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Reduction

by cap-and-trade mechanism=emission trading scheme
central authority

allocates credits (allowances) to polluters
sets penalty for each unit of pollutant not covered by credits
defines compliance dates within a time period

polluters reduce or avoid penalty by
applying abatement measures

technological changes
replacement of input/output products,

trading allowances
physically (spot)
financially (forwards/futurues)

Example EU ETS Phase I and II credits are called EUA



EUA 2007 has died

Source: European Energy Exchange



EUA 2012 is alive, may reach 100 EURO

Source: European Energy Exchange



Theory

Market-based mechanisms are the most promising tool to
combat global warming
Reason: allowance trading leads to price discovery, which
helps to identify and to exercise cheapest ways of pollution
reduction
By market mechanisms, the reduction resources are
allocated optimally

However, there are some problems ....



Misconception 1: Cap-and-trade system is cheap for everyone

In the generic scheme design, allowance trading may be very
costly for consumers.

For some reasons, consumers burden by increased electricity
price exceeds by far the true social cost of reduction.

The difference results in huge revenues of energy producers,
also known as windfall profits.



Allowance price is passed through on the consumer

There is clear evidence that emission allowance price is added
to electricity price.
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Explanation for pass-through

are the so-called opportunity costs.

When selling electricity, generators figure out the opportunity to
not produce and to sell the effectively saved carbon allowances
to the market.

If generator supplies electricity, he wants to be rewarded for the
lost profit.

Example: If
production cost is 30 EURO/MWh
allowance price is 10 EURO/tonne
specific emission is 0.4 tonne/Mwh

then the energy is supplied only if the price exceeds

30 + 10× 0.4 EURO/MWh



Apparent reason for pass-through

Allowances are given for free. Generators who charge the
consumer behave not fair.

A fair company does not charge for allowances and gains
competitive advantage.

Thus, pass-through happens due to lack of competition.



Misconception 2: Windfall profits are due to lack of competition

An analysis of equilibrium models shows that pass-through is
the correct strategy in a perfectly competitative equilibrium.

Generators must take windfall profits.

Regulator creates the problem giving allowances for free.

If allowances were auctioned, the profits could be returned to
the consumers.



Misconception 3: By auctioning, we can return money

Auction is not appropriate.

In equilibrium, allowance price in the upfront auction should
come close to the expected allowance price in the continuous
trading.

Auction revenue ≈ allowance price × number of allowances
Windfall profit ≈ allowance price × emission rate ×

× number of consumed MWh

Windfall profits are intrinsic for cap-and-trade mechanism (?)



Misconception 4: There is no way to overcome windfall profits

In an alternative market design (relative scheme), allowances
are allocated depending on demand.

For instance, for each produced MWh generator receives
allowances for 0.2 tonne CO2.

With this, allowance price does not strongly affect electricity
price.

Analyzing relative scheme, one finds out that by correct
parameter choice, one obtains a very cheap and effective way
of pollution reduction.



Misconception 5: Relative scheme solves all problems

Unlike classical cap-and-trade mechanisms, relative scheme
has a soft cap.

Could winter ⇒ high energy demand ⇒ high emissions,
still compliance

The reduction of relative scheme is not sharp.

Although parameters can be adopted such that the expected
reduction is the same or even better than in the classical
scheme, the ’unknown’ outcome creates problems.

Problems may occur when negotiation with other markets on
emission targets is to worked out.

Could we achieve negotiation based on reduction distribution?

Quantitative understanding of emission
trading schemes is needed



Illustration: one-step market

Agents i = 1, . . . ,N follow (electricity) production and trade
allowances

Today: Trading and production decisions
Tomorrow: Compliance date

Agent i ∈ {1, . . . ,N} decides on
ξi production strategy with

V i(ξi) production volume (MWh)
C i(ξi) production costs (EURO)
E i(ξi) emission (tonne CO2)

θi change in allowance amount by trade



One-step market

Regulator yields
γ i initial allocation for each agent i = 1, . . . ,N
π penalty for non-compliance

Market yields
A allowance price
P electricity price

This results in the revenue of the agent i

LA,P,i(ξi , θi) = −Aθi − C i(ξi) + PV i(ξi)− π(E i(ξi)− θi − γ i)+



One-step equilibrium

Given demand D ∈ [0,∞[, equilibrium price (A∗,P∗) is
characterized by existence of agent’s strategies (ξi∗, θi∗)N

i=1 with

1)
∑N

i=1 θ
i∗ = 0.

