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Boltzmann partition function Secondary structure

Definition of RNA secondary structure

Definition

An RNA secondary structure on an RNA
sequence of length N is a set S of base
pairs (i , j) with 1 ≤ i < j ≤ N that fulfill
the following conditions:

Each base is involved in at most one
base pair

No pseudoknots, i.e., if (i , j) and (k, l)
are base pairs with i < k, either
i < k < l < j or i < j < k < l
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Boltzmann partition function Secondary structure

Diagrammatic representation

An RNA secondary structure can be represented by an arch diagram

Every base is end point to at most one arch

Two arches never cross

One to one correspondance between arch diagrams that fulfil the
above conditions and secondary structures
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Boltzmann partition function Partition function

Energy models

Each structure S has a certain (free) energy E [S ]

Different models possible

All base pairs are equal E [S ] = ε0|S | (ε0 < 0)
Energy associated with base pairs E [S ] =

∑
(i,j)∈S e(i , j)

Turner parameters (nearest neighbor model):
energy associated with loops

Base pair stacks

Hairpin loops

Interior loops

Bulges

Multi-loops

interior loop

bulge

hairpin loop

stacking loop

multiloop
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Boltzmann partition function Partition function

Partition function

Definition

The partition function of an RNA molecule with energy function E [S ] is
given by

Z ≡
∑
S

e−
E [S]
RT

R = 1.987 cal
mol K

Temperature T in Kelvin ⇒ RT ≈ 0.6kcal
mol

Ensemble free energy F = −RT lnZ

Thermodynamics completely specified if partition function is known
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Boltzmann partition function Recursion equation

Calculating partition functions

Definition

Let Zi ,j be the partition function for the RNA molecule starting at base i

and ending at base j . Denote this quantity by i j.

Observation

For the base pairing energy model the Zi ,j obey the recursion equation

Σ+=
jj−1kikjj−1ii j k+1k−1

Zi ,j = Zi ,j−1 +

j−1∑
k=i

Zi ,k−1e
− e(k,j)

RT Zk+1,j−1

Calculate from shortest to longest substrands

O(N3) algorithm for arbitrary sequence
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Molten RNA Energy model

Energetics in molten phase

Definition

In the molten phase of RNA every base can pair with every other base
equally well, i.e., e(i , j) = ε0.

Properties

Applies to repetitive sequences: AUAUAUAUAUAUAUAUAU,
GCGCGCGCGCGCGC, GACGACGACGACGACGACGAC

Applies to arbitrary sequences at temperatures close to denaturation
on a coarse-grained level

Minimum energy is always N
2 ε0

Structural entropy plays a major role
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Molten RNA Energy model

Molten phase partition function

Reminder

Σ+=
jj−1kikjj−1ii j k+1k−1

Zi ,j = Zi ,j−1 +

j−1∑
k=i

Zi ,k−1e
− e(k,j)

RT Zk+1,j−1

Simplification

In the molten phase the partition function depends only on the length j − i
of the substrand, not on i and j individually: Zi ,j ≡ G (j − i + 2)

Consequence

G (N + 1) = G (N) + q
N−1∑
k=1

G (k)G (N − k) with q ≡ e−
ε0
RT
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Molten RNA z transform

z transform

Definition

For any series Q(N) the z transform Q̂ is defined as

Q̂(z) ≡
∞∑

N=1

Q(N)z−N

Properties

Function of the complex variable z

Analytic outside a radius of convergence

Discrete version of Fourier transform

Back transform: Q(N) = 1
2πi

∮
Q̂(z)zN−1dz

Convolution property:
̂∑N−1

k=1 Q(k)W (N − k) = Q̂(z) · Ŵ (z)
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Molten RNA z transform

z transform for molten RNA

Ĝ (z) can be calculated:

G (N + 1) = G (N) + q
N−1∑
k=1

G (k)G (N − k)

G (N + 1)z−N = G (N)z−N + qz−N
N−1∑
k=1

G (k)G (N − k)

