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Liquid Crystal-substance with a degree of
crystalline order that remains in a liquid state

o Simple picture- long thin molecules M 0 \
X
\)

Liquid Crystal



Energy to describe static stable configurations

Made up of competing energies
* Molecular packing (molecular alignment)
* Thermal effects (randomize alignment)

* External stresses (mechanical, electrical..)

Temperature dependent-different terms become dominant at
different temperatures



Isotropic

Nematic

Smectic

* Nematic phase-energy seeks local

alignment of long axes.

* n(x) is the “local average”of long

axes.

* In(x)I=1
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N (X) is a unil veclor field

Molecules do not have a head and tail as n(x) does.

In problems where this does not lead to inconsistencies n(x) is the
simplest way to describe a nematic liquid crystal.

n (X)-director field, n (x)e S?
In cases where there are we use {n (x), -n (X)} € RP?



Oseen Frank Energy

* Energy records the cost of distortions away from
n(x)=const.

o Written in terms of pure splay, twist, and bend. These have
K,,K,, K; as coefficients respectively

Fr(n)=Ki(V-n)’+ Ky(n-V xn)” + Ksn x (V xn)|*
+(Ks 4 K4)(tr(Vn)® — (V- n)?)



Pure Distortions
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Special case, K, =K, =K, =K, K, =0, one constant approximation

vector 1dentity

1

r(Vn)* = (V-n)* = Vol = [V xn* = (V- n)",

p— FF (n): /Q[f\vn\zdx,



Boundary Conditions

[) n=n,onoQ |ng| =1

2) R, = C_‘- o0 (n 'e(x))2

[) Strong anchoring problem
F=F,+F, weak anchoring
[t ¢<0 then n(x) tends to be parallel to e(x). e(x) 1s the easy axis.
[f n, (x) or e(x) are parallel to the boundary normal

we are promoting “homeotropic™ boundary values.



[f ¢>0 then n(x) tends to be- e(x) on the boundary. If e(x) is parallel to the boundary normal then n(x) tends
lowards langential boundary values.

Fr(n)=Ki(V-n)’+ Ky(n-V xn)” + Ksn x (V xn)|*
+(Ks 4+ K4)(tr(Vn)® — (V- n)?)

Thm ( Hardt - Kinderlehrer - Lin)
Assume ao isa smooth surface, n,is smooth, K, ,K,, K, >0 and that

A={u|u:Q—S*u=n, |aQ,_[Q|Vu|2<oo}

IS nonempty. Then there is a minimizer for F(n) in A.



n(x) may have singularities, “defects”

o ex.n(xX)=x/|x|

“Hedgehog”. n(x) has homeotropic b.v.
and a defect at one point. Minimizers
from the theorem can not be singular
on a curve. Line singularities in liquid
crystals do exist, “disclination lines”.

Try n(r, 6,z)=e, and get

J-|Vn|2:oo

¢




Cladis and Kleman consider :

n(r)=cose(r)e, +singp(r)e, with »(R)=0




2
F= J' s, | VN [* dxdy = Zﬂ_f S((@) + Corsz Pyrdr

They prove the mimimizer 18 ¢(r) = % —2tan (%)
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Solution 1s not singular. It escapes to the third dimension.



Introduce an order parameter that allows n to “melt” near r=0

Y f(@) probability density that the director
l ]V ‘ \\ of molecules near x are within an

| \ angle @
l\/ H\ Of n(x).
\J/U{ fo(@) = L

s(x) is thé the Isotropic order parameter .

Measures how concentrated f is near
¢ =0.

509 = ffcos* (o)( ~ )

s=1 strongly nematic, s=0 1sotropic



Ericksen considers a nematic described by the pair (s, n)

[ (k| Vs P+ 52| Vn[)ds



If k<1

Mizel, Roccato, and Virga prove that this has a minimizer

§,7) In the family
{s(r),cose(r)e, +singp(r)e,,p(R) =0,s(R) =s, > 0}
of the form =0,5(r)>0, for_r>0,5(0)=0
The solution 1s allowed to melt into the isotropic phase at r=0,
has finite energy, and has a discliation line along the z axis.

If k >1 then the solution has s(0) >0 and ¢ (0) :%.



Defect Core Structure in Nematic Liquid Crystals

N. Schopohl and T. J. Sluckin *’

Fouk=AtrQ*+ : BTrQ*+ + CTrQ*,
0Q;; 90, +L 9Q;; 90k +r 80 0

Fkin=L| axk axk ax} GXA' axk a"rf ’

'ij' _Qﬁ and tI'Q =()

The full free-energy functional

F(Q,ﬁ.) _Fbulh‘l"ZtI'(ﬂQ) +F1-;i.n



uniaxial

(J=sn&En— %I]

biaxial
() =—(sn@n+ sm = m)+ E[sl + 541,
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Smectics
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Picture of the smectic A phase Photo of the smectic A phase
(using polarizing microscope)
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Picture of the smectic C phase Photo of the smectic C phase
(using polarizing microscope)




Molecules locally align and in addition form layers

Y P> e
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Layer normal v
Density modulation  o(x) = p, + 2, COS(Zd—”v-X)
-
=2d—” , d = layer thickness v
If p, >0 then layers exist - smectic phase

If 5 =0 then no layers - nematic phase



If v||n -smectic A

If not - smectic C
Complex order parameter
ip(x)

2p,C0SQp =y +y

w =0 nematic, y = 0 smectic

v = p(x)e



Smectic A energy.

Vip — ignip|* + 2 (1 — |]?)?
Vo1l + p3| Ve — qn|? + p2(1 — pP)?

I Il I



| p, =1 prefers smectic phase
Il locally the level sets of 0 are
the layers, Vop|n, |Vel|xq

11  penalizes phase transitions

v




Smectic-4 structures in submicrometer cylindrical cavities

S. Kralj'? and S. Zumer” Phys Rev E (2) 54, 1996
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f — f];_!DC + f:;.l::n + J{iﬁc + ﬁﬂn

f];!ﬂC:;i{ T—T* 1?3—553_'_ [—,54

oon K (divin)*  Ks(n-curln)?®  Kas(n X curln)?
= + +
" 2 2 2

+ L( gradsS)>. '

bl

f}f“: a(T—Ty,) ,_}}|2 n

fi"=Cy|(71- grad—iqo) >+ C | (i X grad) ]2,

Ifjfrdr + f

surf



First consider the nematic case.
e I' decreases though Ty a
e K1/K5 and K;/Kj3 increase

e This retards the director n escaping to e,
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IV. STRUCTURES—5m-4 PHASE

Based on the ‘‘nematic’” history we propose five qualita-
tively different smectic structures which are allowed from
the topological point of view. According to their appearance
we name them (a) the smectic-planar-radial (SPR). (b) the
smectic-escaped-radial (SER). (c¢) the chevron (CHV), (d)
the bookshelt (BKS). and (e) the hybrid (HBR) structure.

All of these are possible metastable states.



(a)

——— - —— —

(d)
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FIG. 1. Schematic presentation of different Sm-4 structures for
the case of strong homeotropic anchoring and smooth surface: (a)
SPR. (b} SER, (¢) CHV, (d) BKS, and (e) HBR structure. The
smectic layers are drawn with the full line. The nematic director
field spatial variation is indicated at the bottom part of each struc-
ture. The dotted regions describe places where nematic (a) or smec-
tic (a)—(e) ordering melts.



The End
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