2)
∑N

i=1 V i(ξi) = D
3) the mapping

(ξi , θi) 7→ E(U i(LA,P,i(ξi , θi)))

is maximized at (ξi∗, θi∗), for each i = 1, . . . ,N.
Analyzing the equilibrium, one finds out that the allowance
price must be passed through on the consumer.



To understand pass-through

Introduce opportunity merit order costs

CA(D) = min{
N∑

i=1

(C i(ξi) + AE i(ξi)) : ξ1, . . . , ξN ,

N∑
i=1

V i(ξi) ≥ D}



Proposition (under natural assumptions)

If (A∗,P∗) is an equilibrium price then
i) Production is scheduled in opportunity merit order

N∑
i=1

(C i(ξi∗) + A∗E i(ξ∗)) = CA∗(
N∑

i=1

V i(ξi∗))

ii) Electricity price is an opportunity merit order price

(ξi∗)N
i=1 maximizes (ξi)N

i=1 7→ −CA∗(
N∑

i=1

V i(ξi)) + P∗
N∑

i=1

V i(ξi)



Example

If there is only one technology, then the allowance price must
be just added to the business-as-usual electricity price at the
specific emission rate e.

(ξi∗)N
i=1 is a maximizer to

(ξi)N
i=1 7→ −CA∗(

N∑
i=1

V i(ξi)) + P∗
N∑

i=1

V i(ξi)︸ ︷︷ ︸︷ ︸︸ ︷
−C0(

N∑
i=1

V i(ξi)) + (P∗ − A∗e)
N∑

i=1

V i(ξi)



What we see from one-period model

In equilibrium,
allowance price changes merit order of production units
demand is covered according to changed merit order
emission abatement happens automatically, trigged by
allowance price
this is true in general: in equilibrium, allowance price
triggers abatement measures



Dynamical model

compliance date T
action times t = 0, . . . ,T
all processes on (Ω,F ,P, (Ft)

T
t=0) are adapted

finite number of agent i ∈ I
interest rate zero, for simplicity



Model ingredients

Revenue of agent i for (ξi , ϑi), given prices A = (At)
T
t=0

LA,i(ϑi , ξi) = −
T∑

t=0

(ϑi
tAt + C i(ξi

t))− π︸︷︷︸
penalty

(E i
T −

T∑
t=0

(ξi
t + ϑi

t))
+

E i
T are Business-as-usual emissions less allocated

allowances of the agents i ∈ I
Abatement policy ξi = (ξi

t)
T
t=0 of the agent i ∈ I

Costs of abatement policy (ξi
t)

T
t=0 are

∑T
t=0 C i(ξi

t)

ϑi
t change of allowance number by trade at time t∑T

t=0 Atϑ
i
t costs of trading for allowance prices (At)

T
t=0



Equilibrium state

Definition

A∗ = (A∗t )
T
t=0 is an equilibrium allowance price process, if there

exist agent’s policies (ϑ∗i , ξ∗i), i ∈ I such that:
(i) Each agent i ∈ I is satisfied by the own policy

(ϑ∗i , ξ∗i) is maximizer to(ϑi , ξi) 7→ ln E(−e−λi LA∗,i (ϑi ,ξi ))

λi

(ii) Changes in allowance positions are in zero net supply∑
i∈I

ϑ∗i
t = 0, for all t = 0, . . . ,T .



Three equilibrium properties (under additional assumptions)

It turns out that in the equilibrium:
a) No arbitrage opportunities for allowance trading
b) Allowance price instantaneously triggers all abatement

measures whose costs are below allowance price
c) There are merely two final outcomes for allowance price

A∗T = 0 in the case of allowance excess
A∗T = π in the case of allowance shortage



Formal characterization

Theorem

If (A∗t )
T
t=0 is an equilibrium price and (ξi∗

t )T
t=0 for i ∈ I are

corresponding abatement policies, then
(a) (A∗t )

T
t=0 is a martingale with respect to some Q ∼ P

(b) For each i ∈ I holds

ξi∗
t = c i(A∗t ), t = 0, . . . ,T − 1,

with abatement volume function

c i(a) = argmax(x 7→ −C i(x) + ax)

