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|. Philosophy

For many problems in sciences, we need to understand

e the transitions from one state to another, and

e the stability/robustness of the new states

Our philosophy: to search for the complete set of transition states,

often represented by a local attractor.
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The system undergoes a dynamic transition as A = 0:

Y

Y

A

Y

A

A

Y

A



1 = \r1+ mf + x1x0 — 10:13?,

To = A\lo — 201X — x% — 10$§.

X N
-

2R

(a) (b)




A new dynamic transition theory is developed recently:

e a new dynamic classification scheme of phase transitions, and

e methods to identify the types of transitions.
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FEquations, Science Press, pp. 413, April, 2007.

e T.Ma& S. Wang, Phase Transition Dynamics in Nonlinear Sciences, about
700 pp., submitted.

e A few recent articles, downloadable from related journals listed on my web page
or from Arxiv.



Il. Dynamic Transition Theory

du

i Lyu + G(u, A),
u(0) = uyp.
u : |0,00) — H,

H, Hq Hilbert spaces, H{— H
— Ly =A— B, a sectorial operator,
A: Hy — H alinear homeomorphism,

B,y : Hi — H linear compact operators

G(u,A) =o(|ullm,), YAER, a<l

dense and compact,



Principle of Exchange of Stability (PES):

B1(A), B2(A),--- € C eigenvalues of Ly:

(<0 if A< ),
ReB;(A\){ =0 if A=\,
>0 ifA> A
Re;(Ag) < 0

Ey = U U ker(Ly, — Bi(Mo))"

1<i<m keN



Theorem [MA & W., 07] Under the conditions, the system (1) undergoes a
dynamic transition from (u, A) = (0, Ag) to one of the following three types:
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The transitions states are local attractors.



Features of Dynamic Classification

With the above theorem, we can classify all dynamic transitions into three

categories:  Type-l, Type-ll, and Type-lll, for both equilibrium and non-
equilibrium transitions.

The classical classification scheme in equilibrium phase transitions is labeled by
the lowest derivative of the free energy that is discontinuous at the transition.

For a specific equilibrium transition problem, once the dynamic classification type
is determined, the transition type in the classical sense will become transparent.

Dynamic properties of the system are explicitly given.



An important aspect of the dynamic transition theory is to determine which of
the three types of transitions occurs in a specific problem. The theory we have
developed is good enough for all applications we have encountered.

One crucial ingredient for applications is the reduction of ([2)) to the center manifold:

(5) — =z +g(x, \) for € R™ and near A = ),
where

9(x, A) = (91(2, A), - -+, gm(, A))

gj(@,A) = (G(z + ®(x,A),A),ej) VI<j<m

e; and €] eigenvectors of Ly and L3 respectively
I m X m Jordan matrix

O(x, \) the center manifold function
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Type-l Transition | is "essentially characterized” by attractor bifurcation as
shown (Ma & Wang, 04):
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Theorem |[(Ma & W., 04, 05). Assume ()—() and u = 0 is locally asymptotically

stable for (2) at A = Ag. Then there exists a bifurcated attractor X5, homologic to
S™m=1 for A > Xy and near ).
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l1l. Binary System Modeled by Cahn-Hilliard Equation

Consider a binary system, and let u4 and up be the concentrations of components
A and B respectively, then ug =1 —u4. The Cahn-Hilliard free energy is given by

(6) Flu) = Fo+ / 215 upl + f(up)] da.

Q
where the molar Gibbs free energy takes the following form

f=pa(l —up)+ ppup + RT(1 —up)In(l —up)
(7) + RTuplnup + aug(l — up),

where 114, ug are the chemical potentials of A and B respectively, R the molar gas
constant, a > 0 the measure of repel action between A and B.
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In a homogeneous state, up = ug is a constant, and let ©w = up — uy.

Cahn-Hilliard equation:

(8) g—? = —kA%u + Albyu + bou? + bzu?]
k= pD,
2
y _ D f(m) RT 1D
2 du? uo(1 — ug) 2

b =
ST A du? 12u3(1 — ug)? ’

where D is the diffusion coefficient.
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Nondimensional CH equation:

% = —A%u — AAu + A(yu® + y3u?),
@ — 0, @ — 0 on 0,
© oo
/ u(x,t)dr = 0,
Q
u(xz,0) = .

