Part III: Fast Spectral-Galerkin Methods: Algorithms and Analysis

Jie Shen

Department of Mathematics
Purdue University

IMS, National University of Singapore, July 29-30, 2009

General setup

We are interested in solving nonlinear evolution equations of the form

$$
u_{t}+A u+B u=0
$$

where A is the leading linear differential operator and B is a lower-order, nonlinear operator.

- A can be a nonlinear elliptic operator
- Steady state problems or eigenvalue problems can also be treated.

Some Examples

Korteweg de Vries equation:

$$
u_{t}+u_{x}+u u_{x}+\frac{1}{6} u_{x x x}=0
$$

Cahn-Hilliard equation:

$$
u_{t}-\Delta\left\{-\Delta u+\frac{1}{\epsilon^{2}}\left(|u|^{2}-1\right) u\right\}=0 .
$$

(incompressible) Navier-Stokes equations:

$$
\begin{aligned}
& u_{t}+(u \cdot \nabla u)-\nu \Delta u+\nabla p=f \\
& \nabla \cdot u=0
\end{aligned}
$$

multiphase flows, liquid crystal flows ...
Nonlinear Schrödinger equation:

$$
i u_{t}+\Delta u+V(x) u+\beta|u|^{2} u=0
$$

and its associated eigenvalue problems:

$$
\Delta u+V(x) u+\beta|u|^{2} u=\lambda u
$$

Time discretization

- Treat A implicitly to avoid stiffness
- Treat B explicitly to avoid solving nonlinear equations.

One needs to solve, at each time step, a linear equation:

$$
\alpha u+A u=f .
$$

Hence, it is important to develop an accurate and efficient solver for this type of linear problems.

Numerical Approximations

Choose a suitable variational formulation:
Find $u \in X$, s.t.

$$
\alpha<u, v>+\langle A u, v>=<f, v>, \quad \forall v \in Y .
$$

Construct finite dimensional spaces X_{N} and Y_{N} :
Find $u_{N} \in X_{N}$, s.t.
$\alpha<u_{N}, v_{N}>_{N}+<A_{N} u_{N}, v_{N}>_{N}=<f, v_{N}>_{N}, \forall v \in Y_{N}$.

Spectral methods vs. FD/FE methods

FE methods look for $u_{h}(x)=\sum_{i=0}^{N} \hat{a}_{i} \hat{\phi}_{i}^{h}(x)$ where $\left\{\hat{\phi}_{i}^{h}\right\}$ are local piecewise polynomials.

$$
\left\|u-u_{h}\right\|_{L^{2}} \leq C h^{\alpha}, \quad \alpha=2,3 \text { or } 4 \text { usually. }
$$

Spectral methods look for $u_{N}(x)=\sum_{i=0}^{N} a_{i} \psi_{i}(x)$ where $\left\{\psi_{i}\right\}$ are global polynomials.

$$
\left\|u-u_{N}\right\|_{L^{2}} \leq\left\{\begin{array}{ll}
C N^{-\alpha}\left\|\partial_{x}^{\alpha} u\right\|_{L_{\omega}^{2}}^{2} & \text { if } \partial_{x}^{\alpha} u \in L_{\omega}^{2}(I) \\
C e^{-\beta N} & \text { if } u \text { is analytic }
\end{array} .\right.
$$

Two Common Misconceptions about Spectral Methods

- Spectral methods always lead to dense, ill-conditioned matrices.

