A NONLOCAL VECTOR CALCULUS WITH

APPLICATION TO NONLOCAL BOUNDARY-VALUE PROBLEMS

Max Gunzburger Department of Scientific Computing Florida State University

Joint work with Richard Lehoucq – Sandia National Laboratories

MOTIVATION

 \circ analysis and numerical analysis of peridynamic model for materials

- characterization of "boundary" conditions
- well posedeness
- characterization of solution and data spaces
- finite element, e.g., discontinuous Galerkin, discretizations

• IN THIS TALK

 \circ we treat scalar-valued problems

- extension to vector case is (formally) straightforward

• Gilboa and Osher

G. GILBOA AND S. OSHER, Nonlocal operators with applications to image processing; *Multiscale Model. Simul.* **7** 2008, 1005–1028.

• Rossi and co-workers

F. ANDREU, J. MAZON, J. ROSSI, AND J. TOLEDO, A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions; *SIAM J. Math. Anal.* **40** 2009, 1815–1851.

• Emmrich and Weckner

E. EMMRICH AND O. WECKNER, On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of Linear elasticity; *Commun. Math. Sci.* **5** 2007, 851–864.

• Alali and Lipton

B. ALALI AND R. LIPTON, Multiscale analysis of heterogeneous media in the peridynamic formulation; *IMA preprint* 2009.

Du and Zhou

 $\rm Q.~DU~AND~K.~ZHOU,$ Multiscale analysis of heterogeneous media in the peridynamic formulation; in preparation.

A NONLOCAL GAUSS'S THEOREM

• $\Omega \subset \mathbb{R}^d$

- Let $p(\mathbf{x}, \mathbf{x}') : \Omega \times \Omega \to \mathbb{R}$ denote a skew-symmetric function $\Rightarrow p(\mathbf{x}', \mathbf{x}) = -p(\mathbf{x}, \mathbf{x}')$
- One easily sees that

$$\int_{\widehat{\Omega}} \int_{\widehat{\Omega}} p(\mathbf{x}, \mathbf{x}') \, d\mathbf{x}' d\mathbf{x} = 0 \qquad \forall \, \widehat{\Omega} \subseteq \Omega$$

Let

 $\begin{aligned} -\alpha(\mathbf{x}, \mathbf{x}') &: \Omega \times \Omega \to \mathbb{R} \text{ denote a symmetric function} \\ &\Rightarrow \alpha(\mathbf{x}', \mathbf{x}) = \alpha(\mathbf{x}, \mathbf{x}') \end{aligned}$

$$\begin{split} - \, f(\mathbf{x}, \mathbf{x}') &: \Omega \times \Omega \to \mathbb{R} \text{ denote a skew-symmetric function} \\ & \Rightarrow f(\mathbf{x}', \mathbf{x}) = -f(\mathbf{x}, \mathbf{x}') \end{split}$$

• Let $\widetilde\Omega\subset\Omega$ such that both $\widetilde\Omega$ and $\Omega\setminus\widetilde\Omega$ have finite measure

– then

$$\int_{\widetilde{\Omega}} \int_{\Omega} f(\mathbf{x}, \mathbf{x}') \alpha(\mathbf{x}', \mathbf{x}) \, d\mathbf{x}' d\mathbf{x} = - \int_{\Omega \setminus \widetilde{\Omega}} \int_{\Omega} f(\mathbf{x}, \mathbf{x}') \alpha(\mathbf{x}', \mathbf{x}) \, d\mathbf{x}' d\mathbf{x}$$

- the right-hand side corresponds to a nonlocal "flux"

• Let \mathcal{D} denote the operator mapping functions $f(\cdot, \cdot)$ defined over $\widetilde{\Omega} \times \Omega$ into functions defined over $\widetilde{\Omega}$ given by

$$\begin{aligned} (\mathcal{D}f)(\mathbf{x}) &= 2 \int_{\Omega} f(\mathbf{x}, \mathbf{x}') \alpha(\mathbf{x}', \mathbf{x}) \, d\mathbf{x}' \\ &= \int_{\Omega} \left(f(\mathbf{x}, \mathbf{x}') - f(\mathbf{x}', \mathbf{x}) \right) \alpha(\mathbf{x}', \mathbf{x}) \, d\mathbf{x}' \qquad \text{for } \mathbf{x} \in \widetilde{\Omega} \end{aligned}$$

• Similarly, let \mathcal{N} denote the operator mapping functions $f(\cdot, \cdot)$ defined over $(\Omega \setminus \widetilde{\Omega}) \times \Omega$ into functions defined over $\Omega \setminus \widetilde{\Omega}$ given by

$$\begin{aligned} (\mathcal{N}f)(\mathbf{x}) &= -2\int_{\Omega} f(\mathbf{x}, \mathbf{x}') \alpha(\mathbf{x}', \mathbf{x}) \, d\mathbf{x}' \\ &= -\int_{\Omega} \left(f(\mathbf{x}, \mathbf{x}') - f(\mathbf{x}', \mathbf{x}) \right) \alpha(\mathbf{x}', \mathbf{x}) \, d\mathbf{x}' \qquad \text{for } \mathbf{x} \in \Omega \setminus \widetilde{\Omega} \end{aligned}$$

• Then, we have the nonlocal Gauss's theorem

$$\int_{\widetilde{\Omega}} (\mathcal{D}f)(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega \setminus \widetilde{\Omega}} (\mathcal{N}f)(\mathbf{x}) \, d\mathbf{x}$$

• This result is analogous to the classical Gauss's theorem

$$\int_{\widetilde{\Omega}} (\mathcal{D}f)(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega \setminus \widetilde{\Omega}} (\mathcal{N}f)(\mathbf{x}) \, d\mathbf{x} \qquad \int_{\Omega} \nabla \cdot \mathbf{q} \, d\mathbf{x} = \int_{\partial \Omega} \mathbf{q} \cdot \mathbf{n} \, d\mathbf{x}$$

- thus, we have a derived a "nonlocal Gauss's theorem" that is analogous to the classical Gauss's theorem
- amazingly, the two theorems have a much more direct relation

Relation to the classical Gauss's theorem

• We apply two remarkable results due to Walter Noll

W. NOLL, Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik; *Indiana Univ. Math. J.* **4** 1955, 627–646. Originally published in *J. Rational Mech. Anal.*