∞∑
N=1

G (N + 1)z−N = Ĝ (z) + qĜ 2(z)

zĜ (z)− G (1) = Ĝ (z) + qĜ 2(z)

zĜ (z)− 1 = Ĝ (z) + qĜ 2(z)

Ĝ (z) =
1

2q

[
z − 1−

√
(z − 1)2 − 4q

]
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Molten RNA z transform

Back transform I

Integral expression for G (N)

G (N) =
1

2πi

∮
Ĝ (z)zN−1dz

=
1

4πqi

∮ [
z − 1−

√
(z − 1)2 − 4q

]
zN−1dz

= − 1

4πqi

∮ √
(z − 1)2 − 4q zN−1dz

Singularity structure

Branch cut from 1− 2
√

q to z0 ≡ 1 + 2
√

q

Contour has to go around branch cut

Contour can be contracted to branch cut
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Molten RNA z transform

Back transform II

Reminder

G (N) = − 1

4πqi

∮ √
(z − 1)2 − 4q zN−1dz

Leading behavior

For large N only the singularity with largest real part contributes
⇒ G (N) ≈ zN

0 = (1 + 2
√

q)N

Prefactor ∫ µc

µ0

(µc − µ)αeµNdµ ≈ Γ(1 + α)N−(1+α)eµcN

⇒ G (N) ∼ N−3/2(1 + 2
√

q)N
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Molten RNA Properties

Properties of molten RNA

G (N) ≈
(

1 + 2
√

q

4πq3/2

)1/2

N−3/2 (1 + 2
√

q)N

N−3/2 characteristic behavior due to entropy

Can be observed in pairing probability:

Pr{1 and k paired} = q
G (k)G (N − k)

G (N + 1)
∼ k−3/2 (N − k)−3/2

N−3/2
≈ k−3/2

Free energy is F = −RT lnG (N) ≈ −RTN ln(1 + 2
√

q)

For q � 1: F ≈ −RTN ln(2
√

q) = −RT
2 N ln(q) = N ε0

2

For q = 1: G (N) =number of secondary structures∼ N−3/23N .
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Molten-native transition
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1 Boltzmann partition function

2 Molten RNA
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4 Summary
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Molten-native transition Model

Model for molten-native transition

Observation

Structural RNAs have to fold into a specific “native” structure
⇒ there must be something in the sequence that prefers this structure

Model

Use perfect hairpin as native structure

1 N/2

N
Assign binding energy ε1 to all native base
pairs

Assign binding energy ε0 to all other base
pairs

1
1

N

N
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Molten-native transition Solution

Partition function

Definition

Let Z (N; q, q̃) be the partition function of the Gō model for the
molten-native transition with 2N − 2 bases, q = e−ε0/RT , and q̃ = e−ε1/RT

Definition

Let W (N; q) ≡ Z (N; q, q̃ = 0) be the partition function of the Gō model

for 2N − 2 bases in which native contacts are disallowed .

Observation

Z (N; q, q̃) =(p.f. with 0 native contacts) + (p.f. with 1 native contacts)
+ (p.f. with 2 native contacts) + . . .

=
+ +...+ +
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Molten-native transition Solution

Individual terms

0 native contacts

(p.f. with 0 native contacts) = = W (N; q)

⇒ z-transform: Ŵ (z)

1 native contact

(p.f. with 1 native contacts) = = q̃
∑N−1

k=1 W (k; q)W (N − k; q)

⇒ z-transform: q̃Ŵ 2(z)

2 native contacts

(p.f. with 2 native contacts) = =
q̃2

∑
1≤k1<k2<N W (k1; q)W (k2 − k1; q)W (N − k2; q)

⇒ z-transform: q̃2Ŵ 3(z)
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Molten-native transition Solution

Putting it all together

Summing up

+ +...+ +

Ẑ (z ; q̃, q) = Ŵ (z) + q̃Ŵ 2(z) + q̃2Ŵ 3(z) + . . . =
Ŵ (z)

1− q̃Ŵ (z)

What is Ŵ (z)?

