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I. Philosophy

For many problems in sciences, we need to understand

• the transitions from one state to another, and

• the stability/robustness of the new states

Our philosophy: to search for the complete set of transition states,

often represented by a local attractor.
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Examples:

dx1

dt
= λx1 − x3

1 + o(|x|3),

dx2

dt
= λx2 − x3

2 + o(|x|3)

The system undergoes a dynamic transition as λ = 0:
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(1)
ẋ1 = λx1 + x2

1 + x1x2 − 10x3
1,

ẋ2 = λx2 − 2x1x2 − x2
2 − 10x3

2.

(a) (b) (c)
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A new dynamic transition theory is developed recently:

• a new dynamic classification scheme of phase transitions, and

• methods to identify the types of transitions.

References:

• T. Ma & S. Wang, Bifurcation Theory and Applications, World Scientific
Series on Nonlinear Science, Series A - Vol. 53, 2005.

• T. Ma & S. Wang, Stability and Bifurcation of Nonlinear Evolution
Equations, Science Press, pp. 413, April, 2007.

• T. Ma & S. Wang, Phase Transition Dynamics in Nonlinear Sciences, about
700 pp., submitted.

• A few recent articles, downloadable from related journals listed on my web page
or from Arxiv.
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II. Dynamic Transition Theory

du

dt
= Lλu+G(u, λ),(2)

u(0) = u0.

u : [0,∞)→ H,

H,H1 Hilbert spaces, H1 ↪→ H dense and compact,

− Lλ = A−Bλ a sectorial operator,

A : H1 → H a linear homeomorphism,

Bλ : H1 → H linear compact operators

G(u, λ) = o(‖u‖Hα), ∀ λ ∈ R1, α < 1.
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Principle of Exchange of Stability (PES):

β1(λ), β2(λ), · · · ∈ C eigenvalues of Lλ:

Reβi(λ)


< 0 if λ < λ0,

= 0 if λ = λ0,

> 0 if λ > λ0

1 ≤ i ≤ m,(3)

Reβj(λ0) < 0 m+ 1 ≤ j.(4)

E0 =
⋃

1≤i≤m

⋃
k∈N

ker(Lλ0 − βj(λ0))k
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Theorem [Ma & W., 07] Under the conditions, the system (1) undergoes a
dynamic transition from (u, λ) = (0, λ0) to one of the following three types:

0 λλ 0 λλ 0 λλ

Type-I Type-II Type-III

The transitions states are local attractors.
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Features of Dynamic Classification

• With the above theorem, we can classify all dynamic transitions into three
categories: Type-I, Type-II, and Type-III, for both equilibrium and non-
equilibrium transitions.

• The classical classification scheme in equilibrium phase transitions is labeled by
the lowest derivative of the free energy that is discontinuous at the transition.

• For a specific equilibrium transition problem, once the dynamic classification type
is determined, the transition type in the classical sense will become transparent.

• Dynamic properties of the system are explicitly given.
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An important aspect of the dynamic transition theory is to determine which of
the three types of transitions occurs in a specific problem. The theory we have
developed is good enough for all applications we have encountered.

One crucial ingredient for applications is the reduction of (2) to the center manifold:

(5)
dx

dt
= Jλx+ g(x, λ) for x ∈ Rm and near λ = λ0,

where

g(x, λ) = (g1(x, λ), · · · , gm(x, λ))

gj(x, λ) = (G(x+ Φ(x, λ), λ), e∗j) ∀1 ≤ j ≤ m

ej and e∗j eigenvectors of Lλ and L∗λ respectively

Jλ m×m Jordan matrix

Φ(x, λ) the center manifold function
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Type-I Transition is ”essentially characterized” by attractor bifurcation as

shown (Ma & Wang, 04):

λ

H

λλ0

Σ

Theorem (Ma & W., 04, 05). Assume (3)-(4), and u = 0 is locally asymptotically

stable for (2) at λ = λ0. Then there exists a bifurcated attractor Σλ, homologic to
Sm−1, for λ > λ0 and near λ0.
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III. Binary System Modeled by Cahn-Hilliard Equation

Consider a binary system, and let uA and uB be the concentrations of components
A and B respectively, then uB = 1− uA. The Cahn-Hilliard free energy is given by

(6) F (u) = F0 +
∫

Ω

[µ
2
|∇uB|2 + f(uB)

]
dx,

where the molar Gibbs free energy takes the following form

f =µA(1− uB) + µBuB +RT (1− uB) ln(1− uB)

+RTuB lnuB + auB(1− uB),(7)

where µA, µB are the chemical potentials of A and B respectively, R the molar gas
constant, a > 0 the measure of repel action between A and B.
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In a homogeneous state, uB = u0 is a constant, and let u = uB − u0.

Cahn-Hilliard equation:

∂u

∂t
= −k∆2u+ ∆[b1u+ b2u

2 + b3u
3](8)

k = µD,

b1 =
D

2
d2f(u0)
du2

=
[

RT

u0(1− u0)
− 2a

]
D

2

b2 =
D

3!
d3f(u0)
du3

=
2u0 − 1

6u2
0(1− u0)2

DRT,

b3 =
D

4!
d4f(u0)
du4

=
1− 3u0 + 3u2

0

12u3
0(1− u0)3

DRT,

where D is the diffusion coefficient.