Solution: Choose appropriate basis functions

- Spectral methods can only be applied to simple geometries. Solution:(i) mapping, (ii) perturbation, (iii) spectral-elements

Choice of basis functions

- Fourier series — only appropriate for periodic problems; Gibbs phenomena occurs if applied to non-periodic problems;
- Jacobi polynomials $\left(J_{n}^{(\alpha, \beta)}\right.$ with $\left.\alpha, \beta>-1\right)$ - eigenfunctions of singular Sturm-Liouville problem satisfying:

$$
\int_{-1}^{1} J_{n}^{(\alpha, \beta)} J_{m}^{(\alpha, \beta)}(1-x)^{\alpha}(1+x)^{\beta} d x=0 \text { if } n \neq m
$$

Two important special cases: $\alpha=\beta=0$ and $\alpha=\beta=-\frac{1}{2}$

Basic Approximation Theorem

Let $\omega^{\alpha, \beta}=(1-x)^{\alpha}(1+x)^{\beta}$.
Let $\pi_{N}^{\alpha, \beta}: L_{\omega^{\alpha, \beta}}^{2} \rightarrow P_{N}$ be the orthogonal projector defined by $\left(u-\pi_{N}^{\alpha, \beta} u, v_{N}\right)_{\omega^{\alpha, \beta}}=0, \forall v_{N} \in P_{N}$.

Theorem. (Funaro, Babuska \& Guo, etc.)

$$
\left\|\partial_{x}^{l}\left(u-\pi_{N}^{\alpha, \beta} u\right)\right\|_{\omega^{\alpha+l, \beta+l}} \lesssim N^{l-m}\left\|\partial_{x}^{m} u\right\|_{\omega^{\alpha+m, \beta+m}}
$$

Remark: This result also indicates that the spectral method is particularly suitable for problems with corner singularities and/or boundary layers.

Spectral-collocation method

Consider $A u=f$, in $\Omega=(-1,1)^{d} ;\left.\quad B u\right|_{\partial \Omega}=0$.

- Σ_{N} : a set of collocation (Gauss-type) points;
- $X_{N}=\left\{v \in P_{N}^{d}:\left.B v\right|_{\partial \Omega}=0\right\}$.

Spectral-collocation: Find $u_{N} \in X_{N}$ such that

$$
A u_{N}\left(x_{k}\right)=f\left(x_{k}\right), x_{k} \in \Sigma_{N} .
$$

- The corresponding basis functions: Lagrange polynomials;
- Easy to implement but leads to full, ill-conditioned matrix A_{N} : $\operatorname{cond}\left(A_{N}\right) \sim N^{2 m}(m$ - order of the equation).

Key to efficiency and better conditioning

Use compact combination of orthogonal polynomials as basis functions!

Let k be the order of the PDE, we use

$$
\phi_{i}(x)=\sum_{j=i}^{i+k} a_{j} p_{j}(x)
$$

where $\left\{a_{j}\right\}$ are chosen s.t. $\left\{\phi_{i}(x)\right\}$ satisfy the underlying homogeneous B.C.

Such an approach can be viewed as Finite Elements in frequency space!

Advantages:

- sparse linear systems for problem with constant or polynomial coefficients;
- The resulting linear systems are well-conditioned.

Legendre ($\omega \equiv 1$) Galerkin Method for Even-order Equations

Consider the 1-D equation

$$
\alpha u-u_{x x}=f ; \quad a_{ \pm} u(\pm 1)+b_{ \pm} u_{x}(\pm 1)=0 .
$$

Let us denote $X_{N}=\left\{u \in P_{N}: a_{ \pm} u(\pm 1)+b_{ \pm} u_{x}(\pm 1)=0\right\}$. We can determine unique $\left(a_{k}, b_{k}, c_{k}\right)$ such that
$\phi_{k}(x)=a_{k} L_{k}(x)+b_{k} L_{k+1}(x)+c_{k} L_{k+2}(x) \in X_{N}, 0 \leq k \leq N-2$,
$\left(D_{x} \phi_{i}, D_{x} \phi_{j}\right)=\delta_{i j}$.