For q̃ = q we have Z (N; q, q̃ = q) = G (2N − 1; q)

⇒ Ẑ (z ; q, q) = Ê (z ; q) ≡
∑∞

N=1 G (2N − 1; q)z−N

⇒ Ŵ (z) =
Ê (z)

1 + qÊ (z)
⇒ Ẑ (z ; q, q̃) =

Ê (z)

1− (q̃ − q)Ê (z)
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Molten-native transition Solution

Behavior of Ê (z)

Expression for Ê (z)

Ê (z) =
∑∞

N=1 G (2N − 1; q)z−N can be calculated similarly to Ĝ (z).

Ê (z) =
1

2q
− 1

4qz

[√
(z − 1)2 − 4q +

√
(z + 1)2 − 4q

]
.

Properties

Vanishes as z →∞
Square root branch cut at z0 = 1 + 2

√
q

Finite limit Ê (1 + 2
√

q) at branch cut

Other branch cuts have smaller real part 0 5 10 15 20z
0

0.05

0.1

E(
z)

z0

E(z )0
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Molten-native transition Solution

Singularity structure of Ẑ (z)

Candidate singularities

Ẑ (z ; q, q̃) =
Ê (z)

1− (q̃ − q)Ê (z)

Square root branch cut at z0 = 1 + 2
√

q

Pole at z1(q̃) given by Ê (z1) = 1/(q̃ − q) 0 5 10 15 20z
0

0.05

0.1

E(
z)

q−q~
1

z0

E(z )0

z (q)~
1

Dominant singularity

Square root branch cut at z0 if 1/(q̃ − q) > Ê (z0)

Pole at z1(q̃) if 1/(q̃ − q) < Ê (z0)

⇒ Phase transition
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Molten-native transition Results

Properties of molten-native transition

Characterization of phase transition

Critical bias q̃c = q + 1/Ê (z0)

If q̃ < q̃c regular molten behavior Z ∼ N−3/2(1 + 2
√

q)N

−→ native base pairs do not play any role

If q̃ > q̃c native behavior with Z ∼ N0z1(q̃)N

−→ finite fraction of native base pairs but still many “bubbles”

For q̃ � q̃c we get Z ∼ N0q̃N

−→ only native base pairs

Conclusion

It takes a finite amount of sequence bias to enforce a native structure.
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Summary
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Summary

Summary of part I

The partition function of RNA can be calculated in polynomial time

Asymptotic behavior for homogeneous RNA can be calculated by
analytical methods

The partition function of molten RNA has a characteristic N−3/2

behavior

It takes a finite amount of sequence bias to enforce a native structure.
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Force-extension experiments
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Force-extension experiments Motivation

Experimental methods to determine RNA structure

Experimental methods

X-ray crystallography

Nuclear Magnetic Resonance

Biochemical evidence: protection essays

Correlated mutation analysis

Problem

RNA is very floppy ⇒ two RNA molecules rarely have the same
three-dimensional structure

Idea

Look at one RNA molecule at a time.
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Force-extension experiments Experimental setup

Experimental setup

Attach ends of RNA molecule to two beads

Keep beads at fixed distance R with optical tweezers

Measure force f on beads as function of distance R

r

Ralf Bundschuh (Ohio State University) Modelling RNA structure July 25, 2007 33 / 98



Force-extension experiments Experimental setup

Measurement

Subject

P5ab hairpin of Tetrahymena thermophila group I intron

Data

(Liphardt, Onoa, Smith, Tinoco, and Bustamante, Science, 2001)
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Quantitative modeling

Outline of part II

5 Force-extension experiments

6 Quantitative modeling
Force from free energy
Secondary structures
Backbone
Putting it back together

7 Results for simple force-extension experiments

8 Nanopores

9 Summary
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Quantitative modeling Force from free energy

Calculating the force

r

Basic physics

energy = force · distance

Force from free energy

Need free energy F (r) at fixed end to end distance r ⇒ force f =
∂F (r)