13



Nondimensional CH equation:

(9)

∂u

∂t
= −∆2u− λ∆u+ ∆(γ2u

2 + γ3u
3),

∂u

∂n
= 0,

∂∆u
∂n

= 0 on ∂Ω,∫
Ω

u(x, t)dx = 0,

u(x, 0) = ϕ.

Let γ3 > 0, and ρ1 > 0 be the first eigenvalue of −4 with the Neumann boundary
condition with

∫
Ω
u = 0.

With the dynamic transition theory, we can prove (Ma-Wang, 08) that at λ = ρ1,
CH undergoes a Type-I transition for γ2 = 0, and a Type-II or Type-III transition
for γ2 6= 0. Detailed structure of the transition can be derived as well.
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Consider Ω = (0, L1)× (0, L2)× (0, L3) and L = L1.

Case I: L = L1 > Lj ∀j = 2, 3,

Case II: L = L1 = L2 > L3 or L1 = L2 = L3.

Let

K =


2L2

9π2
γ2

2 − γ3 for Case I,

26L2

27π2
γ2

2 − γ3 for Case II.

Kd =


2L2

d

9π2

b22
k
− b3 for Case I,

26L2
d

27π2

b22
k
− b3 for Case II.

where Ld = L · l is the dimensional length scale.
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Main Results (Ma & W., 08)

• If K < 0, then CH equation undergoes Type-I transition at λ0 = π2/L2:

– Case I: CH equation bifurcates on λ > π2/L2 to two attractors uT1 and uT2 .
– Case II: The problem bifurcates on λ > π2/L2 to an attractor Σλ = Sm−1,

containing exactly 3m−1 non-degenerate singular points with 4 being minimal

attractors if m = 2, and with with either 8 minimal attractors for γ3 <
22L2

9π2 γ
2
2,

or 6 minimal attractors for γ3 >
22L2

9π2 γ
2
2, if m = 3.
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• If K > 0, then the problem undergoes Type-II transition at λ0 = π2/L2, and
has a saddle-node bifurcation on λ∗ < π2/L2.
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Physical Conclusions

λ = −l
2D

2k

(
RT

u0(1− u0)
− 2a

)
.

u = u

u

T

0

c

T

1

2

T

U

U

T

Kd < 0: The state u0 = ūB is stable if Tc < T , and the state u0 is unstable, UT1
and UT2 are stable if T < Tc.
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u = u

u

T TT

0

1

2

T

T

U

U

c
*

For fixed u0 and L, the transition for the case where Kd > 0 is first order separation
with latent heat and with hysteresis: UT1 and UT2 represent separation states, and
u0 is the homogeneous state. In this case, for Tc < T < T ∗, all states u0, UT1 ,
uT2 are metastable states. For T < Tc, u0 is unstable, and UT1 and UT2 are stable
states.
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Solving Kd = 0 gives a critical (dimensional) length scale Ld:

(10) Ld =


3
√

3kπ
8
√

2DRTc|u0 − 1
2|

+O(1) for Case I,

9
√
kπ

8
√

26DRTc|u0 − 1
2|

+O(1) for Case II,

1  - order

2    - order

I

xx

L’

L

uδ 1- δ

d

d
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nd

st

1 2
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T

T

T

*

x xx

metastable region

u

( x    )

( x    )0

0

0 01 2

c

The shadowed region is metastable region
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Critical temperature:

Tc =
u0(1− u0)

RD

(
a− kπ2

2L2
d

)
.

homogeneous phase

separation phase

T

L L
c

d
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IV. Ideas of the Proof

• Reduction to the center manifold:

dyi
dt

= β1(λ)yi −
π2

2L2

σ1y
3
i + σ2yi

∑
j 6=i

y2
j

+ o(|y|3) ∀1 ≤ i ≤ m(11)

σ1 =
3γ3

2
+

γ2
2

λ− 4π2

L2

, σ2 = 3γ3 +
4γ2

2

λ− 2π2

L2

.

• Careful examination of (11) using the dynamic transition theory.
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Equations (11) are derived using the following formula for the center manifold
function: If Jλ is diagonal near λ = λ0, then

(12) − LλΦ(x, λ) = P2Gk(x, λ) + o(‖x‖k) +O(|β|‖x‖k),

where β(λ) = (β1(λ), · · · , βm(λ)) are the eigenvalues of Jλ.
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V. Remarks

The theory has been applied to a wide range of problems in nonlinear sciences,
leading to a number of new physical predictions.

• equilibrium phase transitions: PVT system, ferromagnetism, Cahn-Hilliard
model for binary systems, superconductivity, and superfluidity (He-3, He-4, and
their mixture).

• Classical Fluid Dynamics: Bénard convection, Taylor problem, and Taylor-
Couette-Poiseuille flows

• Geophysical Fluid Dynamics and Climate Dynamics: rotating Boussinesq
equations (joint with C. Hsia), double-diffusive models (joint with J. Bona
& C. Hsia), thermohaline circulation, Arctic ocean circulations, atmospheric
meridional circulations, and ENSO.
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