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Liquid Crystal-substance with a degree of 
crystalline order that remains in a liquid state

• Simple picture- long thin molecules



Energy to describe static stable configurations

Made up of competing energies
• Molecular packing (molecular alignment)
• Thermal effects (randomize alignment)
• External stresses (mechanical, electrical..)

Temperature dependent-different terms become dominant at 
different temperatures



Isotropic

Nematic

Smectic
T

• Nematic phase-energy seeks local 
alignment of long axes.

• n(x) is the “local average”of long 
axes.

• |n(x)|=1

n(x)



n (x) is a unit vector field

• Molecules do not have a head and tail as n(x) does.
• In problems where this does not lead to inconsistencies n(x) is the 

simplest way to describe a nematic liquid crystal.
• n (x)-director field ,  n (x)     S2

• In cases where there are  we use {n (x), -n (x)}     RP2
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Oseen Frank Energy

• Energy records the cost of distortions away from 
n(x)=const.

• Written in terms of pure splay, twist, and bend. These have  
K1 ,K2, K3 as coefficients respectively



Pure Distortions

Splay Bend Twist



ionapproximatconstant  one  0,K,  case, Special 4321 ==== KKKK

vector identity

=⇒ )(nFF



Boundary Conditions
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1) Strong anchoring problem

F=FF+Fb weak anchoring

If c<0 then n(x) tends to be parallel to e(x).  e(x) is the easy axis.  

If  n0 (x) or e(x) are parallel to the boundary normal

we are promoting “homeotropic” boundary values.
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If c>0 then n(x) tends to be    e(x) on the boundary. If e(x) is parallel to the boundary normal then n(x) tends 
towards  tangential boundary values. 

⊥

Thm ( Hardt - Kinderlehrer - Lin)
Assume       is a  smooth surface, n0 is smooth, K1 ,K2, K3 >0 and that

is nonempty.  Then there is a minimizer for F(n) in A.
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n(x) may have singularities, “defects”

• ex . n(x)=x/|x|
“Hedgehog”. n(x) has homeotropic b.v. 

and a defect at  one point. Minimizers  
from the theorem can not be singular 
on a curve. Line singularities in liquid 
crystals do exist, “disclination lines”.

Try n(r,   ,z)=er  and get RB=Ωθ
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Cladis and Kleman consider :
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Solution is not singular. It escapes to the third dimension.



f(   ) probability density that the director 
of molecules near x are within  an 
angle 

Of n(x).
f0(   ) =
s(x) is the the isotropic order parameter .
Measures how concentrated f is near    

=0.
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Introduce an order parameter that allows n to “melt’ near r=0

s=1  strongly nematic,   s=0   isotropic
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Mizel, Roccato, and Virga prove that this has a minimizer

(     ) in the family

of the form

ns ~,~

The solution is allowed to melt into the isotropic phase at r=0,

has finite energy, and has a disclination line  along the z axis.
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Smectics
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Molecules locally align and in addition form layers

ν



• Layer normal 
• Density modulation

• ,        = layer thickness
• If            then layers exist - smectic phase
• If             then no layers  - nematic phase
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• If           - smectic A
• If  not  - smectic C
• Complex order parameter

• nematic,            smectic
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• I               prefers smectic phase
• II  locally the level sets of      are 

the layers,               

• III    penalizes phase transitions
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The End
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