Legendre-Galerkin method:

Find $u_{N}=\sum_{k=0}^{N-2} \tilde{u}_{k} \phi_{k}$ such that

$$
\alpha\left(u_{N}, \phi_{j}\right)+\left(u_{N}^{\prime}, \phi_{j}^{\prime}\right)=\left(I_{N} f, \phi_{j}\right), j=0,1, \cdots, N-2 .
$$

Let us denote

$$
\begin{aligned}
& B=\left(b_{i j}\right), \quad b_{i j}=\left(\phi_{i}, \phi_{j}\right)=0 \text { for }|j-i|>2 \\
& \bar{u}=\left(\tilde{u}_{0}, \tilde{u}_{1}, \cdots, \tilde{u}_{N-2}\right)^{T} \\
& \bar{f}=\left(f_{0}, f_{1}, \cdots, f_{N-2}\right)^{T} \text { with } f_{i}=\left(I_{N} f, \phi_{i}\right) .
\end{aligned}
$$

Then, we have

$$
(\alpha B+I) \bar{u}=\bar{f}
$$

Consider now the 2-D case:

$$
\alpha u-\Delta u=f(x, y) \in \Omega=(-1,1)^{2} ;\left.\quad u\right|_{\partial \Omega}=0
$$

Setting

$$
\begin{aligned}
& X_{N}=\operatorname{span}\left\{\phi_{i}(x) \phi_{j}(y): i, j=0,1, \cdots, N-2\right\} \\
& u_{N}=\sum_{k, j=0}^{N-2} u_{k j} \phi_{k}(x) \phi_{j}(y), \quad f_{k j}=\left(I_{N} f, \phi_{k}(x) \phi_{j}(y)\right) \\
& U=\left(u_{k j}\right), \quad F=\left(f_{k j}\right), \quad B=\left(b_{i j}\right)
\end{aligned}
$$

Then, the Legendre-Galerkin approximation becomes:

$$
\alpha B U B+U B+B U=F
$$

Remark: The algebraic system has the same structure as a bilinear finite element method applied to the Helmholtz equation.

- Matrix Decomposition (Lynch, Rice and Thomas 1964):

Let $E^{-1} B E=\Lambda$ and $U=E V$, the equation becomes:

$$
\alpha E \Lambda V B+E V B+E \Lambda V=F
$$

Since $E^{T}=E^{-1}$, we have

$$
\alpha \Lambda V B+V B+\Lambda V=E^{T} F \equiv G
$$

Total operation counts: $2 N^{3}+O\left(N^{2}\right)$

- Generalized Cyclic Reduction (Swarztrauber \& Sweet '74) or divide-and-conquer algorithm (Gu and Eisenstat '96): $O\left(N^{2} \log N\right)$

$\mathrm{N}=\mathrm{M}=$	LG	CLG	FISHPACK	MG (6 digits)
64	0.032	0.028	0.014	0.039
128	0.22	0.14	0.068	0.16
256	1.59	0.74	0.32	1.13

Table 1: CPU time for solving a 2-D Poisson equation

Spectral-Galerkin Method for Odd-Order Equations

Consider the model third-order equation (e.g., needed for solving the KDV equation):

$$
\begin{aligned}
& \alpha u-\beta u_{x}+u_{x x x}=f, \quad x \in I=(-1,1) \\
& u(\pm 1)=u_{x}(1)=0
\end{aligned}
$$

- Collocation: condition number grows like N^{6}
- What is an appropriate variational formulation?

Since the leading differential operator is not symmetric, it is natural to use a Petrov-Galerkin method.

Trial space:

$$
V_{N}=\left\{u \in P_{N}: u(\pm 1)=u_{x}(1)=0\right\}
$$

How to choose a test space W_{N} such that

- the Petrov-Galerkin system is well posed;
- it leads to optimal error estimates;
- the resulting linear system is well conditioned and easy to solve.