(c) The terminal allowance price is given by

A∗T = π1{∑i∈I(E i
T−

∑T
t=0 ξi∗

t )≥0}



From risk-neutral perspective, allowance price

is a Q-martingale, whose terminal value

A∗T = π1{ET−
∑T

t=1 c(A∗t−1)≥0}

depends on the intermediate values through

B.A.U. allowance demand

ET =
∑
i∈I

E i
T

and market abatement volume function

c(a) :=
∑
i∈I

c i(a)



Reduced form model

Given Q, ET , c solve fixed point equation

A∗t = EQ(π1{ET−
∑T

s=1 c(A∗s−1)≥0} | Ft), t = 0, . . . ,T



Illustration for one time step from 0 to T = 1

A∗0 = πEQ
0 (1{ET−c(A∗0 )≥0})

A∗0

A0

π

π



Follow the intuition that the allowance price is a function of

A∗t (ω) = αt(Gt(ω))(ω)

recent time t
current situation ω
reduction demand Gt = EQ

t (ET )︸ ︷︷ ︸
Et

−
∑t

s=1 c(A∗s−1)



Guess a recursion from martingale property

Idea

αt(g)(ω) = EQ
t (αt+1(g − c(αt(g)(ω)) + εt+1))(ω),

for all g ∈ R, ω ∈ Ω

αt(Gt(ω))(ω) = A∗t (ω) = EQ
t (A∗t+1)(ω) = EQ

t (αt+1(Gt+1))(ω)

= EQ
t (αt+1(Gt − c(A∗t ) + εt+1))(ω) εt+1 = Et+1 − Et

=

∫
Ω
αt+1(Gt(ω

′)− c(A∗t (ω
′)) + εt+1(ω

′))(ω′)Qt(dω′)(ω)

=

∫
Ω
αt+1(Gt(ω)− c(A∗t (ω)) + εt+1(ω

′))(ω)Qt(dω′)(ω)

= EQ
t (αt+1(Gt(ω)− c(A∗t (ω)) + εt+1))(ω)

= EQ
t (αt+1(Gt(ω)− c(αt(Gt(ω))(ω)) + εt+1))(ω)



Recursion for (αt)
T
t=0

Idea

αt(g)(ω) = EQ
t (αt+1(g − c(αt(g)(ω)) + εt+1))(ω),

for all g ∈ R, ω ∈ Ω

start with αT (g) = π1[0,∞[(g), for all g ∈ R
proceed recursively for t = T − 1, . . . ,1, determining
αt(g)(ω) as the unique solution to the fix point equation

a = EQ
t (αt+1(g − c(a) + εt+1))(ω)



Formal result

Theorem
i) Given measure Q ∼ P there exist functionals

αt : R× Ω → [0, π], B(R)⊗Ft -measurable, for t = 0, . . .T

which fulfill for all g ∈ R

αT (g) = π1[0,∞[(g),

αt(g) = EQ
t (αt+1(g − c(αt(g)) + εt+1)), t = 0, ..,T − 1

ii) There exists a Q–martingale (A∗t )
T
t=0 which satisfies

A∗T = π1{Et−
∑T

t=1 c(A∗t−1)≥0}

A∗t := αt(Et −
t∑

s=1

c(A∗s−1)), t = 0, ..,T − 1



A numerical example

Suppose that

εt+1 and Ft are independent under Q for all t = 0, . . . ,T − 1.

which makes calculations easier, since the randomness enters
allowance price through the present up-to-day emissions only.
More precisely one verifies that

ω 7→ αt(g)(ω) = αt(g) is constant on Ω.

Hence, allowance price A∗t+1 is just Borel function of the
present up-to-day emission Gt+1 and the condition Ft can be
replaced by the condition σ(Gt):

αt(Gt) = EQ(αt+1(Gt − c(αt(Gt)) + εt+1) |σ(Gt)).



A numerical example

Given the fixed point equation for Borel measurable function αt

αt(Gt) = EQ(αt+1(Gt − c(αt(Gt)) + εt+1) |σ(Gt)),

try to obtain a solution as limit αt = limn→∞ αn
t of iterations

αn+1
t (Gt) = EQ(αt+1(Gt − c(αn

t (Gt)) + εt+1) |σ(Gt)), n ∈ N

started at α0
t = αt+1.

