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e MOTIVATION

o analysis and numerical analysis of peridynamic model for materials

— characterization of “boundary” conditions
— well posedeness
— characterization of solution and data spaces

— finite element, e.g., discontinuous Galerkin, discretizations

e IN THIS TALK

o we treat scalar-valued problems

— extension to vector case is (formally) straightforward
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A NONLOCAL GAUSS’S THEOREM

e () C RY

o Let p(x,x’) : Q) x 2 — R denote a skew-symmetric function

= p(x,x) = —p(x, %)

e One easily sees that

/A/Ap(x,xl)dx’dX:O VQCQ
QJQ

o Let
—a(x,x') : 2 x 2 — R denote a symmetric function

= a(x,x) = a(x,x’)

— f(x,x") : Q x 2 — R denote a skew-symmetric function

= f(X/v X> — _f<X7X,>



o Let © C ) such that both  and \ (2 have finite measure

— then

[ [ rxxiatexdxax = - | . [t x) i

— the right-hand side corresponds to a nonlocal “flux”



o Let D denote the operator mapping functions f(-, ) defined over () x ) into
functions defined over () given by

(Df)(x) = 2/Qf(x, x)a(x', x) dx’
:/Q(f(xjx’)—f(x’,x))a(x’,x)dx’ for x € Q)

o Similarly, let N denote the operator mapping functions f(+,-) defined over
(£2\ ©) x €2 into functions defined over () \ {2 given by

Pix) = =2 [ flx.x)a(x,x)dx

/Q (x,x") — f(X',x))a(x, x) dX’ for x € Q\



e Then, we have the nonlocal Gauss's theorem

e This result is analogous to the classical Gauss's theorem

— thus, we have a derived a “nonlocal Gauss's theorem” that is analogous to
the classical Gauss's theorem

— amazingly, the two theorems have a much more direct relation



Relation to the classical Gauss’s theorem

e We apply two remarkable results due to Walter Noll

W. NouLL, Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen
Mechanik; Indiana Univ. Math. J. 4 1955, 627—646. Originally published in J. Rational Mech. Anal.

W. NoLL, Derivation of the fundamental equations of continuum thermodynamics from statistical me-
chanics; Translation with corrections by R. Lehoucq and O. A. von Lilienfeld, to appear in J. Elasticity,

2009

o Let the vector field q: 2 — RY be defined by

q(x) = — /Q(X’ — x)p(x,x" — x) dx’

— the function ¢(-, -) is given by, with z = x’ — x,

p(x,2z) = /0 f(x+ Az, x — (1= N)z)a(x+ Az, x — (1 — \)z) d)



e Lemma | in the Noll paper implies

V-q:/Q(f(X,X/)—f(X/,X))Oé<X,X/)dX/ for x €

— using the definition of the operator D(+), we then have

V.-q=Df for x € Q



e Lemma Il in the Noll paper implies

/ q(x) - ndA = 2/ f(x,x"a(x,x') dx'dx
o0 QJO\Q

— it is a simple matter to show that, due to the skew-symmetry of f(-,-) and
symmetry of (-, -),

/ f(x,x)a(x,x') dx'dx = —/ /f(X,X')oz(X, x') dx'dx
QJO\Q O\Q JQ

so that

/a?2 q(x) -ndA = —2 /Q\Q/Qf<x’ Jo(x, ') dx'dx

— using the definition of the operator N(-), we then have

/Nq(x)-ndA: CN(f)dx
o0 O\Q



e By substituting the results in the last two slides into the nonlocal Gauss's
theorem, we have that the vector-valued function q satisfies

/NV-qu:/Nn-qu
Q 09

i.e., the classical, local Gauss's theorem for the vector function q(-)

e Thus, we have shown that
the nonlocal Gauss's theorem for the
nonlocal scalar-valued function f(-,-)
is exactly equivalent to the
classical Gauss's theorem for the

local vector-valued function q(-) derived from f(, ")



— i.e., we have that if

q(x):—/Qz/O f(x+Xz,x— (1= Nz)a(x+AIz,x — (1 — \)z) d\dz

then

_ _




An application of the nonlocal Gauss’s theorem

e In the sequel, we frequently let

U = u(X) u = u(x') v = v(X) v = v(x')

f=f(x,x) ff=Ffxx)=—f, a = a(x,x') o =a(x',x) =«

o Let U(2) and V() denote Banach spaces of scalar-valued functions defined
over {)

o Define a skew-symmetric, nonlinear operator K (u(x), u(x); x,x’) on U(£2) X
U(€) x 2 x €