Let v3 > 0, and p; > 0 be the first eigenvalue of —/AA with the Neumann boundary
condition with [, u = 0.

With the dynamic transition theory, we can prove (Ma-Wang, 08) that at A\ = pq,
CH undergoes a Type-| transition for 75 = 0, and a Type-Il or Type-lll transition
for 7o # 0. Detailed structure of the transition can be derived as well.
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Consider €2 = (0, Ly) x (0, L2) x (0,Ls3) and L = L7.

Casel: L=1L;>Lj, Vi =23,
Case Il L=1Li=Lo>Lsgor Ly =Lo= Ls.

et
(217
Wﬁ —~3  for Case I,
K= g1
o 27% — ~3 for Case Il.
\ 27T
( 2L2 b2
9—3?2 —bs  for Case |,
K;=¢ 7"
d 2613 bz for Case Il
—= — r .
\ 272k

where Ly = L - [ is the dimensional length scale.
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Main Results (Ma & W., 08)

o If K <0, then CH equation undergoes Type-| transition at \g = 72/L?:

— Case |: CH equation bifurcates on A\ > 7%/L? to two attractors uf and ul.
— Case Il: The problem bifurcates on A > n2/L? to an attractor ¥\ = S™ 1,
containing exactly 3 — 1 non-degenerate singular points with 4 being minimal

attractors if m = 2, and with with either 8 minimal attractors for v3 <

or 6 minimal attractors for v3 > 292L2 72,

A
A
\
A

92,)/27
if m = 3.




o If K > 0, then the problem undergoes Type-ll transition at Ay = 72/L?, and
has a saddle-node bifurcation on \* < 72 /L%,
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Physical Conclusions
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K, ; < 0: The state ug = up i1s stable if T, < T', and the state ug is unstable, UlT
and U are stable if T' < T..
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For fixed ug and L, the transition for the case where K > 0 is first order separation
with latent heat and with hysteresis: U{ and UJ represent separation states, and
ug is the homogeneous state. In this case, for T, < T < 1™, all states uy, UlT,
ul are metastable states. For T' < T,, ug is unstable, and U{ and U] are stable
states.
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Solving K; = 0 gives a critical (dimensional) length scale Lg:

( 3v/3km o
8v2DRT,|ug — 3|

Ik
| 8v26DRT.|ug — 3|

(1) for Case I,

(10) Lg={

+ O(1) for Case Il,

AT
I I
I : I
I : « I
| I '\ 17-order | bl
' * metastable region
: [ I : Tl _ _ _ 9
L’d L/I T \J _—_ = =
: T,
2" order | <o)
I I
I I I
! |I I I : >
6 X1 % X2 1‘6 uO XO X'I X2 uo

The shadowed region is metastable region

20



Critical temperature:

homogeneous phase

separation phase

\
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IV. ldeas of the Proof

e Reduction to the center manifold:

dy; 2 ,
(11)  — =6Nyi — 573 oy + oy » v | +o(lyl’) VI<i<m
_ i
393 3 473
o =2y B gy =3+ 2
2 g

e Careful examination of ([L1]) using the dynamic transition theory.




Equations ([L1)) are derived using the following formula for the center manifold

function: If Jy is diagonal near A = )\, then
(12) — L\®(x, A) = PG, A) + o(l|z|*) + O(18][1=]|*),

where B(A) = (B1(N), -+, Bm(A)) are the eigenvalues of J).

23



V. Remarks

The theory has been applied to a wide range of problems in nonlinear sciences,
leading to a number of new physical predictions.

e equilibrium phase transitions: PVT system, ferromagnetism, Cahn-Hilliard

model for binary systems, superconductivity, and superfluidity (He-3, He-4, and
their mixture).

e Classical Fluid Dynamics: Bénard convection, Taylor problem, and Taylor-
Couette-Poiseuille flows

e Geophysical Fluid Dynamics and Climate Dynamics: rotating Boussinesq
equations (joint with C. Hsia), double-diffusive models (joint with J. Bona
& C. Hsia), thermohaline circulation, Arctic ocean circulations, atmospheric
meridional circulations, and ENSO.
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