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1 Introduction

Bose–Einstein condensation (BEC) predicted by Einstein [1] and Bose [2] in 1924 was first
observed in alkali atomic vapors in 1995. In contrast to much older experiments with Helium
where strong interactions between the particles wash out most of the effects expected in a BEC
the relatively weak two–particle interaction in dilute alkali gases allows the study of properties of
BEC experimentally. Those experiments and the possibility of a theoretical description of weakly
interacting bosonic systems starting from fundamental quantum mechanics has stimulated a lot
of experimental and theoretical effort towards a deep understanding of BEC.

After the first experiments in 1995 had shown clear evidence of BEC the following ones
concentrated on investigating the properties of condensates. BEC has led to a better under-
standing of ultracold collisions between neutral atoms. It allows the determination of the s–wave
scattering length with a very high accuracy [3] and it was also possible to study Feshbach reso-
nances by applying external magnetic fields [3]. Also, studies of inelastic two– and three–particle
processes [4] were done in BEC. Even interactions between mixtures of Bose–condensates of dif-
ferent species of atoms [5, 6] as well as the coherence properties and relative phases of these
binary mixtures [7] have been studied experimentally. Furthermore a lot of effort has been put
in measuring collective excitations and phonon modes [8], the sound velocity [9], the structure
factor [10], the properties of particles coupled out of a condensate [11], and the initiation of
the condensation process [12]. By stirring or rotating a BEC quantized vortices [13] were ex-
perimentally created and their properties investigated in detail. It was even possible to achieve
vortex lattices [14] as shown in Fig. 1.

From 1999 the research on ultracold matter was boosted by first successful experiments on
loading BECs into optical lattices [15]. Optical lattices are created by the AC-Stark shift caused
by interfering laser beams and produce periodic trap potentials for the BEC atoms. The trap
parameters defined by an optical lattice can be controlled in a very wide range by the laser
parameters yielding a versatile trap geometry [16]. Optical lattices are ideally suited to produce
and study one and two dimensional BECs with the remaining degrees of freedom frozen out.
They also allow to alter the ratio of kinetic to interaction energy significantly with respect to
magnetically trapped BEC which led to a seminal experiment by M. Greiner [17] where an
optical lattice was used to adiabatically transform a BEC into a Mott insulating (MI) state.
While a BEC state is characterized by off-diagonal coherence over the whole size of the BEC
an MI state has a commensurate filling of lattice sites and does not show off-diagonal coherence
and consequently there are no particle number fluctuations. Experimentally vanishing of off-
diagonal coherence leads to vanishing interference fringes in the density profile after the particles
are released from the trap as shown in Fig. 2.

The advanced control over ultracold trapped bosonic atoms have led to a number of ap-
plications. They enabled experimentalists to extend their efforts from bosonic alkali atoms to
fermionic systems and even molecules. Starting from an atomic BEC molecules can be created
either by using Feshbach resonances [18] or by photoassociation [19]. Recently, BECs have also
been used successfully to sympathetically cool Fermigases [20] of weakly interacting atoms into
their degenerate regime. Ultracold neutral atoms can be used to study entanglement and for
quantum information processing [21, 22]. Condensates can be exploited for building a coher-
ent source of neutral atoms as shown in [11]. In summary, the creation of BEC has become a
standard task for experimentalists within the last few years. BECs have become common tools
of experimental atomic and molecular physics and are used in many experiments on ultracold
matter.

By using the Gross–Pitaevskii equation (GPE) [23] one can study most of the properties of
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Figure 1: Vortex lattice in a BEC.

a weakly interacting condensates theoretically. The GPE describes trapped weakly interacting
many particle bosonic systems by means of a macroscopic wavefunction at temperature T = 0.
The two–particle interaction potential is approximated by a contact potential and characterized
by the s–wave scattering length [24]. Depletion of the condensate [25], which becomes important
in strongly interacting systems, is neglected. The GPE also does not include thermal fluctuations
of the condensate. Although the approximations leading to the GPE seem rather severe many
of the macroscopic quantum mechanical effects that become visible in BEC experiments can be
described well by using the GPE.