W. NOLL, Derivation of the fundamental equations of continuum thermodynamics from statistical mechanics; Translation with corrections by R. Lehoucq and O. A. von Lilienfeld, to appear in *J. Elasticity*, 2009

• Let the vector field $\mathbf{q} \colon \Omega \to \mathbb{R}^d$ be defined by

$$\mathbf{q}(\mathbf{x}) = -\int_{\Omega} (\mathbf{x}' - \mathbf{x}) \varphi(\mathbf{x}, \mathbf{x}' - \mathbf{x}) \, d\mathbf{x}'$$

— the function $\varphi(\cdot, \cdot)$ is given by, with $\mathbf{z} = \mathbf{x}' - \mathbf{x},$

$$\varphi(\mathbf{x}, \mathbf{z}) = \int_0^1 f(\mathbf{x} + \lambda \mathbf{z}, \mathbf{x} - (1 - \lambda)\mathbf{z}) \alpha(\mathbf{x} + \lambda \mathbf{z}, \mathbf{x} - (1 - \lambda)\mathbf{z}) d\lambda$$

• Lemma I in the Noll paper implies

$$\nabla \cdot \mathbf{q} = \int_{\Omega} \left(f(\mathbf{x}, \mathbf{x}') - f(\mathbf{x}', \mathbf{x}) \right) \alpha(\mathbf{x}, \mathbf{x}') \, d\mathbf{x}' \qquad \text{for } \mathbf{x} \in \widetilde{\Omega}$$

— using the definition of the operator $\mathcal{D}(\cdot)$, we then have

$$\nabla \cdot \mathbf{q} = \mathcal{D}f \qquad \text{for } \mathbf{x} \in \widetilde{\Omega}$$

• Lemma II in the Noll paper implies

SO

$$\int_{\partial \widetilde{\Omega}} \mathbf{q}(\mathbf{x}) \cdot \mathbf{n} \, dA = 2 \int_{\widetilde{\Omega}} \int_{\Omega \setminus \widetilde{\Omega}} f(\mathbf{x}, \mathbf{x}') \alpha(\mathbf{x}, \mathbf{x}') \, d\mathbf{x}' d\mathbf{x}$$

— it is a simple matter to show that, due to the skew-symmetry of $f(\cdot, \cdot)$ and symmetry of $\alpha(\cdot, \cdot)$,

$$\int_{\widetilde{\Omega}} \int_{\Omega \setminus \widetilde{\Omega}} f(\mathbf{x}, \mathbf{x}') \alpha(\mathbf{x}, \mathbf{x}') \, d\mathbf{x}' d\mathbf{x} = - \int_{\Omega \setminus \widetilde{\Omega}} \int_{\Omega} f(\mathbf{x}, \mathbf{x}') \alpha(\mathbf{x}, \mathbf{x}') \, d\mathbf{x}' d\mathbf{x}$$
 that

$$\int_{\partial \widetilde{\Omega}} \mathbf{q}(\mathbf{x}) \cdot \mathbf{n} \, dA = -2 \int_{\Omega \setminus \widetilde{\Omega}} \int_{\Omega} f(\mathbf{x}, \mathbf{x}') \alpha(\mathbf{x}, \mathbf{x}') \, d\mathbf{x}' d\mathbf{x}$$

— using the definition of the operator $\mathcal{N}(\cdot)$, we then have

$$\int_{\partial \widetilde{\Omega}} \mathbf{q}(\mathbf{x}) \cdot \mathbf{n} \, dA = \int_{\Omega \setminus \widetilde{\Omega}} \mathcal{N}(f) \, d\mathbf{x}$$

• By substituting the results in the last two slides into the nonlocal Gauss's theorem, we have that the vector-valued function **q** satisfies

$$\int_{\widetilde{\Omega}} \nabla \cdot \mathbf{q} \, d\mathbf{x} = \int_{\partial \widetilde{\Omega}} \mathbf{n} \cdot \mathbf{q} \, dA$$

i.e., the classical, local Gauss's theorem for the vector function $\mathbf{q}(\cdot)$

• Thus, we have shown that

the nonlocal Gauss's theorem for the

- nonlocal scalar-valued function $f(\cdot, \cdot)$
- is exactly equivalent to the

classical Gauss's theorem for the

local vector-valued function $\mathbf{q}(\cdot)$ derived from $f(\cdot, \cdot)$

$$\mathbf{q}(\mathbf{x}) = -\int_{\Omega} \mathbf{z} \int_{0}^{1} f(\mathbf{x} + \lambda \mathbf{z}, \mathbf{x} - (1 - \lambda)\mathbf{z}) \alpha(\mathbf{x} + \lambda \mathbf{z}, \mathbf{x} - (1 - \lambda)\mathbf{z}) d\lambda d\mathbf{z}$$

then

$$\int_{\widetilde{\Omega}} (\mathcal{D}f)(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega \setminus \widetilde{\Omega}} (\mathcal{N}f)(\mathbf{x}) \, d\mathbf{x} \quad \Longleftrightarrow \quad \int_{\Omega} \nabla \cdot \mathbf{q} \, d\mathbf{x} = \int_{\partial \Omega} \mathbf{q} \cdot \mathbf{n} \, d\mathbf{x}$$

An application of the nonlocal Gauss's theorem

• In the sequel, we frequently let

$$u = u(\mathbf{x}) \qquad u' = u(\mathbf{x}') \qquad v = v(\mathbf{x}) \qquad v' = v(\mathbf{x}')$$
$$f = f(\mathbf{x}, \mathbf{x}') \qquad f' = f(\mathbf{x}', \mathbf{x}) = -f, \qquad \alpha = \alpha(\mathbf{x}, \mathbf{x}') \qquad \alpha' = \alpha(\mathbf{x}', \mathbf{x}) = \alpha$$

- Let $U(\Omega)$ and $V(\Omega)$ denote Banach spaces of scalar-valued functions defined over Ω
- Define a skew-symmetric, nonlinear operator $\mathcal{K}(u(\mathbf{x}), u(\mathbf{x}'); \mathbf{x}, \mathbf{x}')$ on $U(\Omega) \times U(\Omega) \times \Omega \times \Omega$

$$\Rightarrow \quad \mathcal{K} = \mathcal{K}(u, u'; \mathbf{x}, \mathbf{x}') = -\mathcal{K}(u', u; \mathbf{x}', \mathbf{x}) = -\mathcal{K}'$$

