Computational and physical models of RNA structure

Ralf Bundschuh

Ohio State University

July 25, 2007

Ralf Bundschuh (Ohio State University)

Modelling RNA structure

July 25, 2007 1 / 98

Outline of all lectures

- Part I : Statistical physics of RNA
- Part II : Quantitative modeling of force-extension experiments
- Part III : RNA folding kinetics
- Part IV : microRNA target prediction

- 2 Molten RNA
- 3 Molten-native transition

Outline of part I

- Secondary structure
- Partition function
- Recursion equation
- 2 Molten RNA
- 3 Molten-native transition

Definition of RNA secondary structure

Definition

An RNA secondary structure on an RNA sequence of length N is a set S of base pairs (i, j) with $1 \le i < j \le N$ that fulfill the following conditions:

- Each base is involved in at most one base pair
- No pseudoknots, i.e., if (i, j) and (k, l)are base pairs with i < k, either i < k < l < j or i < j < k < l

Diagrammatic representation

An RNA secondary structure can be represented by an arch diagram

- Every base is end point to at most one arch
- Two arches never cross
- One to one correspondance between arch diagrams that fulfil the above conditions and secondary structures

Energy models

- Each structure S has a certain (free) energy E[S]
- Different models possible
 - All base pairs are equal $E[S] = \varepsilon_0 |S|$ ($\varepsilon_0 < 0$)
 - Energy associated with base pairs $E[S] = \sum_{(i,j) \in S} e(i,j)$
 - Turner parameters (nearest neighbor model): energy associated with loops
 - Base pair stacks
 - Hairpin loops
 - Interior loops
 - Bulges
 - Multi-loops

Partition function

Definition

The partition function of an RNA molecule with energy function E[S] is given by

$$Z \equiv \sum_{S} e^{-\frac{E[S]}{RT}}$$

•
$$R = 1.987 \frac{cal}{mol \ K}$$

- Temperature T in Kelvin $\Rightarrow RT \approx 0.6 \frac{kcal}{mol}$
- Ensemble free energy $F = -RT \ln Z$
- Thermodynamics completely specified if partition function is known

Calculating partition functions

Definition

Let $Z_{i,j}$ be the partition function for the RNA molecule starting at base i and ending at base j. Denote this quantity by \overline{i} .

Observation

For the base pairing energy model the $Z_{i,j}$ obey the recursion equation

$$Z_{i,j} = Z_{i,j-1} + \sum_{k=i}^{j-1} Z_{i,k-1} e^{-\frac{e(k,j)}{RT}} Z_{k+1,j-1}$$

Calculate from shortest to longest substrands
 O(N³) algorithm for arbitrary sequence

Ralf Bundschuh (Ohio State University)

Modelling RNA structure

Outline of part I

2 Molten RNA

- Energy model
- z transform
- Properties

Energetics in molten phase

Definition

In the molten phase of RNA every base can pair with every other base equally well, i.e., $e(i,j) = \varepsilon_0$.

Properties

- Applies to repetitive sequences: AUAUAUAUAUAUAUAUAUAU, GCGCGCGCGCGCGCGCGCGCGC, GACGACGACGACGACGACGACGACGAC
- Applies to arbitrary sequences at temperatures close to denaturation on a coarse-grained level
- Minimum energy is always $\frac{N}{2}\varepsilon_0$
- Structural entropy plays a major role

Molten phase partition function

Simplification

In the molten phase the partition function depends only on the length j - i of the substrand, not on i and j individually: $Z_{i,j} \equiv G(j - i + 2)$

Consequence

$$G(N+1) = G(N) + q \sum_{k=1}^{N-1} G(k)G(N-k)$$
 with $q \equiv e^{-\frac{\varepsilon_0}{RT}}$

z transform

Definition

For any series Q(N) the *z* transform \widehat{Q} is defined as

$$\widehat{Q}(z) \equiv \sum_{N=1}^{\infty} Q(N) z^{-N}$$

Properties

- Function of the complex variable z
- Analytic outside a radius of convergence
- Discrete version of Fourier transform
- Back transform: $Q(N) = \frac{1}{2\pi i} \oint \widehat{Q}(z) z^{N-1} dz$

