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Final PDE Model

Vlasov-Euler-Fokker-Planck system:
We arrive at the system:
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wherek stands for the Boltzmann constant, ahd> 0 controls the noise strength
and




Final PDE Model

Vlasov-Euler-Fokker-Planck system:
We arrive at the system:

. 9% ko
O +€ Vi = Vi Vef = S5 dive ((5 —uf vgf), @
oin + divk(nu) = 0, )
pp(at(nu) + Divy(nu® u) + anV@) + Vxp(n) = Grrua/g(ﬁ —uf d¢. 3)
R

wherek stands for the Boltzmann constant, ahd> 0 controls the noise strength
andp(n) is a general pressure law, for instaqe) = C, n”,v > 1,C, > 0.
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DimensionLess Parameters

@ TheStokes number = 5 is the ratio of the Stokes settling tinfg over the
time scale of observatioh. It measures the strength of the friction force.
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DimensionLess Parameters

@ TheStokes number = 5 is the ratio of the Stokes settling tinfg over the
time scale of observatioh. It measures the strength of the friction force.

@ pp/pr is the ratio of the the density of particles over the typical density of the
surrounding gas;
0 A= % is the ratio of the thermal velocityi, = @ of the particles, which

measures the fluctuation of particles velocities, over the typical velocity of the
gasU = L/T.

@ 7' is, up to its signg ! times the ratio of the Stokes velocity, that enters into
the scaling of the external forces, over the thermal velocity.
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. T . .
@ 1n/n' withn = 9 measures the difference of the influence of the external
forces on the different phases; it is a dimensionless coefficient with a sign.



Dimensionless formulation
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DimensionLess Change of Variables

Adopting the convention that primed quantities are dimensionless, we set

t=T¢t, x=LX, £=Vnl
n(Tt', LX) = n'(t',x) u(Tt', LX) = Uu'(t',x) p(Tt', LX) =P p'(t',X)

whereP = peU? is a pressure unit, and

(X, &) = %waB VS E(T,LX, Vn€')  &(TH, LX) = = &'(t',X).



Dimensionless formulation
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DimensionLess Change of Variables

Therefore, the kinetic equation can be recast as

6t,f +& gVt TVS Ve ® Vet = ﬁ diver (Vin€ — UU) ' + ViV t')

while the fluid equations become
8t/n + Y dive (Wu") =0,

P /o VS / /
p7|_ Vx/p (n)-l—a?sn VX/CD

F

1 pp / ’ AW AP
= —Uu) frdg.
I e Jos (Vth§ u ) '3

¥ O (n’u’) + UT Divy (MU' @ u') +
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00080

DimensionLess PDE Model

DimensionLess Vlasov-Euler-Fokker-Planck system:

, 1 1
O + g - Vo =1/ Vi@ - Vet = ZVe - (- U+ Vef),

“
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DimensionLess PDE Model

DimensionLess Vlasov-Euler-Fokker-Planck system:

af + BE - Vb — 1/ Vi@ - Vef = %vg (= %u)f +Vef), @)
on + divk(nu) = 0, (5)
Bi(NU) + Divk(NUE L) + Vyp(n) + 7 NVxP — %%(J — pu). ©)

where

o) = [ a0 =5 [ ertres
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DimensionLess PDE Model

Comments on the Model:

o Density-Dependent Viscosityypically the viscosity is temperature dependent
and the equation of state reauls- (R T)Y "=, Thus

/ > 1

@ Non-viscous FluidWe neglect viscosity in the fluid equation since

1

o= o (oe/pe) (8/L) 2

and typicallya < L.

Notation Fokker-Planck operator:

—|&—ul?/2
Lu(f) = Ve - ((6 = Wf + Vef) = Ve - (MuVe(f/M)),  Mu(6) = e(%ﬁ

and we will denoté = Lo, M = Mg




Dissipation And Stability
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Boundary conditions

Letx € Q C R®, with eitherQ = R3 itself or a bounded domain with smooth
boundary. In such a case we denoteAfy) the outward unit vector a¢ € 99.

