do not have all local maxima of fine-scale
posterior

π

π

∗
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Remark
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Left: Coarse-scale response surface π∗ restricted to a 2-D hyperplane. Right:
Fine-scale response surface π restricted to the same 2-D hyperplane.
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Instrumental distribution

• Some simple instrumental distributions are independent sampler and random walk
sampler.

• In the case of independent sampler, the proposal distribution q(k|kn) is chosen to
be independent of kn.

• In random walk sampler, the proposal distribution depends on the previous value
of the permeability field and given by

k = kn + ǫn,

where ǫn is a random perturbation with prescribed variance.
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Langevin instrumental distribution

An important type of proposal distribution can be derived from the Langevin diffusion.
The Langevin diffusion is defined by the stochastic differential equation

dk(τ) =
1

2
∇ log π(k(τ))dτ + dWτ ,

where Wτ is the standard Brownian motion vector with independent components. The
solutions of this stochastic differential equation are from π(k).
A discretization of the equation,

kn+1 = kn +
∆τ

2
∇ log π(kn) +

√
∆τǫn,

where ǫn are independent standard normal distributions.
The proposal is chosen to be

Y = kn +
∆τ

2
∇ log π(kn) +

√
∆τǫn,
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Langevin instrumental distribution

The transition distribution of the proposal is

q(Y |kn) ∝ exp

 

−
‖Y − kn − ∆τ

2
∇ log π(kn)‖2

2∆τ

!

,

q(kn|Y ) ∝ exp

 

−
‖kn − Y − ∆τ

2
∇ log π(Y )‖2

2∆τ

!

.

The reasons for using Langevin:

• Pde’s describing the physical model allow us to compute the gradients.

• The use of gradients is common in “stochastic” subsurface applications, e.g.,
Randomized Maximum Likelihood (RML). This approach samples the
measurement data and the prior information independently and then minimize the
posterior functional with these samples.

• The use of Langevin proposals usually yields higher mixing rates compared to
e.g., random walk sampler.
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Preconditioned coarse-gradient Langevin algorithm

The main idea: (1) use coarse-scale simulations to compute the gradient and make a
proposal; (2) run the coarse-scale simulation code and check the “appropriateness” of
the sample; (3) run the “fine-scale” simulation.

• Step 1. At kn, generate a trial proposal Y from the coarse Langevin distribution
q∗(Y |kn).

• Step 2. Take the proposal k as

k =

(

Y with probability g(kn, Y ),

kn with probability 1 − g(kn, Y ),

where

g(kn, Y ) = min

„

1,
q∗(kn|Y )π∗(Y )

q∗(Y |kn)π∗(kn)

«

.

• Step 3. Accept k as a sample with probability

ρ(kn, k) = min

„

1,
Q(kn|k)π(k)

Q(k|kn)π(kn)

«

,

where Q is the effective proposal distribution.
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Preconditioned coarse-gradient Langevin algorithm

• The transition distribution of the coarse-grid proposal is

q∗(Y |kn) ∝ exp

 

−
‖Y − kn − ∆τ

2
∇ log π∗(kn)‖2

2∆τ

!

,

q∗(kn|Y ) ∝ exp

 

−
‖kn − Y − ∆τ

2
∇ log π∗(Y )‖2

2∆τ

!

.
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Convergence of modified Markov Chain

Denote

E =
˘

k; π(k) > [0]
¯

,

E∗ =
˘

k; π∗(k) > [0]
¯

,

D =
˘

k; q(k|kn) > [0] for some kn ∈ E
¯

,

To sample from π(k) correctly, it is necessary that E ⊆ E∗. Otherwise, there will exist a
subset A ⊂ (E \ E∗) such that

π(A) =

Z

A

π(x)dx > 0 and π∗(A) =

Z

A

π∗(x)dx = 0.

As a result, the chain {kn} will never visit (sample from) A since the element of A will
never be accepted for fine-scale run in Step 2. For the same reason, we should require
that E ⊆ Ω.
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Numerical setting

• We consider log-normal permeability fields k(x) = exp(Y (x)), where Y (x) is
prescribed with a covariance matrix (e.g., normal or exponential).

• The permeability field is parameterized via Karhunen-Loève Expansion

Y (x, ω) =

∞
X

k=1

p

λkθk(ω)φk(x),

where E(θk) = 0, E(θiθj) = δij , λk and φk(x) are eigenvalues and eigenvectors
of covariance matrix.

• First step parameter reduction is performed by neglecting “small” eigenvalues.

• The permeability field can be conditioned at well locations.
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Numerical result
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Numerical result
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Numerical result
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Numerical result
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Numerical result
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Numerical result
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Numerical result
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Numerical result
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Numerical result
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Numerical result
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Numerical result
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Numerical Results
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Left: Coarse-scale response surface π∗ restricted to a 2-D hyperplane. Right:
Fine-scale response surface π restricted to the same 2-D hyperplane.
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Numerical results
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Numerical results
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Numerical results
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Numerical Results
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Numerical Results
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Numerical Results
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Numerical Results

Upper left plot is the reference permeability. The other three plots are examples of
accepted permeability realizations.
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Numerical Results
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Numerical Results
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f
= 0.001.
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Numerical results

Upper left plot is the reference permeability. The other three plots are examples of
accepted permeability realizations.
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Conclusions

• Direct sampling using MH MCMC approaches is expensive

• Inexpensive coarse-scale models can be used to precondition Langevin MH
simulations.

• Coarse-scale simulations are based on multiscale finite element type methods.

• Multiscale basis functions can be constructed to represent an ensemble of
permeability fields.

• Numerical discretization of Langevin equation can help to improve the mixing of
MC.

• Numerical results demonstrate CPU time can be reduced by two orders of
magnitude.

• We have applied the proposed techniques for hydraulic conductivity estimation
based on soil moisture data at different scales.
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