• Convolution property: $\sum_{k=1}^{N-1} \widetilde{Q(k)W}(N-k) = \widehat{Q}(z) \cdot \widehat{W}(z)$

z transform for molten RNA

 $\widehat{G}(z)$ can be calculated:

$$G(N+1) = G(N) + q \sum_{k=1}^{N-1} G(k)G(N-k)$$

$$G(N+1)z^{-N} = G(N)z^{-N} + qz^{-N} \sum_{k=1}^{N-1} G(k)G(N-k)$$

$$\sum_{N=1}^{\infty} G(N+1)z^{-N} = \widehat{G}(z) + q\widehat{G}^2(z)$$
$$z\widehat{G}(z) - G(1) = \widehat{G}(z) + q\widehat{G}^2(z)$$
$$z\widehat{G}(z) - 1 = \widehat{G}(z) + q\widehat{G}^2(z)$$

$$\widehat{G}(z) = \frac{1}{2q} \left[z - 1 - \sqrt{(z-1)^2 - 4q} \right]$$

Back transform I

Integral expression for G(N)

$$\begin{split} G(N) &= \frac{1}{2\pi i} \oint \widehat{G}(z) z^{N-1} \mathrm{d}z \\ &= \frac{1}{4\pi q i} \oint \left[z - 1 - \sqrt{(z-1)^2 - 4q} \right] z^{N-1} \mathrm{d}z \\ &= -\frac{1}{4\pi q i} \oint \sqrt{(z-1)^2 - 4q} z^{N-1} \mathrm{d}z \end{split}$$

Singularity structure

Back transform II

Reminder

$$G(N) = -\frac{1}{4\pi q i} \oint \sqrt{(z-1)^2 - 4q} \, z^{N-1} \mathrm{d}z$$

For large N only the singularity with largest real part contributes $\Rightarrow G(N) \approx z_0^N = (1 + 2\sqrt{q})^N$

Prefactor

$$\int_{\mu_0}^{\mu_c} (\mu_c - \mu)^{\alpha} e^{\mu N} d\mu \approx \Gamma(1 + \alpha) N^{-(1 + \alpha)} e^{\mu_c N}$$

 $\Rightarrow G(N) \sim N^{-3/2} (1 + 2\sqrt{q})^N$

Properties of molten RNA

$$G(N) pprox \left(rac{1+2\sqrt{q}}{4\pi q^{3/2}}
ight)^{1/2} \, N^{-3/2} \, (1+2\sqrt{q})^N$$

- $N^{-3/2}$ characteristic behavior due to entropy
- Can be observed in pairing probability:

$$\mathsf{Pr}\{1 \text{ and } k \text{ paired}\} = q \frac{G(k)G(N-k)}{G(N+1)} \sim k^{-3/2} \frac{(N-k)^{-3/2}}{N^{-3/2}} \approx k^{-3/2}$$

- Free energy is $F = -RT \ln G(N) \approx -RTN \ln(1 + 2\sqrt{q})$
- For $q \gg 1$: $F \approx -RTN \ln(2\sqrt{q}) = -\frac{RT}{2}N \ln(q) = N\frac{\varepsilon_0}{2}$
- For q = 1: G(N) =number of secondary structures $\sim N^{-3/2}3^N$.

Outline of part I

Boltzmann partition function

2 Molten RNA

Molten-native transition

- Model
- Solution
- Results

Model for molten-native transition

Observation

Structural RNAs have to fold into a specific "native" structure \Rightarrow there must be something in the sequence that prefers this structure

Model

- Use perfect hairpin as native structure 1 N/2 N
- Assign binding energy ε_1 to all native base pairs
- Assign binding energy ε_0 to all other base pairs

Partition function

Definition

Let $Z(N; q, \tilde{q})$ be the partition function of the Go model for the molten-native transition with 2N-2 bases, $q = e^{-\varepsilon_0/RT}$. and $\tilde{q} = e^{-\varepsilon_1/RT}$

Definition

Let $W(N; q) \equiv Z(N; q, \tilde{q} = 0)$ be the partition function of the Go model for 2N - 2 bases in which native contacts are disallowed \bigotimes .