= K=Kuv;x,x)=-K{, ux' x)=-K



e Then, for u € U(Q)) and v € V(2), set

f=@w+K
so that, because ' = —K

f=w+)K=0 -0v)L+20K =v(K - K')+ (v —v)K

e Substituting into

/N/fozdx'dX:—/N/fozdx’dx
aJo o\QJa

it can be shown that

ﬁ/U(K—K/>&dX,dX+//(U/—U>ICOZCZX,CZX: —2 ~/vlCozalX’dx
QJo QJo o\ Jo



e The composite operators D(K) and N (K) acting on functions belonging to
U(€)) are given by

D(K) :/(IC—IC’)ode’:2/ICode’ for x €
Q Q
and
N(/C)z—/(/C—/C’)adX’:—Q//Cadx’ for x € )\
Q Q

respectively

e Define the operator G acting on functions belonging to V(€)) by

Gw)=0W —v)a forx,x' €0



e Combining the results of the previous two slides, we obtain

— this is the nonlocal analog of the classical result




NONLINEAR, NONLOCAL BOUNDARY VALUE PROBLEMS

e It is useful to think of a subdivision of {2 along the lines of

0\ O

o Let
Vo) ={ueV(Q) : v=0forxeQ\Q}
and let the mappings N
b: AxN—NR
ha: Q\Q— R
h: (Q\Q) x Q2 —R

be given



e Consider the variational problem

seek u € U(S)) such that
u=nhg forxeQ\Q

and
//Q(U)de’dx:/Nv/bdx’dx Vo e Vh(Q)
0Jo a Jo

— using the nonlocal Gauss's theorem, this can be viewed as a weak formu-
lation of the “boundary” value problem

—D(K) = / bdx'  for x €,
Q ~
u = hy forx € Q\ Q

— the second equation is a “Dirichlet boundary” condition that is essential
for the variational formulation



e Next, assume that the compatibility condition

/~/bdx’dx+/ ~/hndX/dX=O
aJo o\ Jo

holds and consider the variational problem

seek u € U(SQ) such that

//g K dx'dx
:/Nv/bdx'dX%—/ ~U/hndX/dX VoeV(Q)\R
a Jo 0O\Q  Jo

— using the nonlocal Gauss's theorem, this can be viewed as a weak formu-
lation of the “boundary” value problem

—D(IC):/bdx’ for x € Q)
Q

N(/C)z/hndx’ for x € O\ Q)
0

— the second equation is a “Neumann boundary” condition that is natural
for the variational formulation



LINEAR NONLOCAL GREEN'’S IDENTITIES

e We specialize the nonlocal Gauss's theorem to the case of U()) = V(£2) and
to linear operators

o Let
K(u,u';x,x") = G (u) = (v —u)af3

where G(x,x’): Q x 0 — R is a symmetric function and u € U(2)

e Then, the nonlocal Gauss's theorem results in the

nonlocal Green's first identity




e One then easily obtains the nonlocal Green's second identity

e These are analogous to (generalizations) of the classical Green's identities

and




Linear, nonlocal Dirichlet and Neumann problems

e In the linear case, the first nonlocal variational problem reduces to

seek u € V(1) such that
u—hd for x € 2\

//ﬁg dxdx—/ /bdx’dx Vo e Vp(Q)

and the corresponding “Dirichlet boundary” value problem reduces to the
linear problem

—D(3G(u)) = / bdx'  forx €
Q ~
u = hy for x € 2\ Q

where again the second equation is a “Dirichlet boundary” condition that is
essential for the variational formulation



e Similarly, assuming b and h,, satisfy the compatibility condition, the second
nonlocal variational problem reduces to

seek u € V(€)) such that

//w u) dx'dx
:[v/bdx’dx+/ ~fu/hnalx’ab( Voe V(Q)\R
a Jo o\Q  Jo

and the corresponding “Neumann boundary” value problem reduces to the
linear problem

