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Final PDE Model

Vlasov-Euler-Fokker-Planck system:

We arrive at the system:

∂tf + ξ · ∇xf −∇xΦ · ∇ξf =
9µ

2a2ρP

divξ

�
(ξ − u)f +

kθ0

mP

∇ξf
�
, (1)

∂tn + divx(nu) = 0, (2)

ρF

�
∂t(nu) + Divx(nu⊗ u) + αn∇xΦ

�
+∇xp(n) = 6πµa

Z
R3

(ξ − u)f dξ. (3)

wherek stands for the Boltzmann constant, andθ0 > 0 controls the noise strength
andp(n) is a general pressure law, for instancep(n) = Cγ nγ , γ ≥ 1, Cγ > 0.



university-logo

Dimensionless formulation Dissipation And Stability Asymptotic Limits

Final PDE Model

Vlasov-Euler-Fokker-Planck system:

We arrive at the system:

∂tf + ξ · ∇xf −∇xΦ · ∇ξf =
9µ

2a2ρP

divξ

�
(ξ − u)f +

kθ0

mP

∇ξf
�
, (1)

∂tn + divx(nu) = 0, (2)

ρF

�
∂t(nu) + Divx(nu⊗ u) + αn∇xΦ

�
+∇xp(n) = 6πµa

Z
R3

(ξ − u)f dξ. (3)

wherek stands for the Boltzmann constant, andθ0 > 0 controls the noise strength
andp(n) is a general pressure law, for instancep(n) = Cγ nγ , γ ≥ 1, Cγ > 0.



university-logo

Dimensionless formulation Dissipation And Stability Asymptotic Limits

DimensionLess Parameters

TheStokes numberε = TS
T is the ratio of the Stokes settling timeTS over the

time scale of observationT. It measures the strength of the friction force.

ρP/ρF is the ratio of the the density of particles over the typical density of the
surrounding gas;

β = Vth
U is the ratio of the thermal velocityVth =

r
kθ0

mP

of the particles, which

measures the fluctuation of particles velocities, over the typical velocity of the
gasU = L/T.

η′ is, up to its sign,ε−1 times the ratio of the Stokes velocity, that enters into
the scaling of the external forces, over the thermal velocity.

η′ =
g(1− ρF/ρP)Tp

kΘ/mP

|η′| = 1
ε

VSp
kΘ/mP

.

η/η′ with η =
gT
U

measures the difference of the influence of the external

forces on the different phases; it is a dimensionless coefficient with a sign.
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DimensionLess Change of Variables

Adopting the convention that primed quantities are dimensionless, we set

t = T t′, x = L x′, ξ = Vthξ
′

n(Tt′, Lx′) = n′(t′, x′) u(Tt′, Lx′) = U u′(t′, x′) p(Tt′, Lx′) = P p′(t′, x′)

whereP = ρFU2 is a pressure unit, and

f ′(t′, x′, ξ′) =
4
3
πa3 V3

th f (Tt′, Lx′,Vthξ
′) Φ(Tt′, Lx′) =

VSL
TS

Φ′(t′, x′).
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DimensionLess Change of Variables

Therefore, the kinetic equation can be recast as

1
T

∂t′ f
′+
Vth

L
ξ′·∇x′ f

′− VS

TSVth
∇x′Φ

′·∇ξ′ f ′ =
1

TSVth
divξ′

��
Vthξ

′ − Uu′
�
f ′ + Vth∇ξ′ f ′

�
,

while the fluid equations become

1
T

∂t′n
′ +

U
L

divx′(n
′u′) = 0,

U
T

∂t′(n
′u′) +

U2

L
Divx′(n

′u′ ⊗ u′) +
P

ρFL
∇x′p

′(n′) + α
VS

TS
n′∇x′Φ

′

=
1
TS

ρP

ρF

Z
R3

�
Vthξ

′ − Uu′
�

f ′ dξ′.
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DimensionLess PDE Model

DimensionLess Vlasov-Euler-Fokker-Planck system:

∂tf + βξ · ∇xf − η′∇xΦ · ∇ξf =
1
ε
∇ξ ·

��
ξ − 1

β
u
�
f +∇ξf

�
, (4)

∂tn + divx(nu) = 0, (5)

∂t(nu) + Divx(nu⊗ u) +∇xp(n) + η n∇xΦ =
1
ε

ρP

ρF

(J− ρu). (6)

where

ρ(t, x) =

Z
R3

f (t, x, ξ) dξ, J(t, x) = β

Z
R3

ξ f (t, x, ξ) dξ.
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DimensionLess PDE Model
Comments on the Model:

Density-Dependent Viscosity:Typically the viscosity is temperature dependent
and the equation of state readsn = (R T)1/(γ−1). Thus

∂tf + βξ · ∇xf − η′∇xΦ · ∇ξf =
nα

ε
∇ξ ·

��
ξ − 1

β
u
�
f +∇ξf

�

Non-viscous Fluid: We neglect viscosity in the fluid equation since

1
Re

=
2
9

(ρP/ρF) (a/L)2 1
ε

and typicallya� L.

Notation Fokker-Planck operator:

Lu(f ) = ∇ξ ·
�
(ξ − u)f +∇ξf

�
= ∇ξ ·

�
Mu∇ξ(f/Mu)

�
, Mu(ξ) =

e−|ξ−u|2/2

(2π)3/2

and we will denoteL = L0, M = M0
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Boundary conditions

Let x ∈ Ω ⊂ R3, with eitherΩ = R3 itself or a bounded domain with smooth
boundary. In such a case we denote byν(x) the outward unit vector atx ∈ ∂Ω.

Fluid Equations:it is natural to requireu · ν(x) = 0, for x ∈ ∂Ω.

Kinetic Equation:Let us denote byf±(t, x, ξ) the trace off on the set

Σ± = {(t, x, ξ) ∈ R+ × ∂Ω× R3, ±ξ · ν(x) ≥ 0}.

The boundary condition relates the incoming trace to the outgoing one as follows

|ξ · ν(x)|f−(t, x, ξ) =

Z
ξ′·ν(x)>0

K(x, ξ, ξ′) f+(t, x, ξ′) ξ′ · ν(x) dξ′

for (t, x, ξ) ∈ Σ− with K satisfying the following properties: nonnegative,
normalization and preservation of maxwellians. They imply the mass conservation
and

d
dt

Z
Ω

Z
R3

f dξ dx = 0.

Main example:Reflection boundary conditions.
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Dissipation Property

Entropy Decay:

Assumme the scaling:

ρP

ρF

β2 = 1, η′ = ςβ, with ς = ±1.

Defining the free energies associated respectively to the particles and the fluid as:

FP(t) =

Z
Ω

Z
R3

�
f ln(f ) +

ξ2

2
f + ςΦf

�
dξ dx,

FF(t) =

Z
R3

�
n
|u|2

2
+ Π(n) + ηΦn

�
dx,

whereΠ : R+ −→ R+ is defined bysΠ′′(s) = p′(s). Then, we have thecrucial
dissipation:

d
dt

�
FP + FF

�
+

1
ε

Z
Ω

Z
R3

��(ξ − β−1u)
p

f + 2∇ξ

p
f
��2 dξ dx≤ 0.
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Dissipation Property: Proof

• Entropy and kinetic energy of the particles

d
dt

Z
R3

Z
R3

�
f ln(f ) +

ξ2

2
f
�

dξ dx

= −1
ε

Z
R3

Z
R3

�
(ξ − β−1u)f +∇ξf

�
·
�∇ξf

f
+ ξ

�
dξ dx

−η′
Z

R3

Z
R3
∇xΦ · ξf dξ dx.

• Potential energy of the particles

d
dt

Z
R3

Z
R3

Φf dξ dx = β

Z
R3

Z
R3
∇xΦ · ξf dξ dx.
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Dissipation Property: Proof

• Kinetic energy of the fluid

d
dt

Z
R3

n
|u|2

2
dx = −

Z
R3

up′(n) · ∇xndx− η

Z
R3

nu · ∇xΦ dx

+
β

ε

ρP

ρF

Z
R3

Z
R3

(ξ − β−1u)f · udξ dx.