Observation

 $Z(N; q, \tilde{q}) = (p.f. \text{ with 0 native contacts}) + (p.f. \text{ with 1 native contacts})$ + (p.f. with 2 native contacts) $+ \dots$ ∭ + ∭**X**∭ + ... + **11 X**∭ **1 X**∭ **1 X** + **1 X X X X X X**

Individual terms

0 native contacts

(p.f. with 0 native contacts) = $\bigotimes = W(N; q)$ $\Rightarrow z$ -transform: $\widehat{W}(z)$

1 native contact

(p.f. with 1 native contacts) = $\widetilde{q} \sum_{k=1}^{N-1} W(k;q) W(N-k;q)$ $\Rightarrow z$ -transform: $\widetilde{q} \widehat{W}^2(z)$

2 native contacts

(p.f. with 2 native contacts) =
$$V$$
 =
 $\tilde{q}^2 \sum_{1 \le k_1 < k_2 < N} W(k_1; q) W(k_2 - k_1; q) W(N - k_2; q)$
 $\Rightarrow z$ -transform: $\tilde{q}^2 \widehat{W}^3(z)$

Putting it all together

Summing up

4

$$\widehat{Z}(z;\widetilde{q},q) = \widehat{W}(z) + \widetilde{q}\widehat{W}^2(z) + \widetilde{q}^2\widehat{W}^3(z) + \ldots = \frac{\widehat{W}(z)}{1 - \widetilde{q}\widehat{W}(z)}$$

What is
$$\widehat{W}(z)$$
?
For $\widetilde{q} = q$ we have $Z(N; q, \widetilde{q} = q) = G(2N - 1; q)$
 $\Rightarrow \widehat{Z}(z; q, q) = \widehat{E}(z; q) \equiv \sum_{N=1}^{\infty} G(2N - 1; q)z^{-N}$
 $\Rightarrow \widehat{W}(z) = \frac{\widehat{E}(z)}{1 + q\widehat{E}(z)} \Rightarrow \widehat{Z}(z; q, \widetilde{q}) = \frac{\widehat{E}(z)}{1 - (\widetilde{q} - q)\widehat{E}(z)}$

Behavior of $\widehat{E}(z)$

Expression for $\widehat{E}(z)$

$$\widehat{E}(z) = \sum_{N=1}^{\infty} G(2N-1;q) z^{-N} \text{ can be calculated similarly to } \widehat{G}(z).$$
$$\widehat{E}(z) = \frac{1}{2q} - \frac{1}{4qz} \left[\sqrt{(z-1)^2 - 4q} + \sqrt{(z+1)^2 - 4q} \right].$$

Properties

- Vanishes as $z \to \infty$
- Square root branch cut at $z_0 = 1 + 2\sqrt{q}$
- Finite limit $\widehat{E}(1+2\sqrt{q})$ at branch cut
- Other branch cuts have smaller real part

Solution

Singularity structure of $\widehat{Z}(z)$

Candidate singularities

$$\widehat{Z}(z;q,\widetilde{q})=rac{\widehat{E}(z)}{1-(\widetilde{q}-q)\widehat{E}(z)}$$

• Square root branch cut at $z_0 = 1 + 2\sqrt{q}$

• Pole at
$$z_1(\widetilde{q})$$
 given by $\widehat{E}(z_1) = 1/(\widetilde{q}-q)$

