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General setup

We are interested in solving nonlinear evolution equations of
the form

ut +Au+Bu = 0

where A is the leading linear differential operator and B is a
lower-order, nonlinear operator.

• A can be a nonlinear elliptic operator

• Steady state problems or eigenvalue problems can also be
treated.
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Some Examples

Korteweg de Vries equation:

ut + ux + uux +
1
6
uxxx = 0.

Cahn-Hilliard equation:

ut −∆{−∆u+
1
ε2

(|u|2 − 1)u} = 0.
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(incompressible) Navier-Stokes equations:

ut + (u · ∇u)− ν∆u+∇p = f,

∇ · u = 0.

multiphase flows, liquid crystal flows ...

Nonlinear Schrödinger equation:

iut + ∆u+ V (x)u+ β|u|2u = 0

and its associated eigenvalue problems:

∆u+ V (x)u+ β|u|2u = λu.
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Time discretization

• Treat A implicitly to avoid stiffness

• Treat B explicitly to avoid solving nonlinear equations.

One needs to solve, at each time step, a linear equation:

αu+Au = f.

Hence, it is important to develop an accurate and efficient solver
for this type of linear problems.
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Numerical Approximations

Choose a suitable variational formulation:

Find u ∈ X, s.t.

α < u, v > + < Au, v >=< f, v >, ∀v ∈ Y.

Construct finite dimensional spaces XN and YN :

Find uN ∈ XN , s.t.

α < uN , vN >N + < ANuN , vN >N=< f, vN >N , ∀v ∈ YN .
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Spectral methods vs. FD/FE methods

FE methods look for uh(x) =
∑N
i=0 âiφ̂

h
i (x) where {φ̂hi } are lo-

cal piecewise polynomials.

‖u− uh‖L2 ≤ Chα, α = 2, 3 or 4 usually.

Spectral methods look for uN(x) =
∑N
i=0 aiψi(x) where {ψi}

are global polynomials.

‖u− uN‖L2 ≤

{
CN−α‖∂αxu‖L2

ω
if ∂αxu ∈ L2

ω(I)

Ce−βN if u is analytic
.
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Two Common Misconceptions about Spectral
Methods

• Spectral methods always lead to dense, ill-conditioned matri-
ces.

Solution: Choose appropriate basis functions

• Spectral methods can only be applied to simple geometries.

Solution:(i) mapping, (ii) perturbation, (iii) spectral-elements
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Choice of basis functions

• Fourier series — only appropriate for periodic problems; Gibbs
phenomena occurs if applied to non-periodic problems;

• Jacobi polynomials (J (α,β)
n with α, β > −1) — eigenfunctions of

singular Sturm-Liouville problem satisfying:∫ 1

−1

J (α,β)
n J (α,β)

m (1− x)α(1 + x)βdx = 0 if n 6= m.

Two important special cases: α = β = 0 and α = β = −1
2
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Basic Approximation Theorem
Let ωα,β = (1− x)α(1 + x)β.

Let πα,βN : L2
ωα,β
→ PN be the orthogonal projector defined by

(u− πα,βN u, vN)ωα,β = 0, ∀vN ∈ PN .

Theorem. (Funaro, Babuska & Guo, etc.)

‖∂lx(u− π
α,β
N u)‖ωα+l,β+l . N l−m‖∂mx u‖ωα+m,β+m.

Remark: This result also indicates that the spectral method is
particularly suitable for problems with corner singularities and/or
boundary layers.
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Spectral-collocation method

Consider Au = f, in Ω = (−1, 1)d; Bu|∂Ω = 0.

• ΣN : a set of collocation (Gauss-type) points;
• XN = {v ∈ P dN : Bv|∂Ω = 0}.
Spectral-collocation: Find u

N
∈ XN such that

Au
N

(xk) = f(xk), xk ∈ ΣN .

• The corresponding basis functions: Lagrange polynomials;
• Easy to implement but leads to full, ill-conditioned matrix AN :
cond(AN) ∼ N2m (m – order of the equation).
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Key to efficiency and better conditioning

Use compact combination of orthogonal polynomials as basis
functions!

Let k be the order of the PDE, we use

φi(x) =
i+k∑
j=i

ajpj(x)

where {aj} are chosen s.t. {φi(x)} satisfy the underlying homo-
geneous B.C.

Such an approach can be viewed as Finite Elements in fre-
quency space !
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Advantages:

• sparse linear systems for problem with constant or polynomial
coefficients;

• The resulting linear systems are well-conditioned.
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Legendre (ω ≡ 1) Galerkin Method for Even-order
Equations

Consider the 1-D equation

αu− uxx = f ; a±u(±1) + b±ux(±1) = 0.