@ Fluid Equationsit is natural to requirel - v(x) = O, for x € 99).
@ Kinetic Equation:Let us denote by (t, x, ) the trace of on the set

Se = {(t,x &) € RT x 0 x R®, +¢ - v(x) > 0}.
The boundary condition relates the incoming trace to the outgoing one as follows

Erltxg = [ K& LX) € v

for (t,x, &) € X_ with K satisfying the following properties: nonnegative,
normalization and preservation of maxwellians. They imply the mass conservation

and 4
d—t/Q R3fd§dx:0.

Main exampleReflection boundary conditions.
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Dissipation Property

Entropy Decay:
Assumme the scaling:

Pe 52 =1, n =B, with ¢ = £1.
Pr

Defining the free energies associated respectively to the particles and the fluid as:
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Dissipation Property

Entropy Decay:
Assumme the scaling:

Pe 52 =1, n =B, with ¢ = £1.
Pr

Defining the free energies associated respectively to the particles and the fluid

// fln f+<<f>f)d§dx,
R3

Fut) = /13 (n'“7 4 II(n) + 77<I>n) dx,

wherell : RY — R™ is defined bys1”(s) = p(s). Then, we have therucial
dissipation:

S(mrF)+ %/Q/r (6 — 87V + 2Ve /TP dedx < 0,
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Dissipation Property: Proof

e Entropy and kinetic energy of the particles

/Rs/Rgfln ) de dx
=—7/R3/ (€~ ot + ver) - (Ve 4 e) deax

/JR/ Vx® - & dg dx.
R3JR3

e Potential energy of the particles

%/ﬂ@/ﬂ@@fdgdx:ﬂ/R3/R3Vx‘I"€fd§dX~
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Dissipation Property: Proof

o Kinetic energy of the fluid

2
d n&dx = 7/ up’(n)-Vxndxfn/ nu- Vx® dx
dt Jps 2 R3 R3
JBpe (¢ — g7 u)f - ude dx.
€ Pr Jr3/R3

e Entropy of the fluid

d II(n) dx:—/ I’ (n)divy(nu) dx:/ " (n)Vn - nudx.

at R3 R3

e Potential energy of the fluid

E/ n@dx:/ nu- Vx® dx.
dt ]R3 R3
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Dissipation Property: Proof

Now, we sum these relations. Taking into account
Peg2_1 5 =¢B, withe==+1
P

and using the fact that

/ u-Vvefdé=0,
R3
we arrive at

d 2 |V£f‘2
d—t<}"(f(t),n(t), 7"/1@/?3 - 67N+
+(6 — g7 tu)f - v5 +¢&-Vef —p M- Vg)dgdx,

which ends the proof in the whole space.
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Dissipation Property: Proof

When considering boundary conditions, integration by parts yields an additional
boundary term, which reads

/m/Ra (f In(f) + 5—22 + <1>f) € v(x) d do (%)

with do(x) the Lebesgue measure 8. All boundary terms from the fluid

equation vanish, by using- » = 0. The mass conservation property satisfied by the
kernelK implies that

/E)Q () </R3 f&-v(x) d§> do(x) = 0.

Then, using the properties &f, we can check that the remainder term

/Ts (1 |n(f)+£—22)£.y(x)o|g:/IF (s 1) evios

is non positive, as a consequence of the Jensen inequality, a property known as the
Darrozes-Guiraud inequality.
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Dissipation Properties 2

Comments:

@ Typical Pressure lawdf p(n) = n”, we havell(n) =n”/(y —1)fory > 1
andII(n) = nin(n) for y = 1.
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Dissipation Properties 2

Comments:

@ Typical Pressure lawdf p(n) = n”, we havell(n) =n”/(y —1)fory > 1
andII(n) = nin(n) for y = 1.