∂r
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Quantitative modeling Force from free energy

Partition function I

r

Free energy from partition function

F (r) = −RT lnZ (r) ⇒ need partition function Z (r) at fixed distance r

Partition function

Z (r) =
∑

secondary structures S

∑
polymer configurations P with
distance r and structure S

e−
E [S]+E [P]

RT
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Quantitative modeling Force from free energy

Partition function II

r

Z (r) =
∑

secondary structures S

∑
polymer configurations P with
distance r and structure S

e−
E [S]+E [P]

RT

=
∑

secondary structures S

∑
polymer configurations P
of the “exterior bases” with
distance r and structure S

e−
E [S]+E [P]

RT

=
N∑

m=0

∑
secondary structures S
with m exterior bases

∑
polymer configurations P
of the “exterior bases” with
distance r and structure S

e−
E [S]+E [P]

RT
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Quantitative modeling Force from free energy

Partition function III

r

Z (r) =
N∑

m=0

∑
secondary structures S
with m exterior bases

∑
polymer configurations P
of the “exterior bases” with
distance r and structure S

e−
E [S]+E [P]

RT

=
N∑

m=0

∑
secondary structures S
with m exterior bases

e−
E [S]
RT

∑
polymer configurations P
of m “exterior bases”
with distance r

e−
E [P]
RT

=
N∑

m=0

 ∑
secondary structures S
with m exterior bases

e−
E [S]
RT


 ∑

polymer configurations P of ssRNA
with m bases with distance r

e−
E [P]
RT


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Quantitative modeling Force from free energy

Partition function IV

Z (r) =
N∑

m=0

Q(m)W (m, r)

with
Q(m) ≡

∑
secondary structures S
with m exterior bases

e−
E [S]
RT

and
W (m, r) ≡

∑
polymer configurations P of ssRNA
with m bases with distance r

e−
E [P]
RT
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Quantitative modeling Secondary structures

Recursion equation

Reminder Σ+=
jj−1kikjj−1ii j k+1k−1

Zi ,j = Zi ,j−1 +

j−1∑
k=i

Zi ,k−1e
− e(k,j)

RT Zk+1,j−1

Definition

Let Qj(m) be the partition function for the first j bases with exactly m
exterior bases (

�������������������
�������������������
�������������������
�������������������

1 j).

Generalization

�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������

������
������
������
������Σ+=

1 j 1 j−1 j k 1 k j−1 jk−1 k+1

Qj(m) = Qj−1(m − 1) +

j−1∑
k=1

Qk−1(m)e−
e(k,j)
RT Zk+1,j−1
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Quantitative modeling Secondary structures

Properties of recursion equation

�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������

������
������
������
������Σ+=

1 j 1 j−1 j k 1 k j−1 jk−1 k+1

Qj(m) = Qj−1(m − 1) +

j−1∑
k=1

Qk−1(m)e−
e(k,j)
RT Zk+1,j−1

Properties:

O(N3) complexity

Q(m) = QN(m)

Can be easily generalized to Turner parameters

Can be calculated by modifying the Vienna package
(Hofacker, Fontana, Stadler, Bonhoeffer, Tacker, and Schuster,
Monatshefte f. Chemie, 1994)
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Quantitative modeling Backbone

Polymer physics

Need

W (m, r) =
∑

polymer configurations P of ssRNA
with m bases with distance r

e−
E [P]
RT

Model

Elastic freely jointed chain

Persistence length 1.9nm/base distance 0.7nm

Partition function

Calculation of W (m, r) is standard polymer physics.
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Quantitative modeling Putting it back together

RNApull

Putting it together

Q(m), W (m, r)

−→ Z (r) =
N∑

m=0

Q(m)W (m, r)

−→ F (r) = −RT lnZ (r)

−→ f (r) =
∂F (r)

r

Web server

http://bioserv.mps.ohio-state.edu/rna
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Results for simple force-extension experiments
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Results for simple force-extension experiments Hairpin

Hairpin

Apply to P5ab hairpin of Tetrahymena thermophila group I intron

Quantitative agreement!