• Entropy of the fluid

d
dt

Z
R3

Π(n) dx = −
Z

R3
Π′(n)divx(nu) dx =

Z
R3

Π′′(n)∇xn · nudx.

• Potential energy of the fluid

d
dt

Z
R3

nΦ dx =

Z
R3

nu · ∇xΦ dx.
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Dissipation Property: Proof

Now, we sum these relations. Taking into account

ρP

ρF

β2 = 1, η′ = ςβ, with ς = ±1

and using the fact that Z
R3

u · ∇ξf dξ = 0,

we arrive at

d
dt

�
F(f (t), n(t), u(t))

�
= −1

ε

Z
R3

Z
R3

�
(ξ − β−1u)2f +

|∇ξf |2

f

+(ξ − β−1u)f · ∇ξf
f

+ ξ · ∇ξf − β−1u · ∇ξf
�

dξ dx,

which ends the proof in the whole space.
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Dissipation Property: Proof

When considering boundary conditions, integration by parts yields an additional
boundary term, which reads

Z
∂Ω

Z
R3

�
f ln(f ) +

ξ2

2
+ Φf

�
ξ · ν(x) dξ dσ(x)

with dσ(x) the Lebesgue measure on∂Ω. All boundary terms from the fluid
equation vanish, by usingu · ν = 0. The mass conservation property satisfied by the
kernelK implies that

Z
∂Ω

Φ(x)

�Z
R3

f ξ · ν(x) dξ

�
dσ(x) = 0.

Then, using the properties ofK, we can check that the remainder term

Z
R3

�
f ln(f ) +

ξ2

2

�
ξ · ν(x) dξ =

Z
R3

f ln
� f

e−ξ2/2

�
ξ · ν(x) dξ

is non positive, as a consequence of the Jensen inequality, a property known as the
Darrozès-Guiraud inequality.



university-logo

Dimensionless formulation Dissipation And Stability Asymptotic Limits

Dissipation Properties 2

Comments:

Typical Pressure laws:If p(n) = nγ , we haveΠ(n) = nγ/(γ − 1) for γ > 1
andΠ(n) = n ln(n) for γ = 1.

Entropy Dissipation: This claim helps in understanding the asymptotic regime
ε � 1: we infer thatf has essentially a hydrodynamic behavior

f (t, x, ξ) ' ρ(t, x) (2π)−3/2 exp
�
−|ξ − β−1u(t, x)|2/2

�
= ρ(t, x)Mu(t,x)/β(ξ).
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Stability - Settling Equilibria

Equilibrium - Kinetic:

Let us fixς = 1 and set

fS(x, ξ) = ZMP e−Φ(x) M(ξ)

with

M(ξ) =
e−ξ2/2

(2π)3/2
,

and the normalization condition

ZMP =
MPZ

Ω

e−Φ(x) dx
.

Such a definition makes sense providedΦ fulfils the confinement condition:

(HC1) x 7→ e−Φ(x) ∈ L1(Ω).

Then,fS is a (non homogeneous) stationary solution of the kinetic equation with
u = 0, since(ξ · ∇x −∇xΦ · ∇ξ)fS = 0 as well as divξ(ξfS +∇ξfS) = 0.
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Stability

Equilibrium - Kinetic:

We select the equilibrium statefS by

MP =

Z
Ω

Z
R3

f dξ dx =

Z
Ω

Z
R3

f0 dξ dx =

Z
Ω

Z
R3

fS dξ dx.

To havefinite free energy, we further assume thatFP(fS) < ∞,

(HC2) x 7→ Φ(x)e−Φ(x) ∈ L1(Ω).