@ Entropy DissipationThis claim helps in understanding the asymptotic regime
e < 1: we infer thatf has essentially a hydrodynamic behavior

f(t X, ‘5) =~ /)(t7 X) (271—)73/2 exp(—\f - 671u(t7 X)|2/2> - p(t X)Mu(t>x)/ﬂ(£)'

v
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Stability - Settling Equilibria

Equilibrium - Kinetic:
Let us fix¢ = 1 and set

fs(x,€) = Zmp € *X M(€)

with
e_§2/2
M(f) = W7
and the normalization condition
M,

Zogp = e
/ e P™ gx
Q
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Stability - Settling Equilibria

Equilibrium - Kinetic:
Let us fix¢ = 1 and set

fs(x,€) = Zmp € *X M(€)

with
e_§2/2
M(f) = W7
and the normalization condition
M,

Zogp = e
/ e P™ gx
Q

Such a definition makes sense provide€ulfils the confinement condition:
(HC1) x> e ®™ ¢ L}(Q).

Then,fsis a (non homogeneous) stationary solution of the kinetic equation with
u=0, since(¢ - Vy — Vx® - V¢)fs = 0 as well as diy(&fs + Vefs) = 0.

v
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Stability

Equilibrium - Kinetic:
We select the equilibrium stafe by

MP:/ fd&dx:/ fodgdx:/ fsd¢ dx.
QJR3 QJRr3 QJRr3
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Stability

Equilibrium - Kinetic:
We select the equilibrium stafe by

MP:/ fd&dx:/ fodgdx:/ fsd¢ dx.
QJR3 QJRr3 QJRr3

To havefinite free energywe further assume thafis(fs) < oo,
(HC2) x— ®(x)e"?™ ¢ L}().
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Stability

Equilibrium - Kinetic:
We select the equilibrium stafe by

MP:/ fd&dx:/ fodgdx:/ fsd¢ dx.
QJR3 QJRr3 QJRr3

To havefinite free energywe further assume thafis(fs) < oo,
(HC2) x— ®(x)e"?™ ¢ L}().
Finally, we remark that

= [ in(3) 18 ()
.= RE,(f|fs) + In (é%) M,.

and the first term is nonnegative and vanishes if and orfly=ffs.
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Stability
Relative Entropy - Fluid:
We define the functiond, : L () — R U {co}

/ (nn® + 11 (n)) dxf/ - (n)dx if I~ (n) € LY(Q)
EF(n): §2

Q

o else

where 5. () = {ne LY(Q) : n > 0}.
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Stability

Relative Entropy - Fluid:
We define the functiond, : L () — R U {co}

/ (nn® + 11 (n)) dxf/ - (n)dx if I~ (n) € LY(Q)
EF(n): §2

Q

o else

where 5. () = {ne LY(Q) : n > 0}.
Restricting this functional to the set ofI(Q) functions with total fluid mass

MF:/ndx:/nodx,
Q Q

and including this restriction as a Lagrange multiplier for (10), we obtain the formal
Euler-Lagrange condition, whenevey > O:

II'(ns(X)) + n®(X) = Zme € R

to be satisfied for a minimizets in this set, wher& 4. is a normalization constant
v
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Stability

Relative Entropy - Fluid:

In fact,h = I’ is a diffeomorphism frong0, co) onto its rangegh(0™), h(cc)). The
generalized inverse of h is defined as

0 for s<h(0+),
o:R—[0,00, o(s)=¢ h7*(s) for h(0+) < s< h(co),

oo for h(c) <s
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Stability

Relative Entropy - Fluid:

In fact,h = I’ is a diffeomorphism frong0, co) onto its rangegh(0™), h(cc)). The
generalized inverse of h is defined as

0 for s<h(0+),
o:R—[0,00, o(s)=¢ h7*(s) for h(0+) < s< h(co),

oo for h(c) <s

Candidates to be minimizers of the functiofaln) on the set of £ (Q) functions
with total fluid massM,. are

Ns(X) = o (Zme — NP (X)),

whereZ 4. is fixed by imposing the conservation of fluid mass by

MF:/ndx:/nodx:/ nsdx.
Q Q Q
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Stability

Theorem

Under suitable conditions on the pressure function and the potential, then the
functional E (n) has a unique minimizer given by

Ns(X) = o (Zme — nP(X))

in the set oL} (Q) functions with total fluid mass,. Moreover:

()~ Ex(n9) > [

[II(n) — II(ns) — IT'(ns) (n — ns)] (x) dx

with equality if and only if

n®(x) + h(ns(x)) = Zaxe, for almost all xe Q.
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Stability

Relative Entropy - Fluid:
Thus, previous theorem allows us to rewrite the fluid free energy functional as
ul?