The relative phase of a condensate used to describe interference between BECs has been
investigated in [26], theoretical studies on vortices and various other topological effects in a
BEC can be found in [27] and BECs with two or more components have been studied in [28].
Furthermore most of the theoretical work done on ultracold collisions [29] is in good agreement
with the experiments. Mean field theories that describe BEC at finite temperature have been
developed in [30, 31, 32]. The most powerful method to describe a BEC at finite temperature
is quantum kinetic theory which we will not discuss further here. Also the initiation of BEC is
well understood by using quantum kinetic theory. For BECs loaded into an optical lattice the
GPE and mean field theory may break down. An accurate model of this situation is provided
by the Bose-Hubbard Hamiltonian [16] which allows to treat the BEC as well as the MI limit.

We will now look at the most important properties of BECs. The overview given here
cannot be complete, it is merely a collection of some of the most important results and a list of
references. The reference include review articles considering different aspects of recent research
on cold atom physics in more detail [33, 34, 35].
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Figure 2: Inteference patterns of particles released from an optical lattice

2 BEC of an ideal Bose–gas in a trap

In this section we briefly present the basic properties of a trapped ideal bosonic gas in thermo-
dynamic equilibrium. We investigate a Bose–gas at temperature T = 0 and then extend the
desciption to finite temperatures.

2.1 Ideal Bose gas at zero temperature

2.1.1 Hamiltonian

The second quantized Hamiltonian Hid of a trapped non–interacting Bose gas is given by

Hid =
∫
d3xΨ†(x)

(
p2

2m
+ VT (x)

)
Ψ(x), (1)

where x is the coordinate space operator, p is the momentum operator and m denotes the mass
of the particles. Ψ(x) is the bosonic field operator obeying the usual bosonic commutation
relations [

Ψ(x),Ψ†(x′)
]

= δ(x− x′). (2)

The trapping potential is denoted by VT (x).

2.1.2 Eigenstates

In the non–interacting case it is most convenient to choose the eigenstates of the one particle
Hamiltonian

H1 =
p2

2m
+ VT (x), (3)
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as the set of mode functions for describing the many particle system. The eigenfunctions of H1

are written as φi(x), and the corresponding eigenvalues are εi. We will assume εi ≤ εj for i < j
and i, j to be positive integers. The eigenstates of the many particle system are written as

|ψ〉 = |n0, n1, ..., ni, ...〉 , (4)

where the ni give the number of particles occupying the one particle mode φi. The state of the
system is uniquely defined by |ψ〉 since the bosonic particles are indistinguishable [36].

2.1.3 Ground state

At temperature T = 0 the system is in its ground state. Since in the case of bosons quantum
statistics does not forbid an arbitrary number of particles to occupy a single one–particle state
[36] the ground state is immediately found to be given by

|ψ0〉 = |N, 0, 0, ...〉 , (5)

where N is the number of particles in the system. All N particles occupy the same one particle
state in this case, i.e. a macroscopic number of particles show the same quantum properties.
This can be viewed as a macroscopic manifestation of quantum mechanics.

2.2 What is a Bose–Einstein condensate?

A Bose–Einstein condensate is defined to be a macroscopic number of bosons that occupy the
same one–particle state [37] at a finite temperature T > 0. Given the density operator ρ of a
bosonic system one can find out whether the Bose–gas is condensed by diagonalizing the one
particle density operator ρ1 which is defined by

ρ1 = Tr 2,...,Nρ, (6)

where Tr 2,...,N denotes the trace over particles 2 to N . If one finds an eigenvalue Nc (belonging
to the mode function φc(x)) which is of the order of the total number of particles N in the system
then Nc particles are said to be condensed in the mode function φc(x). Note that in an ideal
Bose gas at T = 0 all particles occupy the single particle mode function φ0(x), however, in the
case of an interacting Bose–gas even at T = 0 not all the particles are condensed. Then no set of
mode functions exists where the ground state of the system can be written as |ψ0〉 = |N, 0, 0, ...〉
[25].