Finally, we remark that

FP(f ) =

Z
Ω

Z
R3

�
f ln

�
f
fS

�
− f + fS

�
dξ dx + ln

�
ZMP

(2π)3/2

�
MP

:= REP(f |fS) + ln

�
ZMP

(2π)3/2

�
MP.

and the first term is nonnegative and vanishes if and only iff = fS.
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We select the equilibrium statefS by

MP =

Z
Ω

Z
R3

f dξ dx =

Z
Ω

Z
R3

f0 dξ dx =

Z
Ω

Z
R3

fS dξ dx.

To havefinite free energy, we further assume thatFP(fS) < ∞,

(HC2) x 7→ Φ(x)e−Φ(x) ∈ L1(Ω).

Finally, we remark that

FP(f ) =

Z
Ω

Z
R3

�
f ln

�
f
fS

�
− f + fS

�
dξ dx + ln

�
ZMP

(2π)3/2

�
MP

:= REP(f |fS) + ln

�
ZMP

(2π)3/2

�
MP.

and the first term is nonnegative and vanishes if and only iff = fS.
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Stability
Relative Entropy - Fluid:

We define the functionalEF : L1
+(Ω) → R ∪ {∞}

EF(n)=

8><
>:

Z
Ω

�
ηnΦ + Π+(n)

�
dx−

Z
Ω

Π−(n) dx if Π−(n) ∈ L1(Ω)

∞ else,

where L1
+(Ω) = {n ∈ L1(Ω) : n≥ 0}.

Restricting this functional to the set of L1
+(Ω) functions with total fluid mass

MF =

Z
Ω

ndx =

Z
Ω

n0 dx,

and including this restriction as a Lagrange multiplier for (10), we obtain the formal
Euler-Lagrange condition, whenevernS > 0:

Π′(nS(x)) + ηΦ(x) = ZMF ∈ R

to be satisfied for a minimizernS in this set, whereZMF is a normalization constant.
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Stability
Relative Entropy - Fluid:

In fact,h = Π′ is a diffeomorphism from(0,∞) onto its range(h(0+), h(∞)). The
generalized inverseσ of h is defined as

σ : R → [0,∞], σ(s) =

8>>><
>>>:

0 for s≤ h(0+),

h−1(s) for h(0+) < s < h(∞),

∞ for h(∞) ≤ s.

Candidates to be minimizers of the functionalEF(n) on the set of L1+(Ω) functions
with total fluid massMF are

nS(x) = σ (ZMF − ηΦ(x)) ,

whereZMF is fixed by imposing the conservation of fluid mass by

MF =

Z
Ω

ndx =

Z
Ω

n0 dx =

Z
Ω

nS dx.



university-logo

Dimensionless formulation Dissipation And Stability Asymptotic Limits

Stability
Relative Entropy - Fluid:

In fact,h = Π′ is a diffeomorphism from(0,∞) onto its range(h(0+), h(∞)). The
generalized inverseσ of h is defined as

σ : R → [0,∞], σ(s) =

8>>><
>>>:

0 for s≤ h(0+),

h−1(s) for h(0+) < s < h(∞),

∞ for h(∞) ≤ s.

Candidates to be minimizers of the functionalEF(n) on the set of L1+(Ω) functions
with total fluid massMF are

nS(x) = σ (ZMF − ηΦ(x)) ,

whereZMF is fixed by imposing the conservation of fluid mass by

MF =

Z
Ω

ndx =

Z
Ω

n0 dx =

Z
Ω

nS dx.



university-logo

Dimensionless formulation Dissipation And Stability Asymptotic Limits

Stability

Theorem

Under suitable conditions on the pressure function and the potential, then the
functional EF(n) has a unique minimizer given by

nS(x) = σ (ZMF − ηΦ(x)) ,

in the set ofL1
+(Ω) functions with total fluid massMF. Moreover:

EF(n)− EF(nS) ≥
Z

Ω

�
Π(n)−Π(nS)−Π′(nS) (n− nS)

�
(x) dx

with equality if and only if

ηΦ(x) + h(nS(x)) = ZMF, for almost all x∈ Ω.
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Stability

Relative Entropy - Fluid:

Thus, previous theorem allows us to rewrite the fluid free energy functional as

FF(n(t), u(t)) =

Z
Ω

n
|u|2

2
dx + (EF(n)− EF(nS)) + EF(nS)

and we observe due to (1) that again

REF((n, u)|(nS, uS)) =

Z
Ω

n
|u|2

2
dx + (EF(n)− EF(nS))

is a functional that controls the distance from the pair(n(t), u(t)) to the equilibrium
solution(nS, uS = 0).
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Stability

Relative Entropy - Full Model:

Therefore, the whole free energy functionalF(f , n, u) can be considered, up to a
constant, a relative entropy functional towards the equilibrium solution
(fS, nS, uS = 0), i.e., defining the relative entropy functional from(f , n, u) to
(fS, nS, uS = 0) as

RE((f , n, u)|(fS, nS, uS)) = REP(f |fS) + REF((n, u)|(nS, uS)).

Thus, we have

RE((f , n, u)|(fS, nS, uS)) = F(f , n, u)− ln

�
ZMP

(2π)3/2

�
MP − χEF(nS) ≥ 0,

and this quantity vanishes if and only iff = fS, n = nS andu = uS = 0.
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Stability

Relative Entropy - Full Model:

In the gravity settling case and as we discussed before, the physical boundary
conditions of interest are periodic boundary conditions in thex1,x2 directions
and no-flux boundary conditions for thex3-direction. All boundary terms in the
periodic boundary conditions disappear while boundary terms in the
x3-direction are treated as above. All conclusions of the last subsections apply
equally well to this case.

For the gravity settling case, in the particular case ofα > 0, which means that
gravity dominates over buoyancy force,fS andnS represent the typical
sedimentation profiles of particles and fluidrespectively. It is interesting to
remark that the steady density of dispersed particles will be always positive
according to (8) while the steady fluid density given by (1) might becompactly
supported for pressure functions of the formp(n) = nγ , γ > 1.

Let us remark that(fS, nS, uS = 0) is a stationary classical solution wherevernS

is regular.
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Stability

Theorem

Given(f (t), n(t), u(t)) a solution to the Cauchy problem for the VEFP system with
the scaling assumpions above and(fS, nS, uS = 0) with fS and nS given as above, such
that Z

Ω

Z
R3

f0 dξ dx =

Z
Ω

Z
R3

fS dξ dx and
Z

Ω

n0 dx =

Z
Ω

nS dx,

then for anyε > 0, there existsδ > 0 such thatif

RE((f0, n0, u0)|(fS, nS, uS)) ≤ δ,

we conclude the solution satisfies

‖f (t)− fS‖L1(Ω×R3) ≤ ε, ‖n(t)− nS‖L1(Ω) ≤ ε and
Z

Ω

n(t)
|u(t)|2

2
dx≤ ε

for all t ≥ 0.



university-logo

Dimensionless formulation Dissipation And Stability Asymptotic Limits

Stability

Theorem

Given(f (t), n(t), u(t)) a solution to the Cauchy problem for the VEFP system with
the scaling assumpions above and(fS, nS, uS = 0) with fS and nS given as above, such
that Z

Ω

Z
R3

f0 dξ dx =

Z
Ω

Z
R3

fS dξ dx and
Z

Ω

n0 dx =

Z
Ω

nS dx,

then for anyε > 0, there existsδ > 0 such thatif

RE((f0, n0, u0)|(fS, nS, uS)) ≤ δ,

we conclude the solution satisfies

‖f (t)− fS‖L1(Ω×R3) ≤ ε, ‖n(t)− nS‖L1(Ω) ≤ ε and
Z

Ω

n(t)
|u(t)|2

2
dx≤ ε

for all t ≥ 0.



university-logo

Dimensionless formulation Dissipation And Stability Asymptotic Limits

Dissipation Property

Entropy Decay:

Assumme the scaling:

ρP

ρF

β2 = 1, η′ = ςβ, with ς = ±1.