Fe(n(t), u(t)) = / nuj dx + (E-(n) — Ec(ns)) + Ec(ns)

Q
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Stability

Relative Entropy - Fluid:
Thus, previous theorem allows us to rewrite the fluid free energy functional as
2
u
Fo(n(0,u) = [ nl- ot (B (m) — Ed(ns) + Ex(no

Q

and we observe due to (1) that again

2

u

RE(n,0](nsu5) = [ nl- o+ (E-(n) - E:(no)
JQ

is a functional that controls the distance from the fait), u(t)) to the equilibrium

solution(ns, us = 0).
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Stability

Relative Entropy - Full Model:

Therefore, the whole free energy functiod®&(f, n, u) can be considered, up to a
constant, a relative entropy functional towards the equilibrium solution

(fs, ns, us = 0), i.e., defining the relative entropy functional frqify n, u) to

(fs, ns,us = 0) as

RE((f, n,u)[(fs, ns, Us)) = RE(f|fs) + RE:((n, u)|(ns, Us)).
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Stability

Relative Entropy - Full Model:

Therefore, the whole free energy functiod®&(f, n, u) can be considered, up to a
constant, a relative entropy functional towards the equilibrium solution

(fs, ns, us = 0), i.e., defining the relative entropy functional frqify n, u) to

(fs, ns,us = 0) as

RE((f, n,u)[(fs, ns, Us)) = RE(f|fs) + RE:((n, u)|(ns, Us)).

Thus, we have

RE((f, n, u)|(fs, N, Us)) = F(f,n, 1) — In (%) M, — xE.(ns) > 0,

and this quantity vanishes if and onlyfit= fs, n = nsandu = us = 0.
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Stability

Relative Entropy - Full Model:

@ Inthe gravity settling case and as we discussed before, the physical boundary
conditions of interest are periodic boundary conditions indhe directions
and no-flux boundary conditions for tie-direction. All boundary terms in the
periodic boundary conditions disappear while boundary terms in the
xz-direction are treated as above. All conclusions of the last subsections apply

equally well to this case.
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Relative Entropy - Full Model:

@ Inthe gravity settling case and as we discussed before, the physical boundary
conditions of interest are periodic boundary conditions indhe directions
and no-flux boundary conditions for tie-direction. All boundary terms in the
periodic boundary conditions disappear while boundary terms in the
xz-direction are treated as above. All conclusions of the last subsections apply
equally well to this case.

@ For the gravity settling case, in the particular case of 0, which means that
gravity dominates over buoyancy forde andns represent the typical
sedimentation profiles of particles and flugspectively. It is interesting to
remark that the steady density of dispersed particles will be always positive
according to (8) while the steady fluid density given by (1) mightbepactly
supported for pressure functions of the fgofm) = n”, v > 1.
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Stability

Relative Entropy - Full Model:

@ In the gravity settling case and as we discussed before, the physical boundary
conditions of interest are periodic boundary conditions indhe directions
and no-flux boundary conditions for tie-direction. All boundary terms in the
periodic boundary conditions disappear while boundary terms in the
xz-direction are treated as above. All conclusions of the last subsections apply
equally well to this case.

@ For the gravity settling case, in the particular case of 0, which means that
gravity dominates over buoyancy forde andns represent the typical
sedimentation profiles of particles and flugspectively. It is interesting to
remark that the steady density of dispersed particles will be always positive
according to (8) while the steady fluid density given by (1) mightbepactly
supported for pressure functions of the fgofm) = n”, v > 1.