Ralf Bundschuh (Ohio State University) Modelling RNA structure July 25, 2007 46 / 98



Results for simple force-extension experiments A “real” molecule

The full group I intron

The group I intron of Tetrahymena thermophila

Group I intron contains pseudo-knot!

Quantitative modeling ignores pseudo-knot
⇒ known inactive conformation
(Pan and Woodson, J. Mol. Biol., 1998)
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Results for simple force-extension experiments Why the force-extension curve is smooth?

What’s happening?

Intermediate structure

Look at intermediate structure (here r =100nm)

Like “Socks on the clothes line”
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Results for simple force-extension experiments Why the force-extension curve is smooth?

What’s happening?

Compensation effect

Extension r is increased

One of the “socks” disappears

The other “socks” take up the slag

⇒ No rapid change in force as sock disappears

⇒ smooth force-extension curve
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Nanopores
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Nanopores Introduction

Nanopores

What is a nanopore?

A nanopore

is a little hole

is so small that only single-stranded but no double-stranded RNA can
pass through it

can be placed between two chambers such that there is only one
nanopore connecting the chambers
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Nanopores Introduction

Nanopores

Types of nanopores

natural ion channel (α-hemolysin)
(Meller, J. Phys. Cond. Mat., 2003)

solid state pore
(Storm et al., Nature Mat., 2003)
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Nanopores Force-extension experiments

Combining nanopores with force-extension experiments

Suggestion

Combine a nanopore with a force-extension setup

n nucleotides

r

f

"cis" "trans"

Prediction

The force will rise at every structural element

The structural elements will break in their order along the sequence
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Nanopores Force-extension experiments

Simulation approach

n nucleotides

r

f

"cis" "trans"

Simulation

Fix r(t) to be linear (set by experiment)

Degree of freedom: number n of base in the pore

At each time n can

increase:
−→ calculable gain in mechanical energy on the right
−→ potentially loss in binding energy calculable from E [S ]
decrease:
−→ calculable loss in mechanical energy on the right

Monte Carlo simulation (see also part III)
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Nanopores Force-extension experiments

Simulation result

Apply to group I intron of Tetrahymena thermophila
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Signature of every structural element

Can extract sequence position of stalling sites
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Nanopores Force-extension experiments

Structure reconstruction I

Repeat pulling in opposite direction
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(((((((((((....))......)))))))))...((((((((((......)))))))))).((((((((
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Match stalling sites by sequence comparison ⇒ reconstruct structure
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Nanopores Force-extension experiments

Structure reconstruction II
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Overall structure reconstructed correctly

Can distinguish different structures on the same sequence

Even pseudoknot reconstructed

“Just” needs to be implemented experimentally . . .
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Summary

Summary of part II

Quantitative description of single-molecule experiments possible

Force-extension curves do not reveal secondary structure information
due to compensation effects

Single-molecule experiments reveal structure information with the
help of a nanopore
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Motivation What is kinetics?

Kinetics introduction

Thermodynamics

What structure(s) does an RNA molecule take on?

Kinetics

How long does it take an RNA molecule to reach a certain structure?

Along which pathway does an RNA molecule get to a certain
structure?
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Motivation Why care about kinetics?

Why is kinetics important?

Why is kinetics a problem?

Take, say, a short RNA with 50 bases

Has roughly 2.650 = 6 · 1020 structures

Let’s be generous and say that it can explore a structure per
picosecond
⇒ it takes 500,000,000s≈ 18yr to explore all structures!

Processes that need to happen in time:

rRNA have to fold

riboswitches have to get from one configuration to another

terminator hairpins have to form in time for termination

RNA viruses have to be folded for packaging

splicing might depend on secondary structure
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Molecular Dynamics General principle

What is Molecular Dynamics?