 \bullet Then, for $u\in U(\Omega)$ and $v\in V(\Omega),$ set

$$f = (v + v')\mathcal{K}$$

so that, because $\mathcal{K}'=-\mathcal{K}$

$$f = (v + v')\mathcal{K} = (v' - v)\mathcal{K} + 2v\mathcal{K} = v(\mathcal{K} - \mathcal{K}') + (v' - v)\mathcal{K}$$

• Substituting into

$$\int_{\widetilde{\Omega}} \int_{\Omega} f \alpha \, d\mathbf{x}' d\mathbf{x} = - \int_{\Omega \setminus \widetilde{\Omega}} \int_{\Omega} f \alpha \, d\mathbf{x}' d\mathbf{x}$$

it can be shown that

$$\int_{\widetilde{\Omega}} \int_{\Omega} v(\mathcal{K} - \mathcal{K}') \alpha \, d\mathbf{x}' d\mathbf{x} + \int_{\Omega} \int_{\Omega} (v' - v) \mathcal{K} \alpha \, d\mathbf{x}' d\mathbf{x} = -2 \int_{\Omega \setminus \widetilde{\Omega}} \int_{\Omega} v \mathcal{K} \alpha \, d\mathbf{x}' d\mathbf{x}$$

• The composite operators $\mathcal{D}(\mathcal{K})$ and $\mathcal{N}(\mathcal{K})$ acting on functions belonging to $U(\Omega)$ are given by

$$\mathcal{D}(\mathcal{K}) = \int_{\Omega} (\mathcal{K} - \mathcal{K}') \alpha \, d\mathbf{x}' = 2 \int_{\Omega} \mathcal{K} \alpha \, d\mathbf{x}' \qquad \text{for } \mathbf{x} \in \widetilde{\Omega}$$

 and

$$\mathcal{N}(\mathcal{K}) = -\int_{\Omega} (\mathcal{K} - \mathcal{K}') \alpha \, d\mathbf{x}' = -2 \int_{\Omega} \mathcal{K} \alpha \, d\mathbf{x}' \qquad \text{for } \mathbf{x} \in \Omega \setminus \widetilde{\Omega}$$

respectively

• Define the operator ${\cal G}$ acting on functions belonging to $V(\Omega)$ by

$$\mathcal{G}(v) = (v' - v)\alpha \qquad \text{for } \mathbf{x}, \mathbf{x}' \in \Omega$$

• Combining the results of the previous two slides, we obtain

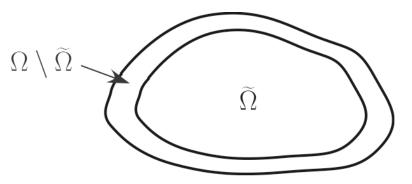
$$\int_{\widetilde{\Omega}} v \mathcal{D}(\mathcal{K}) \, d\mathbf{x} + \int_{\Omega} \int_{\Omega} \mathcal{G}(v) \mathcal{K} \, d\mathbf{x}' d\mathbf{x} = \int_{\Omega \setminus \widetilde{\Omega}} v \mathcal{N}(\mathcal{K}) \, d\mathbf{x}$$

- this is the nonlocal analog of the classical result

$$\int_{\Omega} v \nabla \cdot \mathbf{p} \, d\mathbf{x} + \int_{\Omega} \mathbf{p} \cdot \nabla v \, d\mathbf{x} = \int_{\partial \Omega} v \mathbf{p} \cdot \mathbf{n} \, dA$$

NONLINEAR, NONLOCAL BOUNDARY VALUE PROBLEMS

• It is useful to think of a subdivision of Ω along the lines of



• Let

$$V_0(\Omega) = \{ u \in V(\Omega) : v = 0 \text{ for } \mathbf{x} \in \Omega \setminus \widetilde{\Omega} \}$$

and let the mappings

$$b: \widetilde{\Omega} \times \Omega \to \mathbb{R}$$
$$h_d: \Omega \setminus \widetilde{\Omega} \to \mathbb{R}$$
$$h_n: (\Omega \setminus \widetilde{\Omega}) \times \Omega \to \mathbb{R}$$

be given

• Consider the variational problem

seek
$$u \in U(\Omega)$$
 such that
 $u = h_d$ for $\mathbf{x} \in \Omega \setminus \widetilde{\Omega}$
and
 $\int_{\Omega} \int_{\Omega} \mathcal{G}(v) \mathcal{K} \, d\mathbf{x}' d\mathbf{x} = \int_{\widetilde{\Omega}} v \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} \qquad \forall v \in V_0(\Omega)$

 using the nonlocal Gauss's theorem, this can be viewed as a weak formulation of the "boundary" value problem

$$\begin{aligned} -\mathcal{D}(\mathcal{K}) &= \int_{\Omega} b \, d\mathbf{x}' \quad \text{ for } \mathbf{x} \in \widetilde{\Omega}, \\ u &= h_d \quad \text{ for } \mathbf{x} \in \Omega \setminus \widetilde{\Omega} \end{aligned}$$

 the second equation is a "Dirichlet boundary" condition that is essential for the variational formulation • Next, assume that the compatibility condition

$$\int_{\widetilde{\Omega}} \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} + \int_{\Omega \setminus \widetilde{\Omega}} \int_{\Omega} h_n \, d\mathbf{x}' d\mathbf{x} = 0$$

holds and consider the variational problem

seek
$$u \in U(\Omega)$$
 such that

$$\int_{\Omega} \int_{\Omega} \mathcal{G}(v) \mathcal{K} \, d\mathbf{x}' d\mathbf{x}$$

$$= \int_{\widetilde{\Omega}} v \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} + \int_{\Omega \setminus \widetilde{\Omega}} v \int_{\Omega} h_n \, d\mathbf{x}' d\mathbf{x} \qquad \forall v \in V(\Omega) \setminus \mathbb{R}$$

 using the nonlocal Gauss's theorem, this can be viewed as a weak formulation of the "boundary" value problem

$$-\mathcal{D}(\mathcal{K}) = \int_{\Omega} b \, d\mathbf{x}' \quad \text{ for } \mathbf{x} \in \widetilde{\Omega}$$
$$\mathcal{N}(\mathcal{K}) = \int_{\Omega} h_n \, d\mathbf{x}' \quad \text{ for } \mathbf{x} \in \Omega \setminus \widetilde{\Omega}$$

 the second equation is a "Neumann boundary" condition that is natural for the variational formulation