@ Let us remark thaffs, ns, us = 0) is a stationary classical solution wherewver
is regular.

v
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Stability

Theorem

=

Given(f (t), n(t), u(t)) a solution to the Cauchy problem for the VEFP system wit
the scaling assumpions above &ffig ns, us = 0) with fs and ns given as above, such

that o
/ fod¢ dx = / fsd¢ dx and / no dx = / ns dx,
QJR3 JQJR3 Q Q
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Stability

Theorem

-

Given(f (t), n(t), u(t)) a solution to the Cauchy problem for the VEFP system wit
the scaling assumpions above &ffig ns, us = 0) with fs and ns given as above, such

that o
/ fod¢ dx = / fsd¢ dx and / no dx = / ns dx,
QJR3 JQJR3 Q Q

then for anye > 0, there exist$ > 0 such thatf
RE((fo, No, Uo)‘(fs, Ns, Us)) < (5,
we conclude the solution satisfies

' u(t)|?
1) ~ Tl < e IO — s < cand [ o0l ac< e
JQ

forallt > 0.
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Dissipation Property

Entropy Decay:
Assumme the scaling:

Pe 52 =1, n =B, with ¢ = £1.
Pr

Defining the free energies associated respectively to the particles and the fluid as:
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Dissipation Property

Entropy Decay:
Assumme the scaling:

Pe 52 =1, n =B, with ¢ = £1.
Pr

Defining the free energies associated respectively to the particles and the fluid|as:

// fln f+<<f>f)d§dx,
R3

Fut) = /13 (n'“7 4 II(n) + 77<I>n) dx,

wherell : RY — R™ is defined bys1”(s) = p(s). Then, we have therucial
dissipation:

S(mrF)+ %/Q/r (6 — 87V + 2Ve /TP dedx < 0,




Asymptotic Limits
0®00000000

Dissipation Property 2

Entropy Dissipation:
(i) f(1+ &+ |®|+ |In(f)]) is bounded in B°(RT; LY(Q x R?)).
(ii) n, |II(n)| and®n are bounded in & (RT; L*(Q)).
iy /n uis bounded in B°(RT; L2(Q)).
(iv) % (€= B7ruF+ 2V f) = % is bounded in E(R* x Q x R®).




Asymptotic Limits
0®00000000

Dissipation Property 2

Entropy Dissipation:
(i) f(1+ €2+ |®|+ |In(f)|) is bounded in B°(R*; LY(Q x R?)).
(ii) n, |II(n)| and®n are bounded in & (RT; L*(Q)).
iy /n uis bounded in B°(RT; L2(Q)).
(v) =((¢&— B ru/F+2veyf) = % is bounded in E(R* x Q x R®).

Ve

Moments:
We have the following expansions
1
J = pu+ BveK, P = pl +@J®u+ﬁﬂ<
where the components of the vectoand of the matriXk are bounded in
L3(R*;L*(Q)). Here,

P(t,x) :/Es£®£f(t,x7§)d£-
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Bubbling Regime

We set 1
Pp
|T’/‘ = = — = E&.
Ve Pe

meaning that:

Stokes velocity~ Typical velocity of the fluid< Thermal velocity
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Gravity:
The scaling assumption is
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Rip =1n = -7 and Rb=|y|=4.
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Bubbling Regime

We set 1
Pe
|T’/‘ = = — = E&.
Ve Pe

meaning that:

Stokes velocity~ Typical velocity of the fluid< Thermal velocity

Gravity:
The scaling assumption is
s

Rip =1n = -7 and Rb=|y|=4.

Ase — 0 we havepp/pr < 1, Rir ~ 1 and Rk >> 1 and thus, the dispersed phase
is buoyancy driven while the flow is gravity driven.
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Bubbling Regime

We set 1
Pe
|T’/‘ = = — = E&.
Ve Pe

meaning that:

Stokes velocity~ Typical velocity of the fluid< Thermal velocity

Gravity:
The scaling assumption is
s

Rip =1n = -7 and Rb=|y|=4.

