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81. LOWEST EIGENVALUE pu(A)

Given a vector field A, let u(A) denote the lowest eigenvalue

of the following problem :
—VaY =wp in§, (Vat)-v=0 on 01, (1)

where v is the unit outer normal to Of).

Vaw = Ay —i[2A - Vi + ¢ div A] — |A]%9.



Variational characterization

Vaol?d
pA) = inf k\gw -
pcH1(Q,C) Hﬁme(Q)

Gauge invariance

Vatvy (X)) = eXVarp,

p(A + Vx) = u(A).



For a bounded domain €2, A has decomposition
A=A+ Vy,
where
divA=0in 2, A-v =0 on 99.

In fact we may choose x so that

Ay = div A in €, g—X:A-Von(?Q.
%

Then A = A — Vy satisfies the requirement.



Physical Motivation

1. Ginzburg-Landau energy for superconductors

2
[ A1V = w2+ Tl o+ [ Jeurl A= e
Q

R?)

4|2 ~ density of superconducting electron pairs,
Superconducting state: 1 # 0.

H: applied magnetic field, x: GL parameter,

A

= % A: penetration depth, &: coherence length.

K



Consider a superconductor occupying a bounded and simply-
connected domain 2 in R? and subjected to an applied magnetic
field H. Assume H = oh, where o > 0 is a constant, and h is a

unit vector. Set A = ocA. (2) can be written as
Gy, Al

2
— [ {IVeant? = 20l + 0l de + #20% | jeurl A ~ Pds.
Q

R3

The GL functional G has gauge invariance.



Normal state
G has a trivial critical point (0, Fy,), which describes the normal

state, where F, is a vector field satisfying the conditions

curl F, = h, divF, =0.

Upper critical field H., (Physica D 1999, JDE 2000).

H. (k,h)=inf{oc > 0: (0,F}) is a global minimizer of G}.
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2-dimensional superconductors

If a superconductor occupies a cylinder of infinite height with
cross section 2 C R?, and if the applied magnetic field is parallel
to the axis of the cylinder, one may consider ¢ and A = (A1, As)

to be defined on €2, and the GL energy is reduced to:
2
G, A] = / (| Vioat|* — k2|10 + %|¢|4 + Kk20?|curl A — 1|*}dx.
Q
We look for minimizers of G in H'(Q2,C) x H, (£, div0), where

H,(Q,div0) = {A € H'(Q,R?) : divA L =0 A . 0}.



Fber::(Aq,AQ%

CurlA:%—%

8x1 8x2’
curl ’A = (Oycurl A, —0;curl A).

The trivial critical point is (0, F), where F satisfies
curlF =1 and divF=0 inQ, v-F=0 on 0.

In this case the critical value H,., (k) can be defined similarly.
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Eigenvalue problem and H_3

Lemma. If pu(ckFyn) < k% (resp. p(okF) < k?) then the func-
tional G has a non-trivial global minimaizer.

On the other hand, if G has a non-trivial global minimizer

(¢, A) then u(orA) < k2.

The value of o such that pu(cxFy) = k% provides information

of Hcg.
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2. Landau-de Gennes energy of liquid crystals
g[wvn] —
2
/ {IVnt|? = k?[0* + %\¢\4 + Ki|div n|* + Kzn - curl n + 7|°
Q

+ K3[n x curln|?* + (K3 + Ky)[tr(Vn)? — (divn)?] }dz.

[9]?: ~ intensity of the smectic layering,
n:Q — S?, director field,
g: wave number, intensity of layering of smectics,

7: chiral constant,
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gT: joint chirality constant,
K ;: elastic coefficients,
K (splay), Ko (twist), K3 (bend) are positive,

K5 + K4 (saddle-splay),

e = /1l
L C,

r i1s a constant in the smectic energy density and c: coupling

constant.
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Nematic state: Molecules are aligned parallel to a particular
direction indicated by director n.

Smectic state: layered structure. Inside these layers, molecules
tend to arrange themselves in the same direction; but they cannot
move freely between the layers.

Smectic state: ¥ Z 0.
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Critical wave number (CMP 2003)

Qc, (K1, Ko, k,7) =inf{g > 0: & has only trivial minimizers},

QCg (IiaT) — Kl,ifré£>0 Q63 (K17 K27 R77)°

Observation: ()., is an analogy of Hc, and H..

