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Outline

• Part-I: Introduction to phase field model

• Part-II: Splitting methods for incompressible flows

• Part-III: Fast spectral methods foe elliptic equations

• Part-IV: Numerical schemes for phase field model
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Part-I: Phase field model for two-phase
incompressible flows
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Air bubbles rising in a polymetric flow
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Typical “sharp-interface” formulation for
two-phase flows

• Use a marker function φ(x, t) to identify the two fluids — φ is
advected by the fluid velocity:

∂φ

∂t
+ (u · ∇)φ = 0.

• Use a singular delta function “σHδ(n)n” ( H: mean curvature
of the interface) to represent the surface tension:

ρ(ut + (u · ∇)u) +∇p = ∇ · µ(∇u+∇tu) + σHδ(n)n.

Levelset method (φ: distance function), volume-of-fluid method
(φ: discontinuous Heaviside function) ...
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The diffusive phase-field approach

Use a phase function
φ(x, t) = ±1 to label the
two fluids (e.g., φ = 1 in
one fluid and φ = −1 in
the other) with a transi-
tional layer of thickness
η:

Rayleigh ’1892, Van der Waals ’1893; Blinowski ’75, Gurtin et al.
’96, Jacqmin ’96, Anderson & McFadden ’97, Lowengrub & Truski-
novsky ’98, Liu & S. ’03, ...
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Governing equations for the fluids
The momentum equation:

ρ(ut + (u · ∇)u) = ∇ · τ,

with τ = −pI + µ(∇u +∇tu) + τe; where τe is the extra elastic
stress induced by the capillary force near the interface;

Incompressibility:
∇ · u = 0;

(The mass conservation ρt + (u · ∇)ρ = 0 will be replaced by an
equation for the phase-field φ.)
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Elastic stress
Elastic mixing energy:

W (φ) = λ

∫
Ω

{1
2
|∇φ|2 +

1
4η2

(φ2 − 1)2} dx.

• The two parts represent, respectively, the “hydrophilic” and “hy-
drophobic” tendency of the two fluids;

• λ: mixing energy density which can be related to the traditional
surface energy density σ;

• From the least action principle, one can derive

τe = −λ(∇φ⊗∇φ).
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η: capillary width of the
transition layer. In the 1-D
case, it can be shown that
the minimizer is: φ0(x) =
tanh x√

2η
;

• In the 1-D case, setting the surface tension energy σ = W (φ0),
we find: σ = 2

√
2λ

3η .
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Governing equation for the phase function
Pure transport equation: φt + (u · ∇)φ = 0 —- No mecanism to
keep the interface profile.

It is therefore natural to “relax” it:

φt + (u · ∇)φ = γ∆
δW

δφ
, (or − γδW

δφ
),

where the free energy W is once again:

W (φ) =
∫

Ω

{1
2
|∇φ|2 +

1
4η2

(φ2 − 1)2} dx.
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• γ is a relaxation parameter related to the relaxation time scale
of the system;

• The thickness of the interface will remain to be of order η;

• Topological changes are handled seamlessly;

• In many situations, it can be shown that when λ ∼
surface tension · capillary width, the phase equation will ap-

proach, as γ, η → 0, to the transport equation:

φt + u · ∇φ = 0.
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Cahn-Hilliard dynamics

The Cahn-Hilliard phase equation:

φt + (u · ∇)φ = γ∆(−∆φ+ f(φ))

with f(φ) = 1
η2(φ2 − 1)φ and the boundary condition:

∂φ

∂n
|∂Ω = 0;

∂(∆φ− f(φ))
∂n

|∂Ω = 0.

We observe that
d

dt

∫
Ω

φdx = 0,

but fourth-order spatial derivatives are involved.
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Allen-Cahn dynamics

The Allen-Cahn phase equation:

φt + (u · ∇)φ = −γ(−∆φ+ f(φ))

with the boundary condition:

∂φ

∂n
|∂Ω = 0.