The natural choice - dual space of V_{N} :

$$
V_{N}^{*}=\left\{u \in P_{N}: u(\pm 1)=u_{x}(-1)=0\right\} .
$$

The dual-Petrov-Galerkin method is: find $u_{N} \in V_{N}$ s.t.

$$
\alpha\left(u_{N}, v_{N}\right)-\beta\left(\partial_{x} u_{N}, v_{N}\right)+\left(\partial_{x} u_{N}, \partial_{x}^{2} v_{N}\right)=\left(f, v_{N}\right), \forall v_{N} \in V_{N}^{*} .
$$

Basis functions for V_{N} and V_{N}^{*}

$$
\begin{aligned}
& \phi_{k}(x)=L_{k}(x)-\frac{2 k+3}{2 k+5} L_{k+1}(x)-L_{k+2}(x)+\frac{2 k+3}{2 k+5} L_{k+3}(x) \in V_{k+3}, \\
& \psi_{k}(x)=L_{k}(x)+\frac{2 k+3}{2 k+5} L_{k+1}(x)-L_{k+2}(x)-\frac{2 k+3}{2 k+5} L_{k+3}(x) \in V_{k+3}^{*} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& V_{N}=\operatorname{span}\left\{\phi_{0}, \phi_{1}, \cdots, \phi_{N-3}\right\} \\
& V_{N}^{*}=\operatorname{span}\left\{\psi_{0}, \psi_{1}, \cdots, \psi_{N-3}\right\}
\end{aligned}
$$

Hence, by setting

$$
m_{i j}=\left(\phi_{j}, \psi_{i}\right), \quad p_{i j}=-\left(\phi_{j}^{\prime}, \psi_{i}\right), \quad s_{i j}=\left(\phi_{j}^{\prime}, \psi_{i}^{\prime \prime}\right)
$$

the dual-Petrov-Galerkin system reduces to

$$
(\alpha M+\beta P+S) \bar{u}=\bar{f}
$$

Thanks to the orthogonality of the Legendre polynomials, we have

$$
\begin{aligned}
s_{i j} & =\left(\phi_{j}^{\prime}, \psi_{i}^{\prime \prime}\right)=\left(\phi_{j}^{\prime \prime \prime}, \psi_{i}\right)=-\left(\phi_{j}, \psi_{i}^{\prime \prime \prime}\right)=0, \text { if } i \neq j \\
m_{i j} & =0,|i-j|>3 ; p_{i j}=0,|i-j|>2
\end{aligned}
$$

Analysis of spectral-Galerkin method

It is easy to show that

$$
\int_{I} \phi_{k} \phi_{j} \omega^{-2,-1} d x=0, k \neq j
$$

i.e., $\left\{\phi_{j}\right\}$ can be viewed as the generalized Jacobi polynomials with index $(-2,-1)$.

As we will see later, other equations will lead to generalized Jacobi polynomials with different negative indexes.

Hence, it is useful to develop a general theory for the generalized Jacobi polynomials.

Generalized Jacobi polynomials

We can define the generalized Jacobi polynomials $\left\{J_{n}^{k, l}\right\}$ with k, l being any negative integers such that $\int_{I} J_{n}^{k, l}(x) J_{m}^{k, l} \omega^{k, l}(x) d x=$ $0 \forall n \neq m$, and

$$
\partial_{x} J_{n}^{k, l}(x) \sim J_{n-1}^{k+1, l+1}(x)
$$

Theorem. (Guo, S. \& Wang '06) Let k, l, j, m be any integers with $m \geq j \geq 0$, we have

$$
\left\|\partial_{x}^{j}\left(u-\pi_{N}^{k, l} u\right)\right\|_{\omega^{k+j, l+j}} \lesssim N^{j-m}\left\|\partial_{x}^{m} u\right\|_{\omega^{k+m, l+m}}
$$

where $\pi_{N}^{k, l}$ is the orthogonal projector: $L_{\omega^{k, l}}^{2} \rightarrow P_{N} \cap L_{\omega^{k, l}}^{2}$.