Conjecture (CMP 2003). Surface smectic state exists, which

1s an analogy of surface superconducting state.
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Related works

S. J. Chapman, P. Bauman, D. Phillips, Q. Tang, A. Bernoft,
P. Sternberg, T. Giorgi, H. Jadallah, C. Bolley, B. Helffer, H.
Morame, S. Fournais, V, Bonnaillie,

and many more.
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§2. 2-DIMENSIONAL PROBLEM

() is a bounded, simply-connected domain in R? with smooth
boundary. Let us begin with the leading term estimate.

1
W = 5(—:132,51;1), curlw = 1,

By = the lowest eigenvalue of —V?Z on Ri, 0 < fo <1,

ap(curl A) = 1(1&111{9?61?2 lcurl A(x)|, Bo xlenggz |CurlA(x)\}.
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Theorem 1 (Lu-P). Assume curl A € C*(Q),0< a < 1. Then

iy HOA)
b——+o0 b

= ag(curl A).

As b — 400, the eigenfunctions concentrate at 2y, U (O2),.

Q= {z€Q: |curl A(z)] = inf lcurl A(y)|},
Yy

(09)y, = {x € 0Q: |curl A(z)| = inf |curl A(y)|}.
yeof
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Case 1. curl A is constant

Theorem 2 (Lu-P). Assume curl A =1. Then

lim H(bA)
b— o0 b

— 607

and the eigenfunctions concentrate at the boundary 02 as b —

+00.
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In order to prove the above results, one may use blow-up tech-
nique and then classify the solutions of limiting equations. Let us

consider the case where

inf |curl (z)| > 0.
x el

Decomposition of vector fields
Let A € C?T*(Bpg,R?). Then there exists x € C°°(Bg) s.t.

A(x) =A0)+ Vx(x)+curl A(0)w(x) — %\x!QCurIQA(O) + D(z),

where |D(z)| = O(|z|*T%).
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Interior blowing up

Let b=1/¢%, x = ey. Assume A € C?. Then

A(ey) = A(0) + (Vx)(ey) + e Hw(y) + O(e|y|?),

where H = curl A(0). Given a function v with compact support

in (), set
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Vot — SA@NE) = Z[Vye(y) - A ()

— é exp(é[A(O) -y + éx(ay)b

AV,6:(0) — ilHw(y) + OE1P))o:() }

L|V§A¢’2dx:/gz’va(y)—I—O(52|y|2)¢€(y)‘2dy

~ L IV b @ (y)|* dy,

il @ JaloPdy
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Limiting problem

. fR2 ‘va(b‘de
a(Hw) = inf :
(Hew) =t = ey

We have a(Hw) = |H|a(w) = |H|a(E), where E = (—x2,0) and

w=E+ V(5z123). Let

. fR2 ‘VE(b’zdx
ag = o(E) = inf :
o= o) =t

o is achieved and the minimizers satisfy

—VQE = —A¢p — 2112010 + ‘CEQ’qu = ) 1n R?. (3)
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Boundary blowing up

Limiting problem

B(Hw) =i ¢ Jog [Vroolde
W) =11
¢ fRi [P|*dy

We have §(Hw) = |H|B(w) = |H|B(E). Let 8y = B(E). By is not
achieved and the equation for bounded eigenfunctions is

[ — A¢ — 2022010 + |22]?¢ = B in RZ,

A ) (4)
= R2 .
9 0 on JRZ

_/\
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Eigenvalue problem in R?

Lemma 1. (i) The eigenvalues of (3) are a, = 2n + 1, n =
0,1,2, -

(i1) The L? eigenspace associated with cg = 1 is given by

{f(flf)@_?ﬂ/2 c L*(R?): f is an entire function}.

Proof of (i). Formally make Fourier transform in x; and let

f(za‘T?) — f$1[¢(7x2)]
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Then we get

—dQ—f—F(z—l—x)Qf—ozf f(d+oo) =0
dx% 2 — ’ — Yy

Let f(z,t) = y(z,z +t). We have
/" 2
—y" +ty =ay, y(+oo)=0.

It has eigenvalues @ = 2n + 1, n = 0,1,2,---, with associated
eigenfunctions e~ /2H,,(t), where H,, is the n-th Hermite poly-

nomial

2 d" 2
Hnt:—lnt—_t
(1) = (~1re’ o
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Let

fu(z,x2) = Hy (22 + 2) exp(—%(afg + 2)).