2.3 Thermodynamic properties

We discuss the thermodynamic properties of a trapped ideal bosonic gas in the grand canonical
ensemble. A detailed comparison of the behavior in the grand canonical, canonical, and micro
canonical ensemble can be found in [38].

2.3.1 Trapped ideal bose gas in the grand canonical ensemble

For simplicity we assume VT (x) to be harmonic and isotropic, i.e. VT (x) = mωx2/2, where ω is
the trap frequency. A system in the grand canonical ensemble is assumed be interacting with a
heat bath and allowed to exchange particles with a particle reservoir. The density operator in
thermal equilibrium is given by

ρG =
1
Zg
e−β(Hid−µN̂), (7)
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where β = 1/kT is the inverse temperature,

N̂ =
∫
d3xΨ(x)†Ψ(x) (8)

is the number operator, and µ, the chemical potential, fixes the mean number of particles N in
the system. Setting the ground state energy equal to zero we find the grand canonical partition
function defined by

Zg = Tr
{
e−β(Hid−µN̂)

}
, (9)

to be given by

Zg =
∞∏

j=0

(
1

1− Ze−β~ωj

) (j+1)(j+2)
2

, (10)

where Z = exp(βµ) is the fugacity. The mean number of particles in the system is given by

N =
∑

j

(j + 1)(j + 2)
2

nj , (11)

where nj is the number of particles in a one particle state with energy εj = ~ωj given by

nj =
1

Z−1eβ~ωj − 1
. (12)

Approximating the sum Eq. (11) by an integral and treating the ground state separately [36] we
find

N = n0 +
g3(Z)
(β~ω)3

, (13)

where n0 = Z/(1− Z) and g3(Z) is the Bose–function

g3(Z) =
1
2

∫ ∞

0

x2

Z−1ex − 1
. (14)

Thus in the thermodynamic limit N →∞, ω → 0 and ω3N = const. we find

n0

N
=

{
1−

(
T
Tc

)3
for T < Tc

0 for T ≥ Tc

, (15)

where the critical temperature Tc is defined by

kTc = ~ω
(
N

ζ(3)

)1/3

, (16)

with ζ(3) = g3(1) the Riemann–zeta function. We do not want to go into the details on how to
find the fluctuations in the grand canonical system since these can be found in [36].

The results obtained in the grand canonical ensemble agree rather well with current experi-
ments as long as no fluctuations are being calculated. Since in experimental setups no particle
reservoir is at thermal equilibrium with the Bose–gas the huge particle number fluctuations pre-
dicted by the grand canonical ensemble for particles in the ground state do not emerge in the
experiment.
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3 BEC of the weakly interacting Bose–gas

Even in dilute alkali Bose–gases as used in current BEC experiments two particle interactions
must not be neglected since they strongly influence the behavior of the Bose–gas. Some of the
interesting properties of Bose–Einstein condensates determined by the interaction are

• the formation of a BEC [39],

• the shape of the BEC mode function [23],

• collective excitations of a BEC [40],

• the quasiparticle spectrum [40],

• and the domain structure of two species BECs [28].

Also the evaporative cooling mechanism is based on the elastic thermalizing collisions between
two particles [41].

3.1 Two–particle interaction

The Hamiltonian of two interacting particles (without external trap potential) is given by

Hint =
p2

1

2m
+

p2
2

2m
+ V (x1 − x2) (17)

where pi and xi are the momentum and the coordinate space operators of particle i = 1, 2,
respectively. V (x1 − x2) is a short range potential with an s–wave scattering length denoted by
as usually of the order of a few Bohr radii a0 [3]. BEC experiments are commonly performed
in the limit where the thermal wave–length λT is much larger than the scattering length as.
Thus only s–wave scattering with a relative wave vector between the two particles k much
smaller than the inverse of the scattering length 1/as � k will be important. Outside the
range of the interaction potential its effect on s–waves is the same as if the potential was a
hard sphere potential with radius as [24]. The effect of a hard sphere potential is nothing more
than a boundary condition for the relative wave function of the two particles at r = as (with
r = x1−x2). As shown by K. Huang in [24] this boundary condition can be enforced by replacing
the interaction potential by a pseudo–potential of the form