Model an RNA molecule atom by atom

Add water and salt atom by atom or as an effective medium

Choose a force field

Integrate Newton’s equations
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Molecular Dynamics Pros and cons

Advantages and disadvantages of Molecular Dynamics

Advantages

First principle based modeling

Full three dimensional structure included

Disadvantages

Need many atoms (≈ 30 atoms per base)

Can only simulate very short sequences (10 base pairs)

Can only simulate very short times (at most µs)
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Molecular Dynamics Pros and cons

What can be done with MD?

Structural dynamics of very small building blocks:

Sorin et al., RNA simulations: probing hairpin unfolding and the
dynamics of a GNRA tetraloop, J. Mol. Biol. 2002

Sarzynska et al., Effects of base substitutions in an RNA hairpin from
molecular dynamics and free energy simulations, Biophys J. 2003

Hart et al., Molecular dynamics simulations and free energy
calculations of base flipping in dsRNA, RNA. 2005

Mazier et al., Molecular dynamics simulation for probing the flexibility
of the 35 nucleotide SL1 sequence kissing complex from HIV-1Lai
genomic RNA, J Biomol Struct Dyn. 2007

Nystrom et al.,Molecular dynamics study of intrinsic stability in six
RNA terminal loop motifs, J Biomol Struct Dyn. 2007
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Monte Carlo simulation
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Monte Carlo simulation Method

What is Monte Carlo dynamics?

Description of a system

State space

Energy for each state

Allowed transitions from state to state

Procedure

Choose random initial state S0

Repeat as often as necessary for i = 1, 2, 3, . . .:

Enumerate all states into which state Si−1 is allowed to transition.
Pick one of these states T randomly
Calculate ∆E ≡ E [S ]− E [T ]
If ∆E ≥ 0 let Si ≡ T
If ∆E < 0 pick a random number r
If r < e

∆E
RT let Si ≡ T , otherwise let Si ≡ Si−1
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Monte Carlo simulation Method

Properties of Monte Carlo dynamics

Boltzmann distribution

Transitions have to be chosen such that every state can be reached
from every other state

The sequence S0,S1, . . . visits each state with a frequency

proportional to its Boltzmann probability p = e−
E [S]
RT /Z

It avoids calculating a partition function

Monte Carlo and real time

In general, Monte Carlo dynamics has nothing to do with real
dynamics of system

Monte Carlo dynamics is a good representation of real dynamics if:

The allowed transitions correspond to true elementary steps of real
dynamics
There is a good physical reason for all downhill transitions occuring all
with the same rate k0

In this case, the real time is t = i/k0 for the ith stepRalf Bundschuh (Ohio State University) Modelling RNA structure July 25, 2007 71 / 98



Monte Carlo simulation Method

Numerical tricks

Gillespie sampling

Instead of accepting or rejecting a move, choose a move in every step but
increase time by a larger chunk if moves are unfavorable.
(Gillespie, J. Phys. Chem. 1977)

State clustering

If algorithm revisits the same state in a local minimum over and over
again, precalculate the distribution and residence time in local valley by
diagonalizing a reasonably sized matrix and directly choose a move that
leads out of the valley.
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Monte Carlo simulation Base pair level approach

The Vienna approach

Specification

States: all secondary structures

Energies: calculated by Turner model

Transitions:

Opening of a base pair

Closing of a base pair

Repairing of a base

Flamm et al., RNA folding at elementary step resolution, RNA 2000

kinfold program in Vienna package
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Monte Carlo simulation Base pair level approach

Properties

Validity

Every state can be reached from every other

Transitions are reasonable elementary steps

Closing of a base is an activated process itself with a roughly constant
free energy barrier

Time scales

Time for closing a base pair experimentally determined to be ≈ 1µs
⇒ Monte Carlo time is real time in µs

Time for closing a hairpin of length 4:

e
E [S]
RT µs ≈ e

4.1
0.6 µs ≈ 1ms
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Monte Carlo simulation Helix level approach

Isambert and Siggia approach

Specification

Precompute all possible helices of minimum length 3

States: all possible combinations of non-overlapping helices
(Note: this includes pseudo-knots!)