Then the eigenfunctions of (3) associated with a@ = 2n + 1 are
given by

() = Fy, ' lal2) fulz, 22))
In particular if a(z) = d(z — 2p)

o(x) = Hy(xo + 20) exp(izor — %(:132 + 2)).
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. . 2
Eigenvalue problem in RZ

Lemma 2. The lowest eigenvalue of (4) is

Bo = min B(z) = B(20),

z€R

where 3(z) s the lowest eigenvalue of the following ODFE
—u + (t+2)*u=B(:z)u fort>0, u'(0)=0, (5)

and zy 1s the unique minimum point of 3(z). The eigenfunctions
are given by ¢ = ce*%1u(xy), where u is an eigenfunction of (5)

for z = zy.
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Proof of Theorem 1.

Upper bound estimate: Using the eigenfunctions of (3) and (4)
to construct test functions.

Lower bound estimate: Blowing up. The rescaled functions,

after gauge transform, converge to a bounded solution of (3) or

(4). O
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Case 2. curl A has non-degenerate zeros

We say that curl A vanishes non-degenerately if
Z(curlA) ={z € Q: curl A(z) =0}

is the union of a finite number of smooth curves and V(curl A) # 0
on Z(curl A). The limiting equation of a blow-up sequence is an

eigenvalue problem for the operator —VQAQ, where

|

Ay = T(Cosﬁ,sinﬁ), v e (—m,m).
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Interior blowing-up: limiting equation is
—Va,9 =X in R (6)

(6) can be reduced to an eigenvalue variation problem for an or-

dinary differential operator

&z 1,
—— 4+ Z(? 4+ 27)?
s —|-4( + 27)

for t € R. Let A\(7) denote the lowest eigenvalue of this operator
and let

Ao = Tlrelﬂf%)\(T).
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Boundary blowing-up: limiting equation is
—Va, ¢ =X inR7, (Va,9) - v=0 ondR%. (7)

Let A(RZ,9) denote the lowest eigenvalue of (7).

Let v be the unit outer normal of 9€) and 7 be the unit tangen-
tial vector such that the orientation of {v, 7} is the same as that

of 129 coordinates.
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Theorem 3 (Kwek-P). Assume curlA € C*T*(Q) with 0 <
a < 1 and curl A vanishes non-degenerately on Q. For any x €

O, let ¥(x) denote the angle between curl?A(z) and 7. Then we

have
: M(bA) . 2/3
bl}g—noo 23 = [ag (curl A)]“/2,
where
ai(curl A) = min{)\g/2 inf [Veurl A ()],
x€QNZ(curl A)

inf R2 3/2|Veurl A }
:I:E@Qﬂlg’l(curlA) >\( _|_,79(CI3)) ‘VCUT (CU)’
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Eigenvalue problems in Ri, a general approach

Consider the eigenvalue problem
—Va¢=p¢ inRL, Vad-vr=0 ondR7. (8)

The lowest eigenvalue is given by
5(A) = mr R VAT
= in
¢ fRi |¢|2dy

Formally, for a bounded eigenfunction ¢ of (8), we make a Fourier

transform in x1 in the sense of distribution. Let

f(Z,t) = Fa, [¢(7t)]
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Fix z and let u(t) = f(z,t). Assume (8) is changed to
—u" +q(z,t)u=pPu fort>0, u(0)=0. (9)
Let 8(z) be the lowest eigenvalue of (9) and let
B = 11;1fﬂ(z)

Step 1. If we can show that 3(z) has a unique minimum point

20, then 8. = B(20).
Step 2. Show that B(A) < ..
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Method: Using the eigenfunction of (9) associated with g, to

construct text functions.

Step 3. Let ¢ be an eigenfunction of (8) associated with G(A).

Then there exists C' > 0 such that
b o0
[ dm [ loPdz < €O~ a s 1ol
a 0

Step 4. Then we can show that, as a distribution with param-

~

eter x2, ¢(-,x2) = F,, |¢| must be supported at a single point z
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(the unique minimum point of 3(z)). Hence for each x,

- d¥
¢(Z,£C2) — kgo Ck(xQ)%(S(Z - Zo),
1 N(z2)
d(z,x3) = N 2 cr(x2)(—iz1)" exp(izoz1).