LINEAR NONLOCAL GREEN'S IDENTITIES

• We specialize the nonlocal Gauss's theorem to the case of $U(\Omega) = V(\Omega)$ and to linear operators

• Let

$$\mathcal{K}(u, u'; \mathbf{x}, \mathbf{x}') = \beta \mathcal{G}(u) = (u' - u)\alpha\beta$$

where $\beta(\mathbf{x}, \mathbf{x}') \colon \Omega \times \Omega \to \mathbb{R}$ is a symmetric function and $u \in U(\Omega)$

• Then, the nonlocal Gauss's theorem results in the nonlocal Green's first identity

$$\int_{\widetilde{\Omega}} v \mathcal{D}\big(\beta \mathcal{G}(u)\big) \, d\mathbf{x} + \int_{\Omega} \int_{\Omega} \beta \mathcal{G}(v) \mathcal{G}(u) \, d\mathbf{x}' d\mathbf{x} = \int_{\Omega \setminus \widetilde{\Omega}} v \mathcal{N}\big(\beta \mathcal{G}(u)\big) \, d\mathbf{x}$$

• One then easily obtains the nonlocal Green's second identity

$$\begin{split} \int_{\widetilde{\Omega}} v \mathcal{D}(\beta \mathcal{G}(u)) \, d\mathbf{x} &- \int_{\widetilde{\Omega}} u \mathcal{D}(\beta \mathcal{G}(v)) \, d\mathbf{x} \\ &= \int_{\Omega \setminus \widetilde{\Omega}} \left(v \mathcal{N}(\beta \mathcal{G}(u)) - u \mathcal{N}(\beta \mathcal{G}(v)) \right) \, d\mathbf{x} \end{split}$$

• These are analogous to (generalizations) of the classical Green's identities

$$\int_{\Omega} v \Delta u \, d\mathbf{x} + \int_{\Omega} \nabla v \cdot \nabla u \, d\mathbf{x} = \int_{\partial \Omega} v \mathbf{n} \cdot \nabla u \, dA$$

 and

$$\int_{\Omega} v \Delta u \, d\mathbf{x} - \int_{\Omega} u \Delta v \, d\mathbf{x} = \int_{\partial \Omega} v \mathbf{n} \cdot \nabla u \, dA - \int_{\partial \Omega} u \mathbf{n} \cdot \nabla v \, dA$$

Linear, nonlocal Dirichlet and Neumann problems

• In the linear case, the first nonlocal variational problem reduces to

seek $u \in V(\Omega)$ such that $u = h_d$ for $\mathbf{x} \in \Omega \setminus \widetilde{\Omega}$ and $\int_{\Omega} \int_{\Omega} \beta \mathcal{G}(v) \mathcal{G}(u) \, d\mathbf{x}' d\mathbf{x} = \int_{\widetilde{\Omega}} v \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} \qquad \forall v \in V_0(\Omega)$

and the corresponding "Dirichlet boundary" value problem reduces to the linear problem

$$\begin{aligned} -\mathcal{D}(\beta \mathcal{G}(u)) &= \int_{\Omega} b \, d\mathbf{x}' \quad \text{ for } \mathbf{x} \in \widetilde{\Omega} \\ u &= h_d \quad \text{ for } \mathbf{x} \in \Omega \setminus \widetilde{\Omega} \end{aligned}$$

where again the second equation is a "Dirichlet boundary" condition that is essential for the variational formulation

• Similarly, assuming b and h_n satisfy the compatibility condition, the second nonlocal variational problem reduces to

seek
$$u \in V(\Omega)$$
 such that

$$\int_{\Omega} \int_{\Omega} \beta \mathcal{G}(v) \mathcal{G}(u) \, d\mathbf{x}' d\mathbf{x}$$

$$= \int_{\widetilde{\Omega}} v \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} + \int_{\Omega \setminus \widetilde{\Omega}} v \int_{\Omega} h_n \, d\mathbf{x}' d\mathbf{x} \qquad \forall v \in V(\Omega) \setminus \mathbb{R}$$

and the corresponding "Neumann boundary" value problem reduces to the linear problem

$$-\mathcal{D}(\beta \mathcal{G}(u)) = \int_{\Omega} b \, d\mathbf{x}' \quad \text{for } \mathbf{x} \in \widetilde{\Omega}$$
$$\mathcal{N}(\beta \mathcal{G}(u))\alpha = \int_{\Omega} h_n \, d\mathbf{x}' \quad \text{for } \mathbf{x} \in \Omega \setminus \widetilde{\Omega}$$

where again the second equation is a "Neumann boundary" condition that is natural for the variational formulation

 \bullet Substituting the definitions for ${\mathcal D}$ and ${\mathcal G}$ we have

$$\int_{\Omega} \int_{\Omega} \beta \mathcal{G}(v) \mathcal{G}(u) \, d\mathbf{x}' d\mathbf{x} = \int_{\Omega} \int_{\Omega} (v' - v) (u' - u) \alpha^2 \beta \, d\mathbf{x}' d\mathbf{x}$$

$$-\mathcal{D}(\beta \mathcal{G}(u)) = 2 \int_{\widetilde{\Omega}} (u' - u) \alpha^2 \beta \, d\mathbf{x}' \qquad \mathbf{x} \in \widetilde{\Omega}$$

$$\mathcal{N}(\beta \mathcal{G}(u)) = -2 \int_{\widetilde{\Omega}} (u' - u) \alpha^2 \beta \, d\mathbf{x}' \qquad \mathbf{x} \in \Omega \setminus \widetilde{\Omega}$$