Dominant singularity

• Square root branch cut at z_0 if $1/(\widetilde{q}-q)>\widehat{E}(z_0)$

• Pole at
$$z_1(\widetilde{q})$$
 if $1/(\widetilde{q}-q) < \widehat{E}(z_0)$

\Rightarrow Phase transition

Properties of molten-native transition

Characterization of phase transition

- Critical bias $\widetilde{q}_c = q + 1/\widehat{E}(z_0)$
- If $\tilde{q} < \tilde{q}_c$ regular molten behavior $Z \sim N^{-3/2}(1 + 2\sqrt{q})^N$ \longrightarrow native base pairs do not play any role
- If $\tilde{q} > \tilde{q}_c$ native behavior with $Z \sim N^0 z_1(\tilde{q})^N$ \longrightarrow finite fraction of native base pairs but still many "bubbles"

• For
$$\tilde{q} \gg \tilde{q}_c$$
 we get $Z \sim N^0 \tilde{q}^N$
 \longrightarrow only native base pairs

Conclusion

It takes a finite amount of sequence bias to enforce a native structure.

Outline of part I

- Boltzmann partition function
- 2 Molten RNA
- 3 Molten-native transition

Summary of part I

- The partition function of RNA can be calculated in polynomial time
- Asymptotic behavior for homogeneous RNA can be calculated by analytical methods
- The partition function of molten RNA has a characteristic $N^{-3/2}$ behavior
- It takes a finite amount of sequence bias to enforce a native structure.

Outline of part II

- 5 Force-extension experiments
- 6 Quantitative modeling
- Results for simple force-extension experiments

8 Nanopores

Outline of part II

Force-extension experiments

Motivation

5

Experimental setup

Quantitative modeling

7 Results for simple force-extension experiments

8 Nanopores

Summary

Experimental methods to determine RNA structure

Experimental methods

- X-ray crystallography
- Nuclear Magnetic Resonance
- Biochemical evidence: protection essays
- Correlated mutation analysis

Problem

RNA is very floppy \Rightarrow two RNA molecules rarely have the same three-dimensional structure

Idea

Look at one RNA molecule at a time.

Experimental setup

- Attach ends of RNA molecule to two beads
- Keep beads at fixed distance R with optical tweezers
- Measure force f on beads as function of distance R

(Liphardt, Onoa, Smith, Tinoco, and Bustamante, Science, 2001)

Ralf Bundschuh (Ohio State University)

Modelling RNA structure

Outline of part II

Force-extension experiments

Quantitative modeling

- Force from free energy
- Secondary structures
- Backbone
- Putting it back together

Results for simple force-extension experiments

8 Nanopores

Calculating the force

Basic physics energy = force \cdot distance

Force from free energy

Need free energy F(r) at fixed end to end distance $r \Rightarrow$ force $f = \frac{\partial F(r)}{\partial r}$

Partition function I

Free energy from partition function $F(r) = -RT \ln Z(r) \Rightarrow \text{ need partition function } Z(r) \text{ at fixed distance } r$

Partition function II

Ralf Bundschuh (Ohio State University)

Modelling RNA structure
Partition function III

Ralf Bundschuh (Ohio State University)

Modelling RNA structure

Partition function IV

$$Z(r) = \sum_{m=0}^{N} Q(m)W(m,r)$$

with

secondary structures S with m exterior bases

and

polymer configurations \mathcal{P} of ssRNA with m bases with distance r

Recursion equation

Reminder
$$\overline{\sum_{i=1}^{j=1} \sum_{j=1}^{j=1} \sum_{j=1}^{j=1} \sum_{k=i}^{j=1} \sum_{k=i}^{j=1} \sum_{k=i}^{j=1} Z_{i,k-1} e^{-\frac{e(k,j)}{RT}} Z_{k+1,j-1}$$

Definition

Let $Q_j(m)$ be the partition function for the first j bases with exactly m exterior bases (1 j).