Defining the free energies associated respectively to the particles and the fluid as:

FP(t) =

Z
Ω

Z
R3

�
f ln(f ) +

ξ2

2
f + ςΦf

�
dξ dx,

FF(t) =

Z
R3

�
n
|u|2

2
+ Π(n) + ηΦn

�
dx,

whereΠ : R+ −→ R+ is defined bysΠ′′(s) = p′(s). Then, we have thecrucial
dissipation:

d
dt

�
FP + FF

�
+

1
ε

Z
Ω

Z
R3

��(ξ − β−1u)
p

f + 2∇ξ

p
f
��2 dξ dx≤ 0.
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Dissipation Property 2
Entropy Dissipation:

(i) f (1 + ξ2 + |Φ|+ | ln(f )|) is bounded in L∞(R+; L1(Ω× R3)).

(ii) n, |Π(n)| andΦn are bounded in L∞(R+; L1(Ω)).

(iii)
√

n u is bounded in L∞(R+; L2(Ω)).

(iv) 1√
ε

�
(ξ − β−1u)

√
f + 2∇ξ

√
f
�

= D√
ε

is bounded in L2(R+ × Ω× R3).

Moments:

We have the following expansions

J = ρu + β
√

εK, P = ρII +
1
β2

J⊗ u +
√

εK

where the components of the vectorK and of the matrixK are bounded in
L2(R+; L1(Ω)). Here,

P(t, x) =

Z
R3

ξ ⊗ ξ f (t, x, ξ) dξ.
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Bubbling Regime

We set

β =
1√
ε
, |η′| = 1√

ε
,

ρP

ρF

= ε.

meaning that:

Stokes velocity' Typical velocity of the fluid� Thermal velocity.

Gravity:

The scaling assumption is

RiF = η =
β2

|1− β2| and RiP = |η′| = β.

As ε → 0 we haveρP/ρF � 1, RiF ∼ 1 and RiP >> 1 and thus, the dispersed phase
is buoyancy driven while the flow is gravity driven.Here,η′ < 0 and the external
forces act in opposite directions on the particles and on the fluid.
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Bubbling Regime: Moments
We are concerned with the behavior asε → 0 of

8>>>>><
>>>>>:

∂tfε +
1√
ε

�
ξ · ∇xfε +∇xΦ · ∇ξfε

�
=

1
ε

divξ

��
ξ −

√
εuε

�
f +∇ξfε

�
,

∂tnε + divx(nεuε) = 0,

∂t(nεuε) + Divx(nεuε ⊗ uε) +∇xp(nε) + ηnε∇xΦ = (Jε − ρεuε),

with
ρε(t, x) =

Z
R3

fε(t, x, ξ) dξ, Jε(t, x) =

Z
R3

1√
ε

ξ fε(t, x, ξ) dξ

and

Pε(t, x) =

Z
R3

ξ ⊗ ξ fε(t, x, ξ) dξ.

Then, we obtain the following moment equations
8<
:

∂tρε + divxJε = 0,

ε∂tJε + DivxPε − ρε∇xΦ = −(Jε − ρεuε).
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Bubbling Regime: Moments

Using the formal ansatz, the distribution function can be approximated

asfε ' ρε

(2π)3/2 e−ξ2/2, andPε ' ρεII , but it remains to describe the behavior ofJε.

Lettingε go to 0 in the first order moment equation yields

∇xρ− ρ∇xΦ = −J + ρu.

Inserting this result in the continuity equation, and passing to the limit in the fluid
equation, we are led to the following claim.
Assuming formally the limitε → 0, we get that(ρ, n, u) satisfy the following system

8>>>><
>>>>:

∂tρ + divx

�
ρ(u +∇xΦ)−∇xρ

�
= 0,

∂tn + divx(nu) = 0,

∂t(nu) + Divx(nu⊗ u) +∇x(p(n) + ρ) + (ηn− ρ)∇xΦ = 0.
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Flowing Regime

We set
β2 ρP

ρF

= 1, β = |η′| a fixed positive constant

meaning that

Stokes velocity� Typical velocity of the fluid' Thermal velocity.