The relation

$$\mathcal{K}(u, u'; \mathbf{x}, \mathbf{x}') = \beta \mathcal{G}(u)$$

is a "constitutive" relation

- To define a general form of the constitutive function β, we let
 γ(x, x') : Ω × Ω → ℝ denote a symmetric function
 K(x, x') : Ω × Ω → ℝ^{d×d} a symmetric positive definite tensor
 such that K_{ij}(x, x') = K_{ij}(x', x) for all i, j = 1,..., d
- Then, a general constitutive function β is given by

$$\beta = \gamma \left(\mathbf{x}' - \mathbf{x} \right) \cdot \mathbf{K} \cdot \left(\mathbf{x}' - \mathbf{x} \right)$$

Nonlocal Green's functions and a nonlocal Green's third identity

• For each y in Ω , define the nonlocal Green's function $g(\cdot; \mathbf{y}) : \Omega \to \mathbb{R}$ as the solution of

$$\mathcal{D}(\beta \mathcal{G}(g(\mathbf{x};\mathbf{y}))) = \delta(\mathbf{x} - \mathbf{y}) \qquad \text{for } \mathbf{x} \in \Omega$$

where $\delta(\cdot)$ denotes the Dirac delta function

• For each $y \in \Omega$, set $v(\cdot) = g(\cdot; \mathbf{y})$ in the second Green's identity so that we obtain the nonlocal Green's third identity

$$\int_{\widetilde{\Omega}} g \mathcal{D}(\beta \mathcal{G}(u)) \, d\mathbf{x} - u(\mathbf{y}) = \int_{\Omega \setminus \widetilde{\Omega}} \left(g \mathcal{N}(\beta \mathcal{G}(u)) - u \mathcal{N}(\beta \mathcal{G}(g)) \right) d\mathbf{x}$$

- this is analogous to a (generalization) of the classical Green's third identity

$$\int_{\Omega} g \Delta u \, d\mathbf{x} - u(\mathbf{y}) = \int_{\partial \Omega} (g\mathbf{n} \cdot \nabla u - u\mathbf{n} \cdot \nabla g) \, dA$$

- Using Fourier transforms, we have also identified fundamental solutions for the nonlocal operator $\mathcal{D}(\beta \mathcal{G}(\cdot))$
- Now, assume that, for each $\mathbf{y} \in \Omega$, the Green's function $g(\cdot, \mathbf{y})$ satisfies the homogeneous "Dirichlet boundary" condition $g(\mathbf{x}, \mathbf{y}) = 0$ for all $\mathbf{x} \in \Omega \setminus \widetilde{\Omega}$

- then we have

$$u(\mathbf{y}) = -\int_{\widetilde{\Omega}} g \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} + \int_{\Omega \setminus \widetilde{\Omega}} h_d \mathcal{N}(\beta \mathcal{G}(g)) \, d\mathbf{x} \qquad \text{for } \mathbf{y} \in \widetilde{\Omega}$$

is the solution of the "Dirichlet boundary" value problem

• If, instead, assume that, for each $\mathbf{y} \in \Omega$, the Green's function $g(\cdot, \mathbf{y})$ satisfies the homogeneous "Neumann boundary" condition $\mathcal{N}(\beta \mathcal{G}(g)) = 0$

- then we have

$$u(\mathbf{y}) = -\int_{\widetilde{\Omega}} g \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} - \int_{\Omega \setminus \widetilde{\Omega}} g \int_{\Omega} h_n \, d\mathbf{x}' d\mathbf{x} \qquad \text{for } \mathbf{y} \in \Omega$$

is the solution of the "Neumann boundary" value problem

• These are analogous to the classical formulas for solutions of boundary-value problems in terms of Green's functions

$$u(\mathbf{y}) = -\int_{\Omega} gb \, d\mathbf{x} + \int_{\partial\Omega} h_d \mathbf{n} \cdot \nabla g \, dA$$
$$u(\mathbf{y}) = -\int_{\Omega} gb \, d\mathbf{x} - \int_{\partial\Omega} gh_n \, dA$$

LOCAL SMOOTH LIMITS

- We connect the linear nonlocal "boundary" value problems to the classical Dirichlet and Neumann problems for second-order elliptic partial differential equations
- To do so, we make two assumptions
 - solutions of the nonlocal "boundary" value problems are smooth
 - operators are asymptotically local
- These assumptions are made only to make the connection to classical problems for PDEs
 - they are not required for the well posedness of the nonlocal "boundary" value problems

- In addition, the nonlocal "boundary" value problems admit solutions that are not solutions, even in the usual sense of weak solutions, of the PDEs
 - thus, one can view solutions of the nonlocal "boundary" value problems as further generalizations of solutions of the PDEs
 - they are nonlocal
 - they lack the smoothness needed to be standard weak solutions of the PDEs
- Assume that ${f K}$, lpha, and γ are radial functions, e.g.,

$$\mathbf{K}_{ij}(\mathbf{x}, \mathbf{x}') = \mathbf{K}_{ij}(\mathbf{x}' - \mathbf{x}), \qquad i, j = 1, \dots, d$$

• Assume that the radial function $\gamma(\mathbf{x}' - \mathbf{x})$ satisfies, for a specified $\varepsilon > 0$

$$\gamma_{\varepsilon}(\mathbf{x}' - \mathbf{x}) = 0 \qquad |\mathbf{x}' - \mathbf{x}| \ge \varepsilon$$

• Then, the "constitutive" function β_{ε} is the radial function given by

$$\beta_{\varepsilon} = \gamma_{\varepsilon} \left(\mathbf{x}' - \mathbf{x} \right) \cdot \mathbf{K} \cdot \left(\mathbf{x}' - \mathbf{x} \right)$$

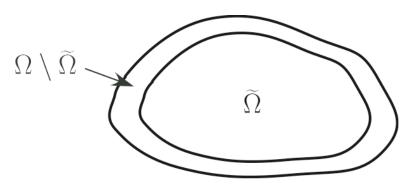
• Similarly, we assume that the data b and h_n are localized, i.e.,

$$b = b_{arepsilon}$$
 and $h_n = h_{n,arepsilon}$

where $b_{arepsilon}(\cdot,\mathbf{x}')$ and $h_{n,arepsilon}(\cdot,\mathbf{x}')$ vanish outside of $B_{arepsilon}(\cdot)$ with

 $B_{arepsilon}(\mathbf{x})$ denoting the ball of radius arepsilon centered at \mathbf{x}