Generalization

$$\frac{1}{1} = \frac{1}{1} + \sum_{k=1}^{j-1} \frac{1}{j} + \sum_{k=1}^{j-1} \frac$$

Ralf Bundschuh (Ohio State University)

Properties of recursion equation

$$\frac{1}{p_{j}} = \frac{1}{p_{j-1}} + \sum_{k=1}^{j-1} \frac{1}{p_{k-1}} + \sum_{k=1}^{j-1} \frac{1}{p_{k-1}} = \sum_{$$

Properties:

- $O(N^3)$ complexity
- $Q(m) = Q_N(m)$
- Can be easily generalized to Turner parameters
- Can be calculated by modifying the Vienna package (Hofacker, Fontana, Stadler, Bonhoeffer, Tacker, and Schuster, Monatshefte f. Chemie, 1994)

Polymer physics

Need

Model

- Elastic freely jointed chain
- Persistence length 1.9nm/base distance 0.7nm

201 0292 201 020 201 0200 201 0200

Partition function

Calculation of W(m, r) is standard polymer physics.

RNApull

Putting it together

$$Q(m), W(m, r)$$

$$\longrightarrow Z(r) = \sum_{m=0}^{N} Q(m)W(m, r)$$

$$\longrightarrow F(r) = -RT \ln Z(r)$$

$$\longrightarrow f(r) = \frac{\partial F(r)}{r}$$

Web server

http://bioserv.mps.ohio-state.edu/rna

Outline of part II

Force-extension experiments

Quantitative modeling

Results for simple force-extension experiments

- Hairpin
- A "real" molecule
- Why the force-extension curve is smooth?

8 Nanopores

Summary

Hairpin

Apply to P5ab hairpin of Tetrahymena thermophila group I intron

Quantitative agreement!

The full group I intron

The group I intron of Tetrahymena thermophila

- Group I intron contains pseudo-knot!
- Quantitative modeling ignores pseudo-knot
 ⇒ known inactive conformation
 (Pan and Woodson, J. Mol. Biol., 1998)

Computational result

No sign of secondary structure!

A "real" molecule

What's happening?

Intermediate structure

- Look at intermediate structure (here r=100nm)
- Like "Socks on the clothes line"

What's happening?

Compensation effect

- Extension *r* is increased
- One of the "socks" disappears

• The other "socks" take up the slag

- \Rightarrow No rapid change in force as sock disappears
- \Rightarrow smooth force-extension curve

Outline of part II

- 5 Force-extension experiments
- 6 Quantitative modeling
- Results for simple force-extension experiments

8 Nanopores

- Introduction
- Force-extension experiments

Summary

Nanopores

What is a nanopore?

A nanopore

- is a little hole
- is so small that only single-stranded but no double-stranded RNA can pass through it
- can be placed between two chambers such that there is only one nanopore connecting the chambers

Nanopores

Types of nanopores

natural ion channel (α -hemolysin) (Meller, J. Phys. Cond. Mat., 2003)

solid state pore (Storm et al., Nature Mat., 2003)

Combining nanopores with force-extension experiments

Suggestion

Combine a nanopore with a force-extension setup

Prediction

- The force will rise at every structural element
- The structural elements will break in their order along the sequence

Simulation approach

Simulation

- Fix r(t) to be linear (set by experiment)
- Degree of freedom: number *n* of base in the pore
- At each time *n* can
 - increase:
 - \longrightarrow calculable gain in mechanical energy on the right
 - \longrightarrow potentially loss in binding energy calculable from E[S]
 - decrease:
 - \longrightarrow calculable loss in mechanical energy on the right
- Monte Carlo simulation (see also part III)

Simulation result

Apply to group I intron of Tetrahymena thermophila

- Signature of every structural element
- Can extract sequence position of stalling sites

Structure reconstruction I

Repeat pulling in opposite direction

Match stalling sites by sequence comparison \Rightarrow reconstruct structure

Structure reconstruction II

- Overall structure reconstructed correctly
- Can distinguish different structures on the same sequence
- Even pseudoknot reconstructed
- "Just" needs to be implemented experimentally ...

Outline of part II

- Force-extension experiments
- Quantitative modeling
- 7 Results for simple force-extension experiments

8 Nanopores

Summary of part II

- Quantitative description of single-molecule experiments possible
- Force-extension curves do not reveal secondary structure information due to compensation effects
- Single-molecule experiments reveal structure information with the help of a nanopore

Outline of part III

12 Monte Carlo simulation

Outline of part III

Motivation

- What is kinetics?
- Why care about kinetics?
- 1 Molecular Dynamics
- 12 Monte Carlo simulation

Kinetics introduction

Thermodynamics

What structure(s) does an RNA molecule take on?