Ase — 0 we havepp/pr < 1, Rir ~ 1 and Rk >> 1 and thus, the dispersed phase
is buoyancy driven while the flow is gravity driveHere,n’ < 0 and the external
forces act in opposite directions on the particles and on the fluid.




Asymptotic Limits
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Bubbling Regime: Moments

We are concerned with the behavioreas> 0 0
1
NG

on: + divk(n.u.) =0,

B + (£ Vi + VB Vel.) = g dive (¢ — v/2u.)T + Vet.).

at(nauz) + Divx(nsua ® UE) + vxp(n:’) + 'T]nevxq) - (‘JE - pau5)7
with 1

pa(tvx) = /szs(tvxvg) d.f, Js(tvx) = /]R3 \/g

5 fE (ta X7 5) df

and

m(t,x):/Rawgfsa,x,&)da.
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Bubbling Regime: Moments

We are concerned with the behavioreas> 0 0
1
NG

on: + divk(n.u.) =0,

B + (£ Vi + VB Vel.) = g dive (¢ — v/2u.)T + Vet.).

at(nauz) + Divx(nsua ® UE) + vxp(n:’) + 'T]nevxq) - (‘JE - pau5)7
with 1

pa(tvx) = /szs(tvxvg) d.f, Js(tvx) = /]R3 \/g

5 fE (ta X7 5) df

and
Pt = [ €oetixgd
R3
Then, we obtain the following moment equations

{ Bpe + divide = 0,

€0Je + DivyPe — p-Vx® = —(J: — p:Ue).
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Bubbling Regime: Moments

Using the formal ansatz, the distribution function can be approximated
asf. ~ JW e €°/2 andp. ~ p:l, but it remains to describe the behaviorJof
Lettinge go to 0 in the first order moment equation yields

Vxp — pVx® = —J + pu.

Inserting this result in the continuity equation, and passing to the limit in the fluid
equation, we are led to the following claim.
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Bubbling Regime: Moments

Using the formal ansatz, the distribution function can be approximated
asf. ~ ﬁ e €°/2 andp. ~ p:l, but it remains to describe the behaviorJof
Lettinge go to 0 in the first order moment equation yields

Vxp — pVx® = —J + pu.

Inserting this result in the continuity equation, and passing to the limit in the fluid
equation, we are led to the following claim.
Assuming formally the limie — 0, we get thafp, n, u) satisfy the following system
op + divx(p(u + Vx®) — pr) =0,
on + divk(nu) = 0,

d:(nu) + Divx(nu® u) + Vx(p(n) + p) + (nn — p)Vx®@ = 0.
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Flowing Regime

We set

[32 % =1 B = |n'| afixed positive constant
=

meaning that

Stokes velocityk Typical velocity of the fluid~ Thermal velocity
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Flowing Regime

We set

[32 % =1 B = |n'| afixed positive constant
=

meaning that

Stokes velocityk Typical velocity of the fluid~ Thermal velocity

Gravity:
The scaling assumption is
82

Rig=1n= ‘1732| and Rb = || = B.
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Flowing Regime

We set

[32 % =1 B = |n'| afixed positive constant
=

meaning that

Stokes velocityk Typical velocity of the fluid~ Thermal velocity

Gravity:
The scaling assumption is

82
YR

Rir =17 and Rb = || = B.

Ase — 0 andg is smaller than 1, the two phases are driven by gravity, but with
much more influence on the fluid.

v
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Flowing Regime: Moments

We are concerned with the behaviorsas+ 0 of

aife + 5(5 Vile — ¢Vy® - Vi, ) _ div5((£f
d(n.) + div(n.u:) = 0,
O (N:Uz) + Divk(N-U: @ U:) + Vip(n:) + 1 nVx® =

Lla)f + ngs>~,

8

1
/jz( pEuE)v

Pe 1
( Je ) (t,X) = / ( 65 ) fE(t7X7€) dé-
P. B\ (¢

with
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Flowing Regime: Moments