• Referring to the sketch



we assume that the thickness of the "boundary" domain $\Omega\setminus\widetilde\Omega$ if of $O(\varepsilon)$ so that

$$|\Omega| - |\widetilde{\Omega}| = O(\varepsilon)$$

where $|\cdot|$ denotes the volume

• For $\mathbf{x} \in \Omega$, let

 $\Omega_{\varepsilon}(\mathbf{x}) = B_{\varepsilon}(\mathbf{x}) \cap \Omega$

• We further assume that

test and trial functions $u \in U(\Omega)$ and $v \in U(\Omega)$ are smooth

- Note that no assumptions are made about the smoothness of the functions α , γ_{ε} , and the elements of the matrix function K
- We do assume that all integrals encountered are well defined

• We then have that

$$\mathcal{G}(v) = (v' - v)\alpha = ((\mathbf{x}' - \mathbf{x}) \cdot \nabla v(\mathbf{x}) + O(\varepsilon^2))\alpha \qquad \forall \, \mathbf{x}' \in \Omega_{\varepsilon}(\mathbf{x}),$$

• It can then be shown that

$$\int_{\Omega} \int_{\Omega} \beta_{\varepsilon} \mathcal{G}(v) \mathcal{G}(u) \, d\mathbf{x}' d\mathbf{x} = \int_{\Omega} \nabla v \cdot \left(\mathbf{D}_{\varepsilon} \nabla u \right) d\mathbf{x} + \text{h.o.t.}$$

where the second-order tensor $\mathbf{D}_{\boldsymbol{\varepsilon}}$ is given by

$$\mathbf{D}_{\varepsilon}(\mathbf{x}) = \int_{\Omega_{\varepsilon}(x)} (\mathbf{x}' - \mathbf{x}) \otimes (\mathbf{x}' - \mathbf{x}) \mathbf{K} (\mathbf{x}' - \mathbf{x}) \otimes (\mathbf{x}' - \mathbf{x}) \gamma_{\varepsilon} \alpha^2 d\mathbf{x}'$$

• Using Noll's results, it can be shown that

$$\mathcal{D}ig(eta_arepsilon\mathcal{G}(u)ig) =
abla \cdot ig(\mathbf{D}_arepsilon \cdot
abla uig) + h.o.t.$$

 $\quad \text{and} \quad$

$$\int_{\partial\Omega} v \left(\mathbf{D}_{\varepsilon} \cdot \nabla u \right) \cdot \mathbf{n} \, dA = \int_{\Omega \setminus \widetilde{\Omega}} v \mathcal{N} \left(\beta_{\varepsilon} \mathcal{G}(u) \right) d\mathbf{x} + \text{ h.o.t.}$$

• Let

$$\mathbf{D} = \lim_{\varepsilon \to 0} \mathbf{D}_{\varepsilon}$$

- note that for D_{ε} to not vanish as $\varepsilon \to 0$, we must have that the integrand in its definition is singular at $\mathbf{x}' = \mathbf{x}$

$$\lim_{\varepsilon \to 0} \int_{\Omega} \int_{\Omega} \beta_{\varepsilon} \mathcal{G}(v) \mathcal{G}(u) \, d\mathbf{x}' d\mathbf{x} = \int_{\Omega} \nabla v \cdot \mathbf{D} \cdot \nabla u \, d\mathbf{x}$$

$$\lim_{\varepsilon \to 0} \mathcal{D} \big(\beta_{\varepsilon} \mathcal{G}(u) \big) = \nabla \cdot \big(\mathbf{D} \cdot \nabla u \big)$$

$$\lim_{\varepsilon \to 0} \int_{\Omega \setminus \widetilde{\Omega}} v \mathcal{N} \big(\beta_{\varepsilon} \mathcal{G}(u) \big) \, d\mathbf{x} = \int_{\partial \Omega} v \big(\mathbf{D} \cdot \nabla u \big) \cdot \mathbf{n} \, dA$$

• These results easily imply that the nonlocal Green's first and second identities reduce to the corresponding classical Green's identities

• Moreover, the nonlocal "Dirichlet" variational problem reduces to

$$\begin{cases} \int_{\Omega} \nabla v \cdot \mathbf{D} \cdot \nabla u = \int_{\Omega} v \widehat{b} \, d\mathbf{x} & \text{ in } \Omega \\ u = h_d & \text{ on } \partial \Omega \end{cases}$$

where

$$\widehat{b} = \lim_{\varepsilon \to 0} \int_{\Omega_{\varepsilon}(x)} b_{\varepsilon} \, d\mathbf{x}'$$

which, of course, corresponds to the classical Dirichlet problem

$$\begin{cases} -\nabla \cdot (\mathbf{D} \cdot \nabla u) = \widehat{b} & \text{ in } \Omega \\ u = h_d & \text{ on } \partial \Omega. \end{cases}$$

Similarly, the nonlocal "Neumann" variational principle reduces to

$$\int_{\Omega} \nabla v \cdot \mathbf{D} \cdot \nabla u = \int_{\Omega} v \widehat{b} \, d\mathbf{x} + \int_{\partial \Omega} v \widehat{h}_n \, dA \quad \text{ in } \Omega$$

where

$$\widehat{h}_n = \lim_{\varepsilon \to 0} \int_{\Omega_\varepsilon(x)} h_{n,\varepsilon} \, d\mathbf{x}'$$

which, of course, corresponds to the classical Neumann problem

$$\begin{cases} -\nabla \cdot (\mathbf{D} \cdot \nabla u) = \widehat{b} & \text{in } \Omega\\ (\mathbf{D} \cdot \nabla u) \cdot \mathbf{n} = \widehat{h}_n & \text{on } \partial \Omega \end{cases}$$

WELL POSEDENESS OF NONLOCAL LINEAR BOUNDARY-VALUE PROBLEMS

- We restrict attention to the case $U(\Omega) = V(\Omega)$ and consider the linear nonlocal variational problems
 - the "Dirichlet" problem has the form

$$\int_{\Omega} \int_{\Omega} (v' - v)(u' - u)\alpha^2 \beta \, d\mathbf{x}' d\mathbf{x} = \int_{\widetilde{\Omega}} v \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} \qquad \forall \, v \in V_0(\Omega)$$

where we assume a homogeneous "boundary" condition so that $u \in V_0(\Omega)$

- the "Neumann" problem has the form

W

$$\begin{split} &\int_{\Omega} \int_{\Omega} (v' - v)(u' - u) \alpha^2 \beta \, d\mathbf{x}' d\mathbf{x} \\ &= \int_{\widetilde{\Omega}} v \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} + \int_{\Omega \setminus \widetilde{\Omega}} v \int_{\Omega} h_n \, d\mathbf{x}' d\mathbf{x} \qquad \forall \, v \in V(\Omega) \setminus \mathbb{R} \\ &\text{here } u \in V(\Omega) \setminus \mathbb{R} \end{split}$$

Bilinear forms, norms, and inner products

• Define the symmetric bilinear form

$$B(u,v) = \int_{\Omega} \int_{\Omega} (v'-v)(u'-u)\beta\alpha^2 \, d\mathbf{x}' d\mathbf{x} \qquad \forall \, u,v \in V(\Omega)$$

- ssume that $\beta(\mathbf{x}, \mathbf{x}') > 0$ for all $\mathbf{x}, \mathbf{x}' \in \Omega$

- then $B(u, u) \ge 0$

• Let

$$((u,v)) = B(u,v) \qquad |||u||| = (B(u,u))^{1/2}$$

 $V(\Omega) = \{ u \ : \ |||u||| < \infty \}$

• We show that $||| \cdot |||$ and $((\cdot, \cdot))$ define a norm and an inner product, respectively, on both $V_0(\Omega)$ and $V(\Omega) \setminus \mathbb{R}$

– note that $|||\cdot|||$ only defines a semi-norm on $V(\Omega)$

• Let $\Omega \setminus \widetilde{\Omega} \subset \Omega$ have finite measure and let $u \in V_0(\Omega)$ so that

$$u(\mathbf{x}) = 0 \quad \forall \, \mathbf{x} \in \Omega \setminus \widetilde{\Omega}$$

- then, it is easily shown that

$$B(u,u) \geq \int_{\widetilde{\Omega}} u^2 \left(\int_{\Omega \setminus \widetilde{\Omega}} \beta \alpha^2 \, d\mathbf{x}' \right) d\mathbf{x}$$

– note that

$$0 < \int_{\Omega \setminus \widetilde{\Omega}} \beta \alpha^2 \, d\mathbf{x}' \qquad \forall \, \mathbf{x} \in \widetilde{\Omega}$$

— then

$$B(u,u)=0 \qquad \Longrightarrow \qquad u=0 \quad \forall \, \mathbf{x} \in \widetilde{\Omega}$$

– but, u=0 in $\Omega\setminus\widetilde\Omega$ as well so that

$$B(u, u) = 0 \qquad \Longrightarrow \qquad u = 0 \quad \forall \mathbf{x} \in \Omega$$

- thus, we have that $|||\cdot|||$ defines a norm and $((\cdot,\cdot))$ defines and inner product on $V_0(\Omega)\subset V(\Omega)$
- Note that we have assumed that

$$\int_{\mathbf{\Omega}\setminus\widetilde{\mathbf{\Omega}}}\beta\alpha^2\,d\mathbf{x}'<\infty\qquad\forall\,\mathbf{x}\in\widetilde{\mathbf{\Omega}}$$

• Also, note that

i.e.,

$$B(u, u) = 0$$
 only if $(u' - u)^2 \beta \alpha^2 = 0 \quad \forall \mathbf{x}, \mathbf{x}' \in \Omega$

only if
$$u = \text{constant} \quad \forall \mathbf{x} \in \Omega$$

– thus, we again conclude that $|||\cdot|||$ defines a norm and $((\cdot,\cdot))$ defines and inner product on $V(\Omega)\setminus\mathbb{R}\subset V(\Omega)$

• Let $S(\Omega)$ denote the functions $u \in V(\Omega)$ that satisfy

$$-\mathcal{D}(\mathcal{G}(u)) = \int_{\Omega} (u' - u)\beta\alpha^2 \, d\mathbf{x}' = 0 \qquad \forall \, \mathbf{x} \in \widetilde{\Omega}.$$

- then, from the nonlocal Green's first identity, we have that

$$\int_{\Omega} \int_{\Omega} \mathcal{G}(v) \mathcal{G}(u) \, d\mathbf{x}' d\mathbf{x} = 0 \qquad \forall \, u \in S, \ v \in V_0(\Omega)$$

so that

$$B(u,v) = ((u,v)) = \int_{\Omega} \int_{\Omega} (v'-v)(u'-u)\beta\alpha^2 \, d\mathbf{x}' d\mathbf{x}$$
$$= \int_{\Omega} \int_{\Omega} \mathcal{G}(v)\mathcal{G}(u) \, d\mathbf{x}' d\mathbf{x} = 0 \qquad \forall \, u \in S, \ v \in V_0(\Omega)$$

• Thus, we conclude that

$V(\Omega) = V_0(\Omega) \oplus S(\Omega)$

- any function in $V(\Omega)$ can be written as a sum of two functions that are orthogonal with respect to the inner product $((\cdot, \cdot))$

- the first a function that vanishes on $\Omega \setminus \widetilde{\Omega}$
- the second a "harmonic" function, i.e., a function $u \in S(\Omega)$
- Of course, this is entirely analogous to the decomposition of the Sobolev space $H^1(\Omega)$ into functions belonging to $H^1_0(\Omega)$ and harmonic functions

Nonlocal dual and nonlocal trace spaces

• Let

$$|||b|||_* = \sup_{v \in V_0(\Omega)} \frac{\int_{\widetilde{\Omega}} v(\mathbf{x}) \int_{\Omega} b(\mathbf{x}, \mathbf{x}') \, d\mathbf{x}' d\mathbf{x}}{|||v|||}$$

• Define the "dual" space

$$V_0^*(\Omega) = \{b : |||b|||_* < \infty\}$$

• Define the "trace" space

$$V_d = \{\chi_{\Omega \setminus \widetilde{\Omega}} u : u \in V(\Omega)\}$$

where $\chi_{(\cdot)}$ denotes the characteristic function, along with the norm

$$|||u|||_d = |||\chi_{\Omega \setminus \widetilde{\Omega}} u|||$$

• Finally, define the norm

$$|||h|||_{n} = \sup_{v \in V_{d}} \frac{\int_{\Omega \setminus \widetilde{\Omega}} v(\mathbf{x}) \int_{\Omega} h(\mathbf{x}, \mathbf{x}') \, d\mathbf{x}' d\mathbf{x}}{|||v|||_{d}}$$

and the second "trace" space

$$V_n=\{h \hspace{.1in}:\hspace{.1in} |||h|||_n<\infty\}$$

Well-posedness of variational problems

• The linear nonlocal variational problems take the form of the homogeneous "Dirichlet" problem

given
$$b \in V_0^*$$
 and $h_d \in V_d$, seek $u \in V_0(\Omega)$ such that
$$B(u,v) = F_d(v) \qquad \forall v \in V_0(\Omega)$$

and the "Neumann" problem

$$\begin{cases} \text{given } b \in V^* \text{ and } h_n \in V_n \text{, seek } u \in V(\Omega) \setminus \mathbb{R} \text{ such that} \\ B(u, v) = F_n(v) \qquad \forall v \in V(\Omega) \setminus \mathbb{R} \end{cases}$$

• The linear functionals $F_d(\cdot)$ and $F_n(\cdot)$ are defined by

$$F_d(v) = \int_{\widetilde{\Omega}} v \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} \qquad \forall \, v \in V_0(\Omega)$$

and

$$F_n(v) = \int_{\widetilde{\Omega}} v \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} + \int_{\Omega \setminus \widetilde{\Omega}} v \int_{\Omega} h_n \, d\mathbf{x}' d\mathbf{x} \qquad \forall \, v \in V(\Omega) \setminus \mathbb{R}$$

• Because $B(\cdot, \cdot)$ defines an inner product on $V_0(\Omega)$ and $V(\Omega) \setminus \mathbb{R}$, it is continuous and coercive on those spaces

• Then, if we assume that the data is such that the functionals $F_d(\cdot)$ and $F_n(\cdot)$ are continuous, then, the Lax-Milgram theorem can be applied to show that both the nonlocal Dirichlet and Neumann problems have unique solutions and, moreover, those solutions satisfy

 $|||u||| \le |||b|||_*$ and $|||u||| \le |||b|||_* + |||h_n|||_n$

GENERAL "SECOND-ORDER ELLIPTIC" PROBLEMS

- The nonlocal variational problems and the corresponding nonlocal "boundary" value problems mimic the classical setting described by Poisson type equations
- Nonlocal analogs of more general second-order elliptic boundary value problems can also be defined

• For example, consider the nonlocal variational principle

$$\begin{cases} \text{seek } u \in V(\Omega) \text{ such that} \\ u = h_d \quad \text{for } \mathbf{x} \in \Omega \setminus \widetilde{\Omega} \\ \text{and} \\ \int_{\Omega} \int_{\Omega} \beta \mathcal{G}(v) \mathcal{G}(u) \, d\mathbf{x}' d\mathbf{x} + \int_{\Omega} v \int_{\Omega} \sigma \mathcal{G}(u) \, d\mathbf{x}' d\mathbf{x} \\ + \int_{\Omega} v \int_{\Omega} \omega(u' + u) \, d\mathbf{x}' d\mathbf{x} = \int_{\widetilde{\Omega}} v \int_{\Omega} b \, d\mathbf{x}' d\mathbf{x} \quad \forall v \in V_0(\Omega) \end{cases}$$

where

 $\sigma({\bf x},{\bf x}')$ is a skew-symmetric function $\omega({\bf x},{\bf x}') \text{ is a symmetric function}$

• The corresponding nonlocal "Dirichlet" boundary-value problem is given by

$$\begin{cases} -\mathcal{D}(\beta \mathcal{G}(u)) + \sigma \mathcal{G}(u) + \omega(u'+u) = \int_{\Omega} b \, d\mathbf{x}' & \text{ for } \mathbf{x} \in \widetilde{\Omega} \\ u = h_d & \text{ for } \mathbf{x} \in \Omega \setminus \widetilde{\Omega} \end{cases}$$

General problems may be defined by letting

 $\begin{aligned} \mathbf{a}(\mathbf{x},\mathbf{x}') \text{ be a symmetric vector-valued function} \\ \xi(\mathbf{x},\mathbf{x}') \text{, } \eta(\mathbf{x},\mathbf{x}') \text{, and } r(\mathbf{x},\mathbf{x}') \text{ be symmetric functions} \end{aligned}$

and then setting

$$\beta = ((\mathbf{x}' - \mathbf{x}) \cdot \mathbf{K} \cdot (\mathbf{x}' - \mathbf{x}))$$
$$\sigma = \xi \mathbf{a} \cdot (\mathbf{x}' - \mathbf{x})$$
$$\omega = \eta r$$

• For smooth solutions and asymptotically local operators,

– let ${\bf D}$ and \widehat{b} be as before

- analogously, let

$$\mathbf{w}(\mathbf{x}) = \lim_{\varepsilon \to 0} \int_{\Omega_{\varepsilon}(x)} (\mathbf{x}' - \mathbf{x}) \otimes (\mathbf{x}' - \mathbf{x}) \cdot \mathbf{a} \, \xi_{\varepsilon} \alpha \, d\mathbf{x}'$$

and

$$c(\mathbf{x}) = \lim_{\varepsilon \to 0} \int_{\Omega_{\varepsilon}(x)} r \eta_{\varepsilon} \, d\mathbf{x}'$$

• Then, the nonlocal "boundary-value" problem reduces to the classical linear convection-diffusion-reaction problem

$$-\nabla \cdot (\mathbf{D} \cdot \nabla u) + \mathbf{w} \cdot \nabla u + cu = \widehat{b}$$

along with a Dirichlet boundary condition

CURRENT WORK

- Develop functional analytic characterizations of the solution, trace, and data spaces used
- Develop the equivalent multidomain formulations for the nonlocal boundary-value problems and applying them to "interface" problems
- Develop and analyze finite element discretization methods, including discontinuous Galerkin methods, for the nonlocal variational problems
- Extend the nonlocal vector calculus to vector-valued functions and develop nonlocal variational problems and the corresponding nonlocal "boundary" value problems for vector-valued functions
 - of particular interest is the application of the nonlocal vector calculus to the peridynamic model for materials