Kinetics

- How long does it take an RNA molecule to reach a certain structure?
- Along which pathway does an RNA molecule get to a certain structure?

Why is kinetics important?

Why is kinetics a problem?

- Take, say, a short RNA with 50 bases
- Has roughly $2.6^{50} = 6 \cdot 10^{20}$ structures
- Let's be generous and say that it can explore a structure per picosecond

 \Rightarrow it takes 500,000,000s \approx 18yr to explore all structures!

Processes that need to happen in time:

- rRNA have to fold
- riboswitches have to get from one configuration to another
- terminator hairpins have to form in time for termination
- RNA viruses have to be folded for packaging
- splicing might depend on secondary structure

Outline of part III

Molecular Dynamics

- General principle
- Pros and cons

12 Monte Carlo simulation

What is Molecular Dynamics?

- Model an RNA molecule atom by atom
- Add water and salt atom by atom or as an effective medium
- Choose a force field
- Integrate Newton's equations

Advantages and disadvantages of Molecular Dynamics

Advantages

- First principle based modeling
- Full three dimensional structure included

Disadvantages

- Need many atoms (\approx 30 atoms per base)
- Can only simulate very short sequences (10 base pairs)
- Can only simulate very short times (at most μs)

What can be done with MD?

Structural dynamics of very small building blocks:

- Sorin *et al.*, RNA simulations: probing hairpin unfolding and the dynamics of a GNRA tetraloop, J. Mol. Biol. 2002
- Sarzynska *et al.*, Effects of base substitutions in an RNA hairpin from molecular dynamics and free energy simulations, Biophys J. 2003
- Hart *et al.*, Molecular dynamics simulations and free energy calculations of base flipping in dsRNA, RNA. 2005
- Mazier *et al.*, Molecular dynamics simulation for probing the flexibility of the 35 nucleotide SL1 sequence kissing complex from HIV-1Lai genomic RNA, J Biomol Struct Dyn. 2007
- Nystrom *et al.*,Molecular dynamics study of intrinsic stability in six RNA terminal loop motifs, J Biomol Struct Dyn. 2007

Outline of part III

1 Molecular Dynamics

Monte Carlo simulation

- Method
- Base pair level approach
- Helix level approach

What is Monte Carlo dynamics?

Description of a system

- State space
- Energy for each state
- Allowed transitions from state to state

Procedure

- Choose random initial state S_0
- Repeat as often as necessary for $i = 1, 2, 3, \ldots$:
 - Enumerate all states into which state S_{i-1} is allowed to transition.
 - Pick one of these states T randomly
 - Calculate $\Delta E \equiv E[S] E[T]$
 - If $\Delta E \geq 0$ let $S_i \equiv T$
 - If $\Delta E < 0$ pick a random number r
 - If $r < e^{\frac{\Delta E}{RT}}$ let $S_i \equiv T$, otherwise let $S_i \equiv S_{i-1}$

Properties of Monte Carlo dynamics

Boltzmann distribution

- Transitions have to be chosen such that every state can be reached from every other state
- The sequence S_0, S_1, \ldots visits each state with a frequency proportional to its Boltzmann probability $p = e^{-\frac{E[S]}{RT}}/Z$
- It avoids calculating a partition function

Monte Carlo and real time

- In general, Monte Carlo dynamics has nothing to do with real dynamics of system
- Monte Carlo dynamics is a good representation of real dynamics if:
 - The allowed transitions correspond to true elementary steps of real dynamics
 - There is a good physical reason for all downhill transitions occuring all with the same rate $k_{\rm 0}$

the ith star

Ralf Bundschuh (Ohio State University)

Modelling RNA structure

Numerical tricks

Gillespie sampling

Instead of accepting or rejecting a move, choose a move in every step but increase time by a larger chunk if moves are unfavorable. (Gillespie, J. Phys. Chem. 1977)

State clustering

If algorithm revisits the same state in a local minimum over and over again, precalculate the distribution and residence time in local valley by diagonalizing a reasonably sized matrix and directly choose a move that leads out of the valley.