Let us denote XN = {u ∈ PN : a±u(±1) + b±ux(±1) = 0}. We
can determine unique (ak, bk, ck) such that

φk(x) = akLk(x) + bkLk+1(x) + ckLk+2(x) ∈ XN , 0 ≤ k ≤ N − 2,

(Dxφi, Dxφj) = δij.
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Legendre-Galerkin method:

Find uN =
∑N−2
k=0 ũkφk such that

α(uN , φj) + (u′N , φ
′
j) = (INf, φj), j = 0, 1, · · · , N − 2.

Let us denote

B = (bij), bij = (φi, φj) = 0 for |j − i| > 2,

ū = (ũ0, ũ1, · · · , ũN−2)T ,

f̄ = (f0, f1, · · · , fN−2)T with fi = (INf, φi).

Then, we have
(αB + I)ū = f̄ .
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Consider now the 2-D case:

αu−∆u = f (x, y) ∈ Ω = (−1, 1)2; u|∂Ω = 0.

Setting

XN = span{φi(x)φj(y) : i, j = 0, 1, · · · , N − 2},

u
N

=
N−2∑
k,j=0

ukjφk(x)φj(y), fkj = (INf, φk(x)φj(y))

U = (ukj), F = (fkj), B = (bij).
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Then, the Legendre-Galerkin approximation becomes:

αBUB + UB +BU = F

Remark: The algebraic system has the same structure as a
bilinear finite element method applied to the Helmholtz equation.
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• Matrix Decomposition (Lynch, Rice and Thomas 1964):

Let E−1BE = Λ and U = EV , the equation becomes:

αEΛV B + EV B + EΛV = F.

Since ET = E−1, we have

αΛV B + V B + ΛV = ETF ≡ G.

Total operation counts: 2N3 +O(N2)

• Generalized Cyclic Reduction (Swarztrauber & Sweet ’74)
or divide-and-conquer algorithm (Gu and Eisenstat ’96):
O(N2 logN)
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N=M= LG CLG FISHPACK MG (6 digits)
64 0.032 0.028 0.014 0.039

128 0.22 0.14 0.068 0.16
256 1.59 0.74 0.32 1.13

Table 1: CPU time for solving a 2-D Poisson equation
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Spectral-Galerkin Method for Odd-Order
Equations

Consider the model third-order equation (e.g., needed for solv-
ing the KDV equation):

αu− βux + uxxx = f, x ∈ I = (−1, 1),

u(±1) = ux(1) = 0.

• Collocation: condition number grows like N6

• What is an appropriate variational formulation?
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Since the leading differential operator is not symmetric, it is
natural to use a Petrov-Galerkin method.

Trial space:

VN = {u ∈ PN : u(±1) = ux(1) = 0}.

How to choose a test space WN such that

• the Petrov-Galerkin system is well posed;

• it leads to optimal error estimates;

• the resulting linear system is well conditioned and easy to solve.
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The natural choice — dual space of VN :

V ∗N = {u ∈ PN : u(±1) = ux(−1) = 0}.

The dual-Petrov-Galerkin method is: find u
N
∈ VN s.t.

α(u
N
, v

N
)− β(∂xuN , vN) + (∂xuN , ∂

2
xvN) = (f, v

N
), ∀v

N
∈ V ∗N .
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Basis functions for VN and V ∗N

φk(x) = Lk(x)− 2k + 3
2k + 5

Lk+1(x)− Lk+2(x) +
2k + 3
2k + 5

Lk+3(x) ∈ Vk+3,

ψk(x) = Lk(x) +
2k + 3
2k + 5

Lk+1(x)− Lk+2(x)− 2k + 3
2k + 5

Lk+3(x) ∈ V ∗k+3.

Therefore,

VN = span{φ0, φ1, · · · , φN−3};
V ∗N = span{ψ0, ψ1, · · · , ψN−3}.
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Hence, by setting

mij = (φj, ψi), pij = −(φ′j, ψi), sij = (φ′j, ψ
′′
i ),

the dual-Petrov-Galerkin system reduces to

(αM + βP + S)ū = f̄ .

