Ferroelectric Crossovers in $\mathrm{Pb}_{0.7} \mathbf{L a}_{0.2} \mathbf{T i O}_{3}$ Triggered by \boldsymbol{A}-site Substitution

John Wang
Department of Materials Science and Engineering, Faculty of Engineering
National University of Singapore, Singapore 117574

Iso-valent cation A-site substitutions give rise to varying ferroelectric transitions in $\mathrm{Pb}_{0.7} \mathrm{La}_{0.2} \mathrm{TiO}_{3}$, depending on both the type and amount of iso-valent cations on the A-site. A crossover from ferroelectric (FE) to relaxor ferroelectric (RFE) has been observed in $\mathrm{Pb}_{0.7(1-}$ $\left.{ }_{x}\right) \mathrm{Ca}_{0.7 x} \mathrm{La}_{0.2} \mathrm{TiO}_{3}, \mathrm{~Pb}_{0.7(1-x)} \mathrm{Ba}_{0.7 x} \mathrm{La}_{0.2} \mathrm{TiO}_{3}$ and $\mathrm{Pb}_{0.7(1-x)} \mathrm{Sr}_{0.7 x} \mathrm{La}_{0.2} \mathrm{TiO}_{3}$ with $x=0.30, \quad 0.40$ and 0.60 , respectively, as shown by both the compositional dependences of $\gamma, \Delta T$, and $\Delta T_{\text {relax }}$ and the fitting to the Vogel-Fulcher relation. As compared to Ca^{2+} and $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$ substitution is less effective in inducing ferroelectric transition due to the similar ionic size as that of Pb^{2+}, whereby only an enhancement in diffusive phase transition is observed in $\mathrm{Pb}_{0.7(1-}$ ${ }_{x)} \mathrm{Sr}_{0.7 x} \mathrm{La}_{0.2} \mathrm{TiO}_{3}$ with $x<0.60$. $\mathrm{Pb}_{0.7(1-x)} \mathrm{Ba}_{0.7 x} \mathrm{La}_{0.2} \mathrm{TiO}_{3}$ exhibits ferroelectric to relaxor crossover at a lower level of Ba^{2+} substitution ($x=0.40$); however, Ba^{2+} substitution is less effective in reducing the transition temperature. This can be attributed to the local enhancement of $\mathrm{Pb}-\mathrm{O}$ hybridization brought about by the stretching of O^{2-} to the direction of Pb^{2+} due to the existence of large Ba^{2+}. In contrast to $\mathrm{Pb}_{0.7(1-x)} \mathrm{Ba}_{0.7 x} \mathrm{La}_{0.2} \mathrm{TiO}_{3}$ and $\mathrm{Pb}_{0.7(1-}$ ${ }_{x)} \mathrm{Sr}_{0.7 \times} \mathrm{La}_{0.2} \mathrm{TiO}_{3}$, a subsequent crossover to quantum paraelectric-like behavior (QPB) is triggered in $\mathrm{Pb}_{0.7(1-x)} \mathrm{Ca}_{0.7 x} \mathrm{La}_{0.2} \mathrm{TiO}_{3}$ with $x=0.60$ in addition to the ferroelectric to relaxor transition, in association with the suppression of ferroelectric order to the quantum regime, suggesting that a severe breakdown in long-range polar order, which together with the shrinkage of unit-cell volume, favor the paraelectric state. The manifestation of quantum mechanical fluctuations at $T<171.6 \mathrm{~K}$ leads to the temperature independent ε^{\prime} that deviates significantly from the classical Curie-Weiss relation.