The Vienna approach

Specification

- States: all secondary structures
- Energies: calculated by Turner model
- Transitions:

Flamm et al., RNA folding at elementary step resolution, RNA 2000

kinfold program in Vienna package

Properties

Validity

- Every state can be reached from every other
- Transitions are reasonable elementary steps
- Closing of a base is an activated process itself with a roughly constant free energy barrier

Time scales

- Time for closing a base pair experimentally determined to be $\approx 1\mu s$ \Rightarrow Monte Carlo time is real time in μs
- Time for closing a hairpin of length 4:

$$e^{\frac{E[S]}{RT}}\mu spprox e^{rac{4.1}{0.6}}\mu spprox 1 ms$$

Helix level approach

Isambert and Siggia approach

Specification

- Precompute all possible helices of minimum length 3
- States: all possible combinations of non-overlapping helices (Note: this includes pseudo-knots!)
- Energy:
 - Turner stacking energies for stacks
 - stick and string model for loop entropies
- Transitions: formation and removal of a complete helix

Isambert and Siggia, Modeling RNA folding paths with pseudoknots: Application to hepatitis delta virus ribozyme, PNAS 2000

Xayaphoummine *et al.*, Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots, Nucleic Acids Research 2005
Results I

Pseudoknots

- Test on 7 relatively short RNA molecules with experimentally known pseudoknots
- For 5 out of the 7 correct pseudo-knotted is found
- For 1 the pseudo-knotted structure is only marginally higher than minimum energy structure
- For 1 specific Mg binding is suspected

Isambert and Siggia, PNAS 2000

Results II

Kinetics

- Folding of HDV ribozyme
- 1/3 of the time folds within a fraction of a second
- 2/3 of the time trapped for up to a minute
- Molecule has to be functional after 4s to self-cleave!
- If folding co-transcriptional only 10% of molecules get trapped

Isambert and Siggia, PNAS 2000

1 Molecular Dynamics

12 Monte Carlo simulation

Summary of part III

- Dynamics of RNA folding is important for many biological processes
- Molecular dynamics is useful to study fast structural changes of small substructures
- Monte Carlo simulations can describe folding of realistically sized molecules
- Monte Carlo simulations can describe folding including pseudo-knots
- The elementary time scale for closing of a base pair on top of an existing step is on the order of $1\mu s$

15 First generation target prediction

Introduction to microRNAs

- What are microRNAs
- Biogenesis
- Functions
- Computational problems

What is a micro RNA?

Definition

A microRNA is an approximately 22 nucleotide long RNA that regulates expression of other genes

Properties

- microRNA are post-transcriptional regulators
- microRNA themselves are temporally and spatially regulated
- There are most likely hundreds of microRNA in higher eukaryotes

How are microRNA made?

A microRNA is made in four steps:

- Transcription of the primary RNA (pri-miRNA) by RNA polymerase (in the nucleus)
- Processing into hairpin-like RNAs called pre-miRNA (in the nucleus)
- Oliver Cleavage into the mature microRNA by Dicer (in the cytoplasm)
- Incorporation into the RNA-induced silencing complex (RISC)

What do microRNA do?

In plants

- microRNAs in RISC complexes bind to exactly complementary regions of the mRNAs of target genes
- The mRNA of the target gene is cut and degraded

In animals

- microRNAs in RISC complexes bind to partially complementary regions of the mRNAs of target genes
- The mRNA of the target gene is prevented from translation

Processes microRNAs are known to be involved in

- Development
- Immune system
- Cancer

Computational problems

Gene finding problem

Given a genome sequence, predict the microRNA sequences of the organism (in plants and animals).