We are concerned with the behaviorsas+ 0 of

1 ..
O + B(& - Ve = Vu® - Vel ) = ~ dive (e~
at(ns) + diVx(nsU:) =0,
A(n-u.) 4 Divx(Neu: ® Uz) 4+ Vip(ne) + 7 N Vid =

Lla)f + ngs>~,

8

1
/jz( pEuE)v

Pe 1
( Je ) (t,X) = / ( 65 ) fE(t7X7€) dé-
P. B\ (¢

The macroscopic quantities satisfy the following moment system

with

atpe + divyd: = 0,

1, . 1
a()l\]s + DIVX]PE + §pavx(1) - 7@ (Ja - P5u5)~
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Flowing Regime: Moments

Using the fluid momentum equation, we are led to
8t(nsue + ﬁ_z\]s) + Divx(nsue ® Ue + ]Ps) + pr(ne) + (nns + Cpe)vx‘l) =0.
Now, using the dissipation consequences it is tempting to infer

Je ~ Pele, P, ~ Psl + 5_2 Pele ® Ue.
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Flowing Regime: Moments

Using the fluid momentum equation, we are led to
8t(nsue + ﬁ_z\]s) + Divx(nsue ® Ue + ]Ps) + pr(ne) + (nns + Cpe)vx‘l) =0.
Now, using the dissipation consequences it is tempting to infer

Je ~ Pele, P, ~ /)sl + /),—2 Pele ® Ue.

Assuming formally the limit — 0, we get thatp, n, u) satisfy the following system
Op + divy(pu) = 0,
on + divk(nu) = 0,

& ((n+ B~?p)u) + Divy((n+ B~ ?p)u® u)
+Vx(p +p(n) + (MN +5p)Vx® = 0.
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Asymptotics: Hyperbolicity

Owp + divy(pu) = 0,
Or + divk(ru) = 0, )
A (ru) + Divk(ru ® u) + Vx(p 4+ p(n)) + nrvx® =0,

with r = n + 872p. Therefore, the first order term has a flux function

Frr : R® — Msx3(R) given by:

o) = (L3150 ot = 577 + 1)

with U = (p,r,j) andj = ru.
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Asymptotics: Hyperbolicity

p + divk(pu) = 0,
Or + divk(ru) = 0, )

A (ru) + Divk(ru ® u) + Vx(p 4+ p(n)) + nrvx® =0,
with r = n + 872p. Therefore, the first order term has a flux function

Frr : R® — Msx3(R) given by:

Hun:(BJi@i+ma—ﬂ4m+pn)

r r

with U = (p, r,j) andj = ru. Taking the component in the-direction given by

W) = (240 B pir = 72 4 p, 2 ),

it is easy to check (exercise) that its jacobian matrix has real eigenvalues gi\%r%n by

(triple) and two simple eigenvaluér’si V& +p/(n)T. Therefore, the system is
hyperbolic. For the bubbling limit, the first order part is hyperbolic.
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Asymptotics: Stability

DimensionLess Bubbling Regime:

@ Bubbling: one finds the following free energy functional

2
[n& +1II(n) + pInp + (nn — p)@] dx,

fbr(l), n, U) :/ 2

Q

which in this case is dissipated along the flow, i.e.,

P 0.00.u0) = — [ 4= T+ Vulnpf o <0
Q
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Asymptotics: Stability

DimensionLess Bubbling Regime:

@ Bubbling: one finds the following free energy functional

2
[n& +1II(n) + pInp + (nn — p)@] dx,

fbr(l), n, U) :/ 2

Q

which in this case is dissipated along the flow, i.e.,

P 0.00.u0) = — [ 4= T+ Vulnpf o <0
Q

@ Flowing: one has the following free energy functional:

[(n + ﬂ’zp)ﬁ +1I(n) + pInp + (nn+ p)<1>] dx,

Filp.nu = [ ]

Q

for the flowing regime system. It can be checked easily that:

d

a]:ff (p(t), n(t)7 U(t)) = 0'
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