Back to the third-order equation

Lemma. ("double orthogonality" and "coercivity")

$$
\begin{aligned}
&\left(\left(u-\pi_{N}^{-2,-1} u\right)_{x}, \partial_{x}^{2} v_{N}\right)=-\left(\left(u-\pi_{N}^{-2,-1} u\right), \omega^{2,1} \partial_{x}^{3} v_{N}\right)_{\omega^{-2,-1}} \\
&=0, \quad \forall v_{N} \in V_{N}^{*} . \\
& \frac{1}{9}\left\|u_{x}\right\|_{\omega^{-2,0}}^{2} \leq\left(u_{x},\left(u \omega^{-1,1}\right)_{x x}\right) \leq 3\left\|u_{x}\right\|_{\omega^{-2,0}}^{2}, \quad \forall u \in V_{N} .
\end{aligned}
$$

Theorem. (S. '03)

$$
\left\|u-u_{N}\right\|_{\omega^{-1,1}}+N^{-1}\left\|\partial_{x}\left(u-u_{N}\right)\right\|_{\omega^{-1,0}} \lesssim N^{-m}\left\|\partial_{x}^{m} u\right\|_{\omega^{m-2, m-1}} .
$$

Remark. The coercivity result implies that we can scale the basis functions such that the linear system is well-conditioned.

Extensions

- The dual-Petrov-Galerkin method can be used for other odderorder equations: $J_{n}^{-1,0}$ or $J_{n}^{0,-1}$ (for first-order) and $J_{n}^{-3,-2}$ or $J_{n}^{-2,-3}$ (for fifth-order), etc.
- The proper basis functions of the spectral-Galerkin method for for $2 m$-th order equations are $J_{n}^{-m,-m}$.
- The GJPs can also be defined for non-integer cases which are useful for singular problems and more general Jacobi approximations (Guo, S., Wang '07). The GJPs with indexes ($-\frac{1}{2},-\frac{3}{2}$),
$\left(-\frac{3}{2},-\frac{3}{2}\right)$ have been used recently for Chebyshev approximation to hyperbolic equations (S. \& Wang '06).
- For problems with variable coefficients, one can use the spectral solver with constant coefficients as a preconditioner.
- Unbounded domains: Hermite or (generalized) Laguerre functions.
- Multidimensional separable domains: use tensorial basis functions and the matrix decomposition/diagonalization method. A direct, parallel spectral-element solver is developed recently (Y. Kwan \& S. '07).
- The spectral-Galerkin methods using GJPs as basis functions enjoy (i) optimal error estimates; (ii) well-conditioned linear systems (sparse with constant or polynomial coefficients).
- Coupled with the fast transforms for general orthogonal polynomials (cf. Roklin \& Tygert '06), the total computational complexity for a large class of PDEs can be made quasi-optimal.

Variable coefficients, complex geometries

We assume that Ω can be mapped onto the reference domain $\hat{\Omega}=(-1,1)^{d}$, otherwise a proper domain decomposition technique should be employed with fast spectral algorithm as subdomain solvers.

Consider the elliptic equation on the reference domain

$$
-\operatorname{div}(A(\boldsymbol{x}) \nabla u)=f, \text { in } \hat{\Omega} ;\left.\quad u\right|_{\partial \hat{\Omega}}=0 .
$$

We assume

$$
0<\alpha \leq \frac{(A(\boldsymbol{x}) \bar{u}, \bar{u})}{(\bar{u}, \bar{u})} \leq \beta, \quad \forall \boldsymbol{x} \in \hat{\Omega}, \bar{u} \in R^{d} .
$$

Preconditioning in frequency space: Notice that

$$
(A \nabla u, \nabla u) \sim(\nabla u, \nabla u)
$$

Hence, we can use the fast algorithm for

$$
(\nabla u, \nabla v)=(f, v)
$$

to precondition the system

$$
(A \nabla u, \nabla v)=(f, v)
$$

$a(x, y)$	1	$2500\left(1-x^{2}\right)\left(1-y^{2}\right)$	$x^{2}+y^{2}$	$\left(1+x^{2}+y^{2}\right)^{4}$
7×7	3	10	8	9
15×15	4	13	9	8
31×31	3	16	11	7
63×63	3	6	12	6
127×127	2	6	20	6
255×255	2	6	18	4

Table 2: Iteration Counts for the PCG Method: using MG preconditioner with variable $a(x, y)$