Energy:

Turner stacking energies for stacks
stick and string model for loop entropies

Transitions: formation and removal of a complete helix

Isambert and Siggia, Modeling RNA folding paths with pseudoknots:
Application to hepatitis delta virus ribozyme, PNAS 2000

Xayaphoummine et al., Kinefold web server for RNA/DNA folding path
and structure prediction including pseudoknots and knots, Nucleic Acids
Research 2005
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Monte Carlo simulation Helix level approach

Results I

Pseudoknots

Test on 7 relatively short RNA molecules with experimentally known
pseudoknots

For 5 out of the 7 correct pseudo-knotted is found

For 1 the pseudo-knotted structure is only marginally higher than
minimum energy structure

For 1 specific Mg binding is suspected

Isambert and Siggia, PNAS 2000
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Monte Carlo simulation Helix level approach

Results II

Kinetics

Folding of HDV ribozyme

1/3 of the time folds within a fraction of a second

2/3 of the time trapped for up to a minute

Molecule has to be functional after 4s to self-cleave!

If folding co-transcriptional only 10% of molecules get trapped

Isambert and Siggia, PNAS 2000

Ralf Bundschuh (Ohio State University) Modelling RNA structure July 25, 2007 77 / 98



Summary

Outline of part III

10 Motivation

11 Molecular Dynamics

12 Monte Carlo simulation

13 Summary

Ralf Bundschuh (Ohio State University) Modelling RNA structure July 25, 2007 78 / 98



Summary

Summary of part III

Dynamics of RNA folding is important for many biological processes

Molecular dynamics is useful to study fast structural changes of small
substructures

Monte Carlo simulations can describe folding of realistically sized
molecules

Monte Carlo simulations can describe folding including pseudo-knots

The elementary time scale for closing of a base pair on top of an
existing step is on the order of 1µs
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Introduction to microRNAs What are microRNAs

What is a micro RNA?

Definition

A microRNA is an approximately 22 nucleotide long RNA that regulates
expression of other genes

Properties

microRNA are post-transcriptional regulators

microRNA themselves are temporally and spatially regulated

There are most likely hundreds of microRNA in higher eukaryotes
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Introduction to microRNAs Biogenesis

How are microRNA made?

A microRNA is made in four steps:

1 Transcription of the primary RNA (pri-miRNA) by RNA polymerase
(in the nucleus)

2 Processing into hairpin-like RNAs called pre-miRNA (in the nucleus)

3 Cleavage into the mature microRNA by Dicer (in the cytoplasm)

4 Incorporation into the RNA-induced silencing complex (RISC)
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Introduction to microRNAs Functions

What do microRNA do?

In plants

microRNAs in RISC complexes bind to exactly complementary regions
of the mRNAs of target genes

The mRNA of the target gene is cut and degraded

In animals

microRNAs in RISC complexes bind to partially complementary
regions of the mRNAs of target genes

The mRNA of the target gene is prevented from translation

Processes microRNAs are known to be involved in

Development

Immune system

Cancer
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Introduction to microRNAs Computational problems

Computational problems

Gene finding problem

Given a genome sequence, predict the microRNA sequences of the
organism (in plants and animals).

Target prediction problem

Given a microRNA sequence, predict the genes that are regulated by that
microRNA (in animals).