Since ¢ is bounded, ci(z2) = 0 for all £ > 0, and hence

d(x1, 1) = v(x2) exp(izory),

Co(xg)

TR
z =29 and 3 = ((A). Hence B(A) > (.. U

where v(zy) =

Then we show that v must satisfy (9) for
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§3. 3-DIMENSIONAL PROBLEM

() is a bounded, smooth and simply-connected domain in R3.

Theorem 4 (Lu-P). For any A € C'T*(Q,R3) we have

lim pbA)
b——+o0 b

(10)

= min {égglcuﬂ A(x)’,xlenggB(H(x))‘curl A(x)‘} :

where 0(x) is the angle between curl A(x) and the outer-normal

vector v on 082, B(0) is a positive function, decreasing on (0, %),

B0)=1, B(3) =00 <1, and B(rm — 0) = B(0).
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In the case where A = Fy,,

iy AO0Fn)
b——+o0 b

— /607

The eigenfunctions concentrate at the tangential set
(0 ={x€0Q: h-v(r)=0}

which 1s a subset of the surface where h is tangential to Of€2.
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Problem 1. Find location of concentration of eigenfunctions,

and multiplicity of eigenvalues.

In Theorem 1, if
' 1A inf 1A
1?2f lcurl A| < By inf [curl A|,

then the eigenfunctions concentrate on €2,,. If §2,,, consists of more
than one point, should the eigenfunctions concentrate at only one
point, or should they concentrate over all €2,,7 One may ask a

similar question for (0€2),,.
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In Theorem 2, the eigenfunctions concentrate in A (0€2), the set
of maximum points of the boundary curvature. If there are more
than one maximum points, should the eigenfunctions concentrate

at only one point, or should they concentrate over all N'(0$2)7
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Problem 2. Find an asymptotic estimate for u(bA) when curl A

has higher order zeros.

For recent progress on this problem see J. Aramaki.
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Problem 3. Ezxamine the second eigenvalue \2(b), or all other

eigenvalues \;(b) which satisfy asymptotically A\;(b) < (14 0(1))b

as b — oo.

See recent results of Morame-Truc.
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Problem 4. Find an asymptotic estimate for the eigenvalue u(bA)

for large b where curl A is in W12 or in L? but is not smooth.

This problem rises in the study of nucleation of smectics and
is needed for the estimate of critical wave number ()., for liquid

crystals.
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§4. SURFACE SUPERCONDUCTIVITY IN

2-DIMENSIONAL SUPERCONDUCTORS

Throughout this section we assume that {2 is a bounded and

simply-connected domain in R? with smooth boundary.

Theorem 5 (Helffer-P). For large k we have

K Cl
He, (k) = 30 T 53
0

where C7 1s a positive constant, and Ky,qz 1S the mazrimum value

Kmaxz T 0(5_1/3)7

of the curvature of Of2.
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Behavior of minimizers

(i) As the applied field decreases from H.., superconductivity

nucleates first at the maximum points of the boundary curvature.

(ii) As the applied field is reduced again but is still close to
H.., the superconducting region expands gradually, and then a
thin superconducting sheath forms on the entire boundary of the

sample.

(iii) As the applied field is further reduced but is still kept
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away above H.,, the superconducting sheath becomes strong and
a boundary layer gradually raises, while the interior of the sample
remains in a normal state.

(iv) The sample will remain in a surface superconducting state

until the applied field reaches H.,.
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Remark. Conclusion (ii) has been improved by S. Fournails
and B. Helffer.

Conclusion (iii) suggests that the equality H., (k) ~ k is asymp-
totically correct.

The behavior of minimizers with the applied field lying in be-
tween H., and H., was further investigated by E. Sandier and S.

Serfaty.
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Conjecture. Assume Kk, — oo, H, = (b+ o(1))ky, where 1 <
b < %; When b = 1 we further require that 1 < H,, — Ky, = 0(Kn).
Let 1,, be order parameter corresponding to Kk = Kk, and H = H,,.

Then there exists a positive constant c, such that

0 if x € €,
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Recently Y. Almog and B. Helffer proved that if 1 < b < 1/
then the order parameters indeed converge to a constant but in a
rather weak sense.

Y. Almog and B. Helffer,

The distribution of surface superconductivity along the bound-

ary: on a conjecture of X. B. Pan,

SIAM J. Math. Anal., 38 (6) (2007), 1715-1732.
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