In this case,
d

dt

∫
Ω

φdx = −
∫

Ω

f(φ)dx 6= 0.
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Remedy: adding a Lagrange multiplier ξ(t):

φt + (u · ∇)φ = γ(∆φ− f(φ) + ξ(t)),
d

dt

∫
Ω

φdx = 0.
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The complete set of governing equations

Find u, p, (φ, ξ) such that

ρ(ut + (u · ∇)u) +∇p = ∇ · µ(∇u+∇tu)− λ∇ · (∇φ⊗∇φ);

∇ · u = 0;

φt + (u · ∇)φ = γ(∆φ− f(φ) + ξ(t)),
d

dt

∫
Ω

φdx = 0;

(ρ, µ) =
1 + φ

2
(ρ1, µ1) +

1− φ
2

(ρ2, µ2);

µ: viscosity, λ: surface tension coefficient, γ: elastic relaxation
coefficient, η: interfacial width.
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Energy laws

Unfortunately, the above system does not admit an energy law.
However, energy law can be derived in several “approximate” sit-
uations.
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• Using a Boussinesq approximation in the momentum eqn:

ρ0(ut+ (u · ∇)u) +∇p = ∇ ·µ(∇u+∇tu)−λ∇ · (∇φ⊗∇φ) + g(ρ)

Multiplying the momentum eqn by u and the phase eqn by λ(δWδφ −
ξ(t)) = λ(−∆φ+ f(φ) + ξ(t)), using the identity:

(∇·(∇φ⊗∇φ), u) = (∆φ∇φ+
1
2
∇|∇φ|2, u) = ((u·∇φ),∆φ−f(φ)),

one obtains

d

dt

∫
Ω

{ρ
2
|u|2+

γλ

2
|∇φ|2+λF (φ)} = −

∫
Ω

{µ|∇u|2+γλ|∆φ−f(φ)−ξ(t)|2}

which ensures the wellposedness of the system, and makes it
possible to prove the numerical stability.
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An alternative formulation
For problems with large density ratio, we are not aware of an en-
ergy law for the phase-field model, making it difficult to design
stable numerical algorithms.

Using the relation ρ = 1+φ
2 ρ1 + 1−φ

2 ρ2, we can eliminate φ, leading
to the following system (see also Korteweg 1908):

ρ(ut + (u · ∇)u) +∇p = ∇ · µ(ρ)D(u)− λ∇ · (∇ρ⊗∇ρ)

∇ · u = 0;

ρt + (u · ∇)ρ = γ(∆ρ− F ′(ρ)),

where F (ρ) = 1
4η2(ρ− ρ1)2(ρ− ρ2)2.
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• The above system can be viewed as a system with ρ acting as
the phase variable; still no energy law.

• Let σ =
√
ρ. Using the “original” mass conservation “ρt + (u ·

∇)ρ = 0, we can show

ρ(ut + (u · ∇)u) = σ(σu)t + (ρu · ∇)u+
1
2
∇ · (ρu)u.

• Using the above in the momentum eqn., we can establish the
following energy law:

d

dt

∫
Ω

{1
2
|σu|2+

γλ

2
|∇ρ|2+λF (ρ)} = −

∫
Ω

{µ|∇u|2+γλ|∆ρ−f(φ)|2}
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• A Lagrange multiplier can be added to conserve the total mass.
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Main numerical difficulties and our approach
• Coupling between velocity and pressure — use a suitable
projection-type scheme to decouple the pressure from the velocity

• Stiffness of the phase equation for η << 1 — stabilized semi-
implicit discretization to alleviate the stiffness

• Cases with large density ratio where Boussinesq approximation
is no longer valid — a suitable penalty or projection scheme involv-
ing only pressure Poisson equation (with constant coefficients).

• Fine resolution needed to resolve the interface with thickness η
— a high resolution spectral discretization in space coupled with
a moving mesh method.
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Numerical stiffness of the phase equation

A simple semi-implicit discretization:

φn+1 − φn

δt
− γ∆φn+1 = −γ(|φn|2 − 1)φn

η2
.

leads to a time step constraint δt . η2.

A simple fix: Use the stabilized semi-implicit scheme:

φn+1 − φn

δt
− γ(∆− Cs

η2
I)φn+1 = −γ(|φn|2 − 1 + Cs)φn

η2
.
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• Numerical evidence shows that with a suitable choice of Cs
(usually ∼ 1), the time step can be enlarged significantly for
small η.

• A second-order version can be devised easily.
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An alternative approach — splitting:

φt − γ(∆φ− 1
η2

(φ2 − 1)φ) = 0, t ∈ (tn, tn+1)

can be approximated by solving two sub problems: the first being
the linear system

φt − γ∆φ = 0, t ∈ (tn, tn+1
2
)

and the second is an ODE

φt +
γ

η2
(φ2 − 1)φ = 0, t ∈ (tn+1

2
, tn+1)

which can be solved exactly.
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• A second-order version can be derived using the Strang split-
ting;

• Easy to solve and stable for large δt;

• The two substeps do not preserve the interface profile, leading
to large splitting errors;

• Can not be extended to the Cahn-Hilliard case;

• Our numerical experiments indicate that the stabilized semi-
implicit scheme leads to more accurate results.
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