V
(
x− x′

)
→ 4πas~2

m
δ
(
x− x′

)
. (18)

Note that this replacement yields correct results only for the wave function outside the range of
the actual interaction potential and thus the wave function of the relative motion has to extend
over a space with volume much larger than a3

s. Otherwise measurable quantities will strongly
depend on the form of the wave function within the range r < as where the pseudo–potential
approximation is not valid. In the many body case this condition is only satisfied if the mean
distance between the particles is much larger than the range of the interaction potential, i.e.,

η = na3
s � 1, (19)

where n is the particle density and η is called the gas parameter [42]. In current BEC experiments
η ≤ 10−4 and as/λT ≤ 10−2 and thus the pseudo–potential approximation is valid for describing
these experiments.
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3.2 The Gross–Pitaevskii equation (GPE)

In second quantization the Hamiltonian of the weakly interacting Bose–gas reads

H = Hid +
1
2

∫ ∞

−∞
d3xd3x′ Ψ†(x)Ψ†(x′)V

(
x− x′

)
Ψ(x′)Ψ(x), (20)

where according to Sec. 3.1 the interaction potential is given by Eq. (18). We assume the ground
state to be of the form

|Φ〉 =

(
a†0

)N

√
N !

|vac〉 , (21)

where |vac〉 denotes the vacuum state and the creation operator a†0 is given by

a†0 =
∫ ∞

−∞
d3xϕ0(x)Ψ†(x). (22)

We want to find the shape of the mode function ϕ0(x) by minimizing the expression

〈Φ|H − µN̂ |Φ〉 → min, (23)

which after some calculation leads to the Gross–Pitaevskii equation (GPE)(
−~2∇2

2m
+ VT (x) +Ng |ϕ0(x)|2 − µ

)
ϕ0(x) = 0, (24)

where g = 4πas~2/m. This derivation is one of the most intuitive and simple ways to find the
GPE. There are several other methods to obtain the GPE which are presented in [23, 43].

In the non–interacting limit as = 0 the GPE reduces to an eigenvalue equation with the
form of a time independent Schrödinger equation for the trap potential VT (x). This limit agrees
with the ideal gas limit Sec. 2, the chemical potential equals the ground state energy ε0 and
the mode function ϕ0(x) is the eigenfunction of the corresponding one particle Hamiltonian. In
the opposite limit where the interaction energy dominates the kinetic energy, i.e. ξ � R where
ξ = (8πasN/R

3)−1/2 is the healing length and R is the size of the condensate cloud, we can
neglect the kinetic term [23]. This approximation, called the Thomas–Fermi limit, yields the
wave function

ϕ0(x) =

{ √
1

Ng (µ− VT (x)) for µ > VT (x)

0 for µ < VT (x)
. (25)

3.3 The time dependent GPE

Performing the above variational calculation for a time dependent mode function ϕ0(x, t) yields
the time dependent GPE given by

i~
∂

∂t
ϕ0(x, t) =

(
−~2∇2

2m
+ VT (x) +Ng |ϕ0(x, t)|2

)
ϕ0(x, t). (26)

The applications of this equation have been studied in [43, 44]. We also want to mention the
stability analysis of BEC worked out by S.A. Gardiner et al. in [45] which also makes use of the
time dependent GPE.
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3.4 The quasiparticle spectrum

Now we want to investigate the quasiparticle spectrum along the lines of [40]. By assuming
spontaneous symmetry breaking [46] we write the bosonic field operator as the sum Ψ(x, t) =√
Nϕ0(x)+Ψ̃(x), where ϕ0(x) is the condensate wave function and Ψ̃(x) is assumed to be a small

correction. Inserting this into the grand canonical version of the Hamiltonian KB = H − µN̂
and neglecting all terms in Ψ̃(x) higher than quadratic yields