Here, only talk about the target prediction problem
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First generation target prediction
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First generation target prediction Approaches

Approaches for Drosophila

Many algorithms proposed essentially simultaneously

For Drosophila:

Stark et al., Identification of Drosophila microRNA targets, PLoS
Biollogy (2003)

Enright et al., MicroRNA targets in Drosophila, Genome Biology
(2003)

Rajewsky and Socci, Computational identification of microRNA
targets, Developmental Biology (2004)
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First generation target prediction Approaches

Approaches for mammals

For mammals:

Lewis et al., Prediction of mammalian microRNA targets, Cell (2003)

John et al., Human MicroRNA targets, PLoS Biology (2004)

Kiriakidou et al., A combined computational-experimental approach
predicts human microRNA targets, Genes & Development (2004)

All approaches rather similar, but resulting predictions have only small
overlap

Here: Rajewsky and Socci
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First generation target prediction Algorithm

Features used in target prediction

Observations:

1 MicroRNA target sites are in 3’UTRs.

2 Although microRNAs are not exactly complementary to their targets
they always contain a nucleus of length 6-8 bases with exact
complementarity.

3 Even in the not exactly complementary regions, there is still a lot of
stabilizing base pairing.

4 MicroRNA–target relationships tend to be conserved across species.
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First generation target prediction Algorithm

Nucleus identification

Using observation 2: there is a nucleus

Assign to every base pairing stretch a score by the formula

score = wGC ·#GC base pairs + wAU ·#AU b.p. + wGU ·#GU b.p.

Use training sets of true targets and of true non-targets to choose
wGC , wAU , and wGU such that they maximize the distance between
expected scores of targets and non-targets
⇒ wGC = 5, wAU = 2, wGU = 0

Fix a p-value threshold

Score many random mRNA sequences for a given microRNA sequence
and determine the score cutoff that belongs to the p-value cutoff

Score all 3’UTR regions of interest and keep only those for which the
score exceeds the threshold.
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First generation target prediction Algorithm

Using other features

Using observation 3: other bases pair as well

Cut 40 base window around identified nucleus

Use MFOLD to predict binding energy of microRNA-mRNA hybrid

Keep only candidate targets with binding energy below −17.4kcal/mol

Using observation 4: targets are conserved

Keep only candidates for which a target is predicted in D. melanogaster as
well as in D. pseudoobscura
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First generation target prediction Results

Results

Test1

Search D. melanogaster hid transcript (not used in training) for bantam
sites:
⇒ 4 of the 5 experimentally known sites found, no false positive

Test2

Prediction of target sites for 74 D. melanogaster microRNAs in 31 body
patterning genes:
⇒ found 39 putative target sites, some of them make biological sense

Ralf Bundschuh (Ohio State University) Modelling RNA structure July 25, 2007 93 / 98



Current target prediction methods

Outline of part IV

14 Introduction to microRNAs

15 First generation target prediction

16 Current target prediction methods
Additional features
Performance

17 Summary
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Current target prediction methods Additional features

Additional features used for prediction

Position of nucleus in microRNA (5’ end)

Conservation of nucleus in large multiple sequence alignments

Absence of conservation outside nucleus

An A immediately upstream of the nucleus

Combinatorics of target sites for multiple microRNAs
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Current target prediction methods Performance

Performance comparison

Assay

Evaluate prediction method on 133 experimentally tested targets.
(Stark, Brennecke, Bushati, Russell, Cohen, Cell 2005)

Results

Best methods:

TargetScanS
(Stark et al.)

PicTar
(Grün et al.)
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Summary
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14 Introduction to microRNAs

15 First generation target prediction

16 Current target prediction methods

17 Summary

Ralf Bundschuh (Ohio State University) Modelling RNA structure July 25, 2007 97 / 98



Summary

Summary of part IV

microRNAs are a relatively new but important class of regulatory
RNAs

There are many programs for microRNA target prediction

The main features used for target prediction are stability of a nucleus,
stability of the full hybrid, and conservation between species

Best current algorithms (TargetScanS and PicTar) have about 90%
accuracy and 70%− 80% sensitivity

Reviews:

Issac Bentwich, Prediction of microRNAs and their targets, FEBS
Letters 2005
Nikolaus Rajewksy, microRNA target predictions in animals, Nature
Genetics 2006
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