For numerical calculations, we suggest to use the least-square
Monte-Carlo method. The idea here is to consider functions
within a linear space spanned by basis functions and to replace
the integration by a sum over finite sample.



A numerical example – least-square Monte-Carlo method

1 Initialization: Given sample S = (ek ,gk )K
k=1 ⊂ R2 and a set

of basis functions Ψ = (ψi)
J
j=1 on R, define

M =
(
ψj(gk )

)K ,J
k=1,j=1

Set αT (g) = 1[0,∞](g) for all g ∈ R, and proceed in the next
step with t := T − 1.

2 Iteration: Define α0
t = αt , and proceed in the next step with

n := 0.
2a) Calculate φn+1(S) := (αt+1(gk − c(αn

t (gk )) + ek ))K
k=1

2b) Determine a solution qn+1 ∈ RJ to M>Mqn+1 = M>φn+1(S).
2c) Define αn+1

t :=
∑J

j=1 qn+1
j ψj .

2d) If maxK
k=1 |α

n+1
t (gk )− αn

t (gk )| ≥ ε, then put n := n + 1 and
continue with the step 2a).
If maxK

k=1 |α
n+1
t (gk )− αn

t (gk )| < ε then set t := t − 1. If
t > 0, go to the step 2, otherwise finish.



Illustration
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Parameters
penalty π = 100,
martingale increments (εt)

T
t=1 i.i.d, εt = N (0.5,1),

K = 1000
basis functions (Ψj)

J
j=1 piecewise linear, J = 16

abatement volume function c : R → R,a 7→ 0.1
√
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Outlook: Transformation to continuous time

On the filtered probability space (Ω,F ,P, (Ft)t∈[0,T ]) allowance
price dynamics (A∗t )t∈[0,T ] must be a solution to

A∗t = πEQ(1{ET >
∫ T

0 c(A∗s )ds} | Ft) , t ∈ [0,T ].

Define martingale

Et = EQ(ET | Ft), t ∈ [0,T ].

Remembering the discrete-time case, assume that

the increments (Et = EQ
t (ET ))t∈[0,T ] are independent.

Then search for a solution in form

At = α(t , Et −
∫ t

0
c(As)ds︸ ︷︷ ︸

Gt

), t ∈ [0,T ]



Supposing sufficiently smooth α, try

dEt − c(α(t ,Gt))dt︸ ︷︷ ︸
dA∗t = ∂(1,0)α(t ,Gt)dt + ∂(0,1)α(t ,Gt)

︷︸︸︷
dGt +1

2∂(0,2)α(t ,Gt)d [G]t

=

∂(0,1)α(t ,Gt)dEt

+

∂(1,0)α(t ,Gt)dt − ∂(0,1)α(t ,Gt)c(α(t ,Gt))dt +
1
2
∂(0,2)α(t ,Gt)d [E ]t︸ ︷︷ ︸

=0



For instance, if

dEt = σtdWt , t ∈ [0,T ], (σt)t∈[0,T ] deterministic,

this leads to PDE

∂(1,0)α(t ,g)− ∂(0,1)α(t ,g)c(α(t ,g)) +
1
2
∂(0,2)α(t ,g)σ2

t = 0

with boundary condition α(T ,g) = 1[0,∞[(g) for g ∈ R,

whose solution should give allowance price dynamics as

At = α(t ,Gt) t ∈ [0,T ].

where (Gt)t∈[0,T ] is solution to SDE

dGt = dEt − c(α(t ,Gt))dt , G0 = E0.



If this is OK, option pricing is straight-forward

Say, European Call with payoff

(Aτ − K )+ = (α(τ,Gτ )− K )+ at maturity τ ∈ [0,T ]

is priced at t ∈ [0, τ ] by

E((α(τ,Gτ )− K )+ | Ft) = f τ (t ,Gt)

where the function f τ is a solution

∂(1,0)f τ (t ,g)− ∂(0,1)f τ (t ,g)c(α(t ,g)) +
1
2

f τ
(0,2)(t ,g)σ2

t = 0

with boundary condition f τ (τ,g) = (α(τ,g)− K )+ for g ∈ R.



Work to do

Extension to stochastic abatement costs
describing dependence of

opportunity merit order
on gas and oil prices.

Here commodity price modeling enters the discussion...

Quantitative comparison of different market designs
(PDEs for windfall profit and total reduction distributions)



Thank you!