Gravity:

The scaling assumption is

RiF = η =
β2

|1− β2| and RiP = |η′| = β.

As ε → 0 andβ is smaller than 1, the two phases are driven by gravity, but with
much more influence on the fluid.
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Flowing Regime: Moments

We are concerned with the behavior asε → 0 of8>>><
>>>:

∂tfε + β
�
ξ · ∇xfε − ς∇xΦ · ∇ξfε

�
=

1
ε

divξ

��
ξ − 1

β
uε

�
f +∇ξfε

�
,

∂t(nε) + divx(nεuε) = 0,

∂t(nεuε) + Divx(nεuε ⊗ uε) +∇xp(nε) + η nε∇xΦ =
1

εβ2
(Jε − ρεuε),

with 0
@ ρε

Jε

Pε

1
A (t, x) =

Z
R3

0
@ 1

βξ
ξ ⊗ ξ

1
A fε(t, x, ξ) dξ.

The macroscopic quantities satisfy the following moment system

8><
>:

∂tρε + divxJε = 0,

1
β2

∂tJε + DivxPε + ςρε∇xΦ = − 1
εβ2

(Jε − ρεuε).
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Flowing Regime: Moments

Using the fluid momentum equation, we are led to

∂t(nεuε + β−2Jε) + Divx(nεuε ⊗ uε + Pε) +∇xp(nε) + (ηnε + ςρε)∇xΦ = 0.

Now, using the dissipation consequences it is tempting to infer

Jε ' ρεuε, Pε ' ρεII + β−2 ρεuε ⊗ uε.

Assuming formally the limitε → 0, we get that(ρ, n, u) satisfy the following system
8>>>>>><
>>>>>>:

∂tρ + divx(ρu) = 0,

∂tn + divx(nu) = 0,

∂t

�
(n + β−2ρ)u

�
+ Divx

�
(n + β−2ρ)u⊗ u

�
+∇x

�
ρ + p(n)

�
+ (ηn + ςρ)∇xΦ = 0.
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Asymptotics: Hyperbolicity
Consider the equivalent flowing regime system to (8) given by

8>>>><
>>>>:

∂tρ + divx(ρu) = 0,

∂tr + divx(ru) = 0,

∂t

�
ru
�

+ Divx

�
ru⊗ u

�
+∇x

�
ρ + p(n)

�
+ ηr∇xΦ = 0,

(7)

with r = n + β−2ρ. Therefore, the first order term has a flux function
Ffr : R5 −→ M5×3(R) given by:

Ffr(U) =

�
jρ
r

, j,
j ⊗ j

r
+ (p(r − β−2ρ) + ρ) II

�

with U = (ρ, r, j) andj = ru. Taking the component in thex1-direction given by

F1
fr(U) =

�
j1ρ
r

, j1,
j21
r

+ p(r − β−2ρ) + ρ,
j1j2
r

,
j1j3
r

�
,

it is easy to check (exercise) that its jacobian matrix has real eigenvalues given byj1
r

(triple) and two simple eigenvaluesj1r ±
p

ρ
r + p′(n) n

r . Therefore, the system is
hyperbolic. For the bubbling limit, the first order part is hyperbolic.
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Asymptotics: Stability

DimensionLess Bubbling Regime:

Bubbling: one finds the following free energy functional

Fbr(ρ, n, u) =

Z
Ω

h
n
|u|2

2
+ Π(n) + ρ ln ρ + (ηn− ρ)Φ

i
dx,

which in this case is dissipated along the flow, i.e.,

d
dt
Fbr(ρ(t), n(t), u(t)) = −

Z
Ω

ρ| − ∇xΦ +∇x ln ρ|2 dx≤ 0.

Flowing: one has the following free energy functional:

Ffr(ρ, n, u) =

Z
Ω

h
(n + β−2ρ)

|u|2

2
+ Π(n) + ρ ln ρ + (ηn + ρ)Φ

i
dx,

for the flowing regime system. It can be checked easily that:

d
dt
Ffr(ρ(t), n(t), u(t)) = 0.
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