Thanks to the orthogonality of the Legendre polynomials, we
have

sij = (φ′j, ψ
′′
i ) = (φ′′′j , ψi) = −(φj, ψ′′′i ) = 0, if i 6= j;

mij = 0, |i− j| > 3; pij = 0, |i− j| > 2.
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Analysis of spectral-Galerkin method

It is easy to show that∫
I

φkφjω
−2,−1dx = 0, k 6= j.

i.e., {φj} can be viewed as the generalized Jacobi polynomials
with index (−2,−1).

As we will see later, other equations will lead to generalized
Jacobi polynomials with different negative indexes.

Hence, it is useful to develop a general theory for the general-
ized Jacobi polynomials.
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Generalized Jacobi polynomials
We can define the generalized Jacobi polynomials {Jk,ln } with

k, l being any negative integers such that
∫
I
Jk,ln (x)Jk,lm ωk,l(x)dx =

0 ∀ n 6= m, and

∂xJ
k,l
n (x) ∼ Jk+1,l+1

n−1 (x).

Theorem. (Guo, S. & Wang ’06) Let k, l, j,m be any integers
with m ≥ j ≥ 0, we have

‖∂jx(u− π
k,l
N u)‖ωk+j,l+j . N j−m‖∂mx u‖ωk+m,l+m,

where πk,lN is the orthogonal projector: L2
ωk,l
→ PN ∩ L2

ωk,l
.
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Back to the third-order equation
Lemma. (“double orthogonality” and “coercivity”)

((u− π−2,−1
N

u)x, ∂2
xvN) = −((u− π−2,−1

N
u), ω2,1∂3

xvN)ω−2,−1

= 0, ∀vN ∈ V ∗N .

1
9
‖ux‖2ω−2,0 ≤ (ux, (uω−1,1)xx) ≤ 3‖ux‖2ω−2,0, ∀u ∈ VN .

Theorem. (S. ’03)

‖u− u
N
‖ω−1,1 +N−1‖∂x(u− uN)‖ω−1,0 . N−m‖∂mx u‖ωm−2,m−1.

Remark. The coercivity result implies that we can scale the basis
functions such that the linear system is well-conditioned.
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Extensions

• The dual-Petrov-Galerkin method can be used for other odder-
order equations: J−1,0

n or J0,−1
n (for first-order) and J−3,−2

n or
J−2,−3
n (for fifth-order), etc.

• The proper basis functions of the spectral-Galerkin method for
for 2m-th order equations are J−m,−mn .

• The GJPs can also be defined for non-integer cases which are
useful for singular problems and more general Jacobi approxi-
mations (Guo, S., Wang ’07). The GJPs with indexes (−1

2,−
3
2),
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(−3
2,−

3
2) have been used recently for Chebyshev approximation

to hyperbolic equations (S. & Wang ’06).

• For problems with variable coefficients, one can use the spec-
tral solver with constant coefficients as a preconditioner.

• Unbounded domains: Hermite or (generalized) Laguerre func-
tions.

• Multidimensional separable domains: use tensorial basis func-
tions and the matrix decomposition/diagonalization method. A
direct, parallel spectral-element solver is developed recently (Y.
Kwan & S. ’07).
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• The spectral-Galerkin methods using GJPs as basis functions
enjoy (i) optimal error estimates; (ii) well-conditioned linear sys-
tems (sparse with constant or polynomial coefficients).

• Coupled with the fast transforms for general orthogonal polyno-
mials (cf. Roklin & Tygert ’06), the total computational complex-
ity for a large class of PDEs can be made quasi-optimal.
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Variable coefficients, complex geometries

We assume that Ω can be mapped onto the reference domain
Ω̂ = (−1, 1)d, otherwise a proper domain decomposition tech-
nique should be employed with fast spectral algorithm as sub-
domain solvers.

Consider the elliptic equation on the reference domain

−div (A(x)∇u) = f, in Ω̂; u|∂Ω̂ = 0.

We assume

0 < α ≤ (A(x)ū, ū)
(ū, ū)

≤ β, ∀ x ∈ Ω̂, ū ∈ Rd.
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Preconditioning in frequency space: Notice that

(A∇u,∇u) ∼ (∇u,∇u)

Hence, we can use the fast algorithm for

(∇u,∇v) = (f, v)

to precondition the system

(A∇u,∇v) = (f, v).
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a(x, y) 1 2500(1− x2)(1− y2) x2 + y2 (1 + x2 + y2)4

7× 7 3 10 8 9
15× 15 4 13 9 8
31× 31 3 16 11 7
63× 63 3 6 12 6

127× 127 2 6 20 6
255× 255 2 6 18 4

Table 2: Iteration Counts for the PCG Method: using MG precon-
ditioner with variable a(x, y)
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