KB ≈ ζ +
∫
d3xΨ̃†(x)LΨ̃(x) +

Ng

2

∫
d3xΨ̃†(x)(ϕ0(x))2Ψ̃†(x)

+
Ng

2

∫
d3xΨ̃(x)(ϕ∗0(x))2Ψ̃(x), (27)

where ζ is a c–number and

L =
p2

2m
+ VT (x)− µ+ 2Ng|ϕ0(x)|2. (28)

This Hamiltonian KB may be diagonalized by using the Bogoliubov ansatz

Ψ̃(x) =
∑

j

(
uj(x)αj + v∗j (x)α†j

)
, (29)

where uj(x) and vj(x) satisfy the Bogoliubov de–Gennes equations

Luj(x) +Ng(ϕ0(x))2vj(x) = Ejuj(x), (30)

and
Lvj(x)−Ng(ϕ∗0(x))2uj(x) = −Ejvj(x). (31)

Up to a c–number the Hamiltonian then reads

KB =
∑

j

Ejα
†
jαj . (32)

KB thus describes a collection of noninteracting quasiparticles for which the condensate is the
vacuum.

Starting from this formalism linear response theory can be applied to study the behavior of
a BEC under small perturbations and small temperatures T � Tc. At larger temperatures it is
necessary to extend the mean field theory as e.g. in [30, 31, 32] for the effefcts of the thermal
cloud.

4 The Bose–Hubbard Model

If a BEC is loaded into an optical lattice the above description in terms of the GPE can become
invalid, there might not exist a macroscopic wave function describing the system properly any-
more. Here we discuss the extension of the theory for BECs loaded into a deep optical lattice
where the condensate character of the BEC can be destroyed. This treatment includes the GPE
as a limiting case.
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4.1 Optical potential

The optical potential V0(x) created by the AC-stark shift of two interfering laser beams is given
by

V0(x) = (Ω2
0/4δ) sin2(kx) ≡ V0 sin2(kx) (33)

where Ω0 is the Rabi frequency and δ the detuning of the lasers from the atomic transition. The
laser has a wave number k = 2π/λ with λ the laser wave length. The periodicity of the optical
lattice thus is a = λ/2. For simplicity we first consider 1D optical lattices. The extension to
several dimensions is straightforward and discussed in Sec. 4.9. We expand the optical potential
around its minimum to second order

V0(x) ≈ C +
mω2

Tx
2

2
, (34)

with the trapping frequency

ω2
T =

Ω2
0 |δ| k2

2δ2m
, (35)

and a constant C that is proportional to the light intensity in the center of the harmonic trap.
In a deep optical lattice where the atoms are localized at the potential minima of the optical
lattice and hopping between different lattice sites is negligible they will thus be trapped in a
harmonic potential with trap frequency ωT .

4.2 Bloch bands and Wannier functions

The optical potential is periodic in space and it is thus useful to work out the Bloch eigenstates

φ(n)
q (x) = eiqxu(n)

q (x), (36)

where q is the Bloch wave number and u(n)
q (x) are eigenstates of the Hamiltonian

Hq =
(p+ q)2

2m
+ V0(x), (37)

with energy E(n)
q and periodicity a of the optical potential V0(x), i.e.

Hqu
(n)
q (x) = E(n)

q u(n)
q (x). (38)

In Figure 3 the bandstructure (eigenenergies E(n)
q as a function of q) is shown for different depths

of the optical potential V0. For the lowest lying bands the separation of the different bands n
is approximately given by the frequency ωT while particles in higher bands with energies larger
than V0 behave as free particles. In the following we assume the particles to be in the lowest
band which implies cooling to temperatures T much lower than the trapping frequency ωT .

4.3 Wannier functions

A set of orthogonal normalized wave functions that fully describe particles in band n of the
optical potential