Target prediction problem

Given a microRNA sequence, predict the genes that are regulated by that microRNA (in animals).

Here, only talk about the target prediction problem

First generation target prediction

- Approaches
- Algorithm
- Results

Approaches for Drosophila

Many algorithms proposed essentially simultaneously

For *Drosophila*:

- Stark *et al.*, Identification of *Drosophila* microRNA targets, PLoS Biollogy (2003)
- Enright *et al.*, MicroRNA targets in *Drosophila*, Genome Biology (2003)
- Rajewsky and Socci, Computational identification of microRNA targets, Developmental Biology (2004)

Approaches for mammals

For mammals:

- Lewis et al., Prediction of mammalian microRNA targets, Cell (2003)
- John et al., Human MicroRNA targets, PLoS Biology (2004)
- Kiriakidou *et al.*, A combined computational-experimental approach predicts human microRNA targets, Genes & Development (2004)

All approaches rather similar, but resulting predictions have only small overlap

Here: Rajewsky and Socci

Features used in target prediction

Observations:

- MicroRNA target sites are in 3'UTRs.
- Although microRNAs are not exactly complementary to their targets they always contain a nucleus of length 6-8 bases with exact complementarity.
- Even in the not exactly complementary regions, there is still a lot of stabilizing base pairing.
- MicroRNA-target relationships tend to be conserved across species.

Algorithm

Nucleus identification

Using observation 2: there is a nucleus

Assign to every base pairing stretch a score by the formula

score = w_{GC} ·#GC base pairs + w_{AU} ·#AU b.p. + w_{GU} ·#GU b.p.

 Use training sets of true targets and of true non-targets to choose w_{GC} , w_{AU} , and w_{GU} such that they maximize the distance between expected scores of targets and non-targets

$$\Rightarrow$$
 $w_{GC}=$ 5, $w_{AU}=$ 2, $w_{GU}=$ 0

- Fix a *p*-value threshold
- Score many random mRNA sequences for a given microRNA sequence and determine the score cutoff that belongs to the p-value cutoff
- Score all 3'UTR regions of interest and keep only those for which the score exceeds the threshold.

Algorithm

Using other features

Using observation 3: other bases pair as well

- Cut 40 base window around identified nucleus
- Use MFOLD to predict binding energy of microRNA-mRNA hybrid
- Keep only candidate targets with binding energy below -17.4 kcal/mol

Using observation 4: targets are conserved

Keep only candidates for which a target is predicted in *D. melanogaster* as well as in D. pseudoobscura

Results

Test1

Search *D. melanogaster hid* transcript (not used in training) for *bantam* sites:

 \Rightarrow 4 of the 5 experimentally known sites found, no false positive

Test2

Prediction of target sites for 74 *D. melanogaster* microRNAs in 31 body patterning genes:

 \Rightarrow found 39 putative target sites, some of them make biological sense

Introduction to microRNAs

5 First generation target prediction

16 Current target prediction methods

- Additional features
- Performance

17 Summary

Additional features used for prediction

- Position of nucleus in microRNA (5' end)
- Conservation of nucleus in large multiple sequence alignments
- Absence of conservation outside nucleus
- An A immediately upstream of the nucleus
- Combinatorics of target sites for multiple microRNAs

Performance comparison

Assay

Evaluate prediction method on 133 experimentally tested targets. (Stark, Brennecke, Bushati, Russell, Cohen, Cell 2005)

- 4 Introduction to microRNAs
- 5 First generation target prediction
- 6 Current target prediction methods

Summary of part IV

- microRNAs are a relatively new but important class of regulatory RNAs
- There are many programs for microRNA target prediction
- The main features used for target prediction are stability of a nucleus, stability of the full hybrid, and conservation between species
- Best current algorithms (TargetScanS and PicTar) have about 90% accuracy and 70% 80% sensitivity
- Reviews:
 - Issac Bentwich, Prediction of microRNAs and their targets, FEBS Letters 2005
 - Nikolaus Rajewksy, microRNA target predictions in animals, Nature Genetics 2006