Ferroelectric Crossovers in Pb_{0.7}La_{0.2}TiO₃ Triggered by A-site Substitution

John Wang

Department of Materials Science and Engineering, Faculty of Engineering National University of Singapore, Singapore 117574

Iso-valent cation A-site substitutions give rise to varying ferroelectric transitions in Pb_{0.7}La_{0.2}TiO₃, depending on both the type and amount of iso-valent cations on the A-site. A crossover from ferroelectric (FE) to relaxor ferroelectric (RFE) has been observed in Pb_{0.7(1-} $_{x}Ca_{0.7x}La_{0.2}TiO_3$, $Pb_{0.7(1-x)}Ba_{0.7x}La_{0.2}TiO_3$ and $Pb_{0.7(1-x)}Sr_{0.7x}La_{0.2}TiO_3$ with x=0.30, 0.40 and 0.60, respectively, as shown by both the compositional dependences of γ , ΔT , and ΔT_{relax} and the fitting to the Vogel-Fulcher relation. As compared to Ca^{2+} and Ba^{2+} , Sr^{2+} substitution is less effective in inducing ferroelectric transition due to the similar ionic size as that of Pb²⁺, whereby only an enhancement in diffusive phase transition is observed in $Pb_{0.7(1-1)}$ $_{x}$ Sr_{0.7x}La_{0.2}TiO₃ with x<0.60. Pb_{0.7(1-x)}Ba_{0.7x}La_{0.2}TiO₃ exhibits ferroelectric to relaxor crossover at a lower level of Ba^{2+} substitution (x=0.40); however, Ba^{2+} substitution is less effective in reducing the transition temperature. This can be attributed to the local enhancement of Pb-O hybridization brought about by the stretching of O^{2-} to the direction of Pb^{2+} due to the existence of large Ba^{2+} . In contrast to $Pb_{0.7(1-x)}Ba_{0.7x}La_{0.2}TiO_3$ and $Pb_{0.7(1-x)}Ba_{0.7x}La_{0.2}TiO_3$ $_{x}$ Sr_{0.7x}La_{0.2}TiO₃, a subsequent crossover to quantum paraelectric-like behavior (QPB) is triggered in $Pb_{0.7(1-x)}Ca_{0.7x}La_{0.2}TiO_3$ with x=0.60 in addition to the ferroelectric to relaxor transition, in association with the suppression of ferroelectric order to the quantum regime, suggesting that a severe breakdown in long-range polar order, which together with the shrinkage of unit-cell volume, favor the paraelectric state. The manifestation of quantum mechanical fluctuations at T<171.6 K leads to the temperature independent ε' that deviates significantly from the classical Curie-Weiss relation.