—D(BG(u)) = / bdx’ for x € )
0

N(BG(u))a = / hpdx'  forx € Q\Q
0

where again the second equation is a “Neumann boundary” condition that is
natural for the variational formulation



e Substituting the definitions for D and G we have

/Q /Q BG(v)G(u) dx'dx = /Q /Q W ) — )G ddx

~

—D(6G(u)) =2 /~(u' —u)o’Bdx  x€Q

Q

(W —u)a?Bdx’  xeQ\Q

Q

N(3G(w) = -2 [



e The relation
K(u, u';x,x") = BG(u)

Is a ‘constitutive’ relation

e To define a general form of the constitutive function 3, we let
v(x,x’) : 2 x 2 — R denote a symmetric function

K(x,x') : Q x Q — R a3 symmetric positive definite tensor
such that K;;(x,x') = K;;(x',x) forall 7,7 =1,...,d

e Then, a general constitutive function (3 is given by

=~y —-x)- K- (x'—x)



Nonlocal Green’s functions and a nonlocal Green’s third identity

e For each y in €, define the nonlocal Green's function g(-;y) : €2 — R as the
solution of

D(pG(9(x;y))) =d(x—y) forxel

where 0(-) denotes the Dirac delta function

e For each y € (), set v(-) = g(-;y) in the second Green's identity so that we
obtain the nonlocal Green's third identity




— this is analogous to a (generalization) of the classical Green's third identity

/gAudx—u(y):/ (gn - Vu —un-Vg)dA
0 o0

e Using Fourier transforms, we have also identified fundamental solutions for
the nonlocal operator D(5G(-))

e Now, assume that, for each y € 2, the Green's function ¢g(-,y) satisfies the
homogeneous “Dirichlet boundary” condition g(x,y) =0 for all x € Q2 \

— then we have

u(y):—/Ng/bdx’der/ haN(BG(g))dx  for y € Q
a Ja Q\Q

is the solution of the " Dirichlet boundary” value problem



e If, instead, assume that, for each y € (2, the Green's function g(-,y) satisfies
the homogeneous “Neumann boundary” condition N (5G(g)) = 0

— then we have

u(y):—/Ng/bdx’dX—/ Ng/hndx’dx for y € O
o Ja o0 Jao

is the solution of the “Neumann boundary” value problem

e These are analogous to the classical formulas for solutions of boundary-value
problems in terms of Green'’s functions

u(y):—/gbdx+/ han-VgdA
Q 00

u(y):—/gbdx—/ gh,, dA
Q o9



LOCAL SMOOTH LIMITS

e We connect the linear nonlocal “boundary” value problems to the classical
Dirichlet and Neumann problems for second-order elliptic partial differential
equations

e To do so, we make two assumptions

— solutions of the nonlocal “boundary” value problems are smooth

— operators are asymptotically local

e These assumptions are made only to make the connection to classical problems
for PDEs

— they are not required for the well posedness of the nonlocal “boundary”
value problems



e In addition, the nonlocal “boundary” value problems admit solutions that are
not solutions, even in the usual sense of weak solutions, of the PDEs

— thus, one can view solutions of the nonlocal “boundary” value problems as
further generalizations of solutions of the PDEs

- they are nonlocal

- they lack the smoothness needed to be
standard weak solutions of the PDEs

e Assume that K, «, and ~y are radial functions, e.g.,

KZ'](X,X/) :I<Z']'<X/—X)7 Z,] = 1,...,d

e Assume that the radial function (x’ — x) satisfies, for a specified ¢ > 0

1(x'—=x)=0 |x —x|>¢



e Then, the “constitutive” function (3. is the radial function given by

B.=7x —x) - K- (x' —x)

e Similarly, we assume that the data b and h,, are localized, i.e.,

b=>0. and by, = Iy, e

where b.(-,x") and h,, (-, X’) vanish outside of B.(-) with

B_.(x) denoting the ball of radius € centered at x



e Referring to the sketch

0\ Q

we assume that the thickness of the “boundary” domain 2\ © if of O(¢) so
that N
Q2] = 12| = O(e)

where | - | denotes the volume

o For x € (), let



e We further assume that

test and trial functions u € U(f2) and v € U(2) are smooth

e Note that no assumptions are made about the smoothness of the functions
«, Y., and the elements of the matrix function K

e We do assume that all integrals encountered are well defined



e We then have that

G(v) = (v —v)a = ((X’ —x) - Vou(x) + 0(52))a Vx' e Q.(x),

e It can then be shown that

//ﬁs dX/dX—/V’U DVu)dx+hot

where the second-order tensor D. is given by

D.(x) = / X —x)® % —x) K —x)® (x — x)y.0% dx’
Qe (x)



e Using Noll's results, it can be shown that

D(B.G(u)) = V- (D, Vu) + ho.t.

and
/ v(D. - Vu) -ndA = / _oN(B:G(u)) dx + h.o.t.
o0 2\
o Let
D = hl’l’(l) D.

— note that for D, to not vanish as € — 0, we must have that the integrand
in its definition is singular at X’ = x



e Then

hm//ﬁgg dx’dx—/Vv D - Vudx

lim D(B:G(u)) = V- (D - Vu)

lim /Q\Q oN (B-G(u)) dx = / v(D - Vu) -ndA

e—0 o0

e These results easily imply that the nonlocal Green's first and second identities
reduce to the corresponding classical Green’s identities



e Moreover, the nonlocal “Dirichlet” variational problem reduces to

/Vv-D-Vu:/v/b\dx in €
0 0
uw=nhyg on 0f)

where

b= lim / b. dx’
€—>O Qg(x)

which, of course, corresponds to the classical Dirichlet problem

V- (D-Vu)=b inQ
uw=nhg on Of).



Similarly, the nonlocal “Neumann” variational principle reduces to

/VU‘D'VUZ/U/I;dX—F/ v/f;ndA in {2
Q Q o0

where

h, = lim / h.e dx!
e—0 Qg(x)

which, of course, corresponds to the classical Neumann problem

V- (D-Vu)=b inQ
(D-Vu)-n:hn on 0f)



WELL POSEDENESS OF NONLOCAL
LINEAR BOUNDARY-VALUE PROBLEMS

e We restrict attention to the case U({2) = V(1) and consider the linear
nonlocal variational problems

— the “Dirichlet” problem has the form

/Q/Q(v' —0)(u — uw)afBdx'dx = /ﬁv/ﬁbdx’dx Vo e V()

where we assume a homogeneous “boundary” condition so that u € Vj(£2)

— the “Neumann” problem has the form

// (v —v)(u' — u)a?B dx'dx
/ /bdxdx—l—/ /h dx'dx ~ Vo e V(Q\R
O\Q

where u € V(§2



Bilinear forms, norms, and inner products

e Define the symmetric bilinear form

B(u,v) = /Q/Q(v' —v)(u —u)fadx'dx  Vu,veV(Q)

— ssume that 3(x,x’) > 0 for all x,x" € Q

— then B(u,u) >0

o Let
((u,v)) = B(u,v) |ull] = (B(u,u))1/2

V(&) ={u : |[lull] < oo}



e We show that ||| - ||| and ((-,-)) define a norm and an inner product, respec-

)
tively, on both V{(€2) and V(Q) \ R

— note that ||| - ||| only defines a semi-norm on V' ({)

o Let 2\ © C () have finite measure and let u € V(Q) so that

ux)=0 VxeQ\Q

— then, it is easily shown that

B(u,u) > /NuQ ( Ba? dx’) dx
Q O\

— note that

0< Batdx  VxeQ
O\Q



— then N
B(u,u) =0 — u=0 Vxel

—but, u=0in Q\ Q as well so that

B(u,u) =0 — u=0 Vxe

— thus, we have that ||| - ||| defines a norm and ((-,-)) defines and inner
product on V4(Q2) C V(Q)

e Note that we have assumed that

Badx’ < oo Vx € Q)
O\



e Also, note that
B(u,u) =0 onlyif (v —u)?*Ba’=0 Vx,x €
only if wu = constant Vx € ()

— thus, we again conclude that ||| - ||| defines a norm and ((-,-)) defines and
inner product on V() \ R C V(§2)



Decomposition of the solution space

o Let S(§2) denote the functions u € V(£2) that satisfy

—D(G(u)) = /Q(u’ —w)faldx' =0  Vxe

— then, from the nonlocal Green's first identity, we have that

//g u)dx'dx =0 Yues, velp)

//v—v (v — u)pa’ dx'dx

((u, v))
//Q u)dx'dx =0 Yues, velp)

so that

B(u,v)



e [hus, we conclude that

V(Q) = W(Q) & S(Q)

— any function in V()) can be written as a sum of two functions that are
orthogonal with respect to the inner product ((-, -))

- the first a function that vanishes on (2 \ Q)

- the second a “harmonic” function, i.e., a function u € S(2)

e Of course, this is entirely analogous to the decomposition of the Sobolev space
H'(Q) into functions belonging to H(£2) and harmonic functions



Nonlocal dual and nonlocal trace spaces

o Let

/Nv(x)/b(x,x’) dx'dx
[1o[]]« = sup 0

vely(Q) |||U|H

e Define the “dual” space

Vo () =10 = |[[bl]l« < oo}

e Define the “trace” space

Va= {XQ\QU cu€eV(Q)}

where (. denotes the characteristic function, along with the norm

lallla = lxongell



e Finally, define the norm

/ U(X)/h(x,x’) dx'dx
1R[], = sup 22219

veV, o]

and the second “trace” space

Vi=1h : |[l[2f]ln < oo}



Well-posedness of variational problems

e The linear nonlocal variational problems take the form of the homogeneous
“Dirichlet” problem

given b € Vi and hy € Vg, seek u € V(§2) such that
B(u,v) = Fy(v) Vv e V)

and the “Neumann” problem

givenb € V* and h,, € V,,, seek u € V(1) \ R such that
B(u,v) = F,(v) YoveV(Q)\R



e The linear functionals Fy(-) and F),(-) are defined by

/ /bdx’dx Vo e V()
:/U/bdx'dx+/ v/hndx’dx Ve V(Q)\R
O Jo o\Q  Jo

e Because B(-, ) defines an inner product on V4(Q2) and V() \ R, it is con-

tinuous and coercive on those spaces

e Then, if we assume that the data is such that the functionals F(-) and F},(-)
are continuous, then, the Lax-Milgram theorem can be applied to show that
both the nonlocal Dirichlet and Neumann problems have unique solutions and,
moreover, those solutions satisfy

[l < ol andfjul[[ < J[Iol]]« +[}7al]].



GENERAL “SECOND-ORDER ELLIPTIC” PROBLEMS

e The nonlocal variational problems and the corresponding nonlocal “boundary”
value problems mimic the classical setting described by Poisson type equations

e Nonlocal analogs of more general second-order elliptic boundary value prob-
lems can also be defined



e For example, consider the nonlocal variational principle

( seek u € V() such that
u=hg forxeQ\Q

and

/Q/Qﬁg(v)g(u) dx’dXJr/Qv/QUQ(W dx'dx
/ / v+ u) dx'dx _/ /bdx’dx Vv e V()

where

o(x,x’) is a skew-symmetric function

w(x,x’) is a symmetric function



e The corresponding nonlocal “Dirichlet” boundary-value problem is given by
(

—D(BG(u)) +0G(u) + w(u' +u) = /dex’ for x € €

u = hy for x € )\

\

e General problems may be defined by letting
a(x,x’) be a symmetric vector-valued function

£(x,x'), n(x,x’), and r(x,x’) be symmetric functions

and then setting
f=(x-x) K- (x'-x)
o=~¢a- (x' —x)

W =nr



e For smooth solutions and asymptotically local operators,

—let D and b be as before

— analogously, let

w(x) = lim/Q ( )(X' —x)® (x' —x)-aladx

e—0

and

e—0

c(x) = lim / rn. dx’
Qc(x)

e Then, the nonlocal “"boundary-value” problem reduces to the classical linear
convection—diffusion—reaction problem

—V - (D°VU)—|—W°VU+CUZ/[)\

along with a Dirichlet boundary condition



CURRENT WORK

e Develop functional analytic characterizations of the solution, trace, and data
spaces used

e Develop the equivalent multidomain formulations for the nonlocal
boundary-value problems and applying them to “interface” problems

e Develop and analyze finite element discretization methods, including discon-
tinuous Galerkin methods, for the nonlocal variational problems

e Extend the nonlocal vector calculus to vector-valued functions and develop
nonlocal variational problems and the corresponding nonlocal “boundary”
value problems for vector-valued functions

— of particular interest is the application of the nonlocal vector calculus to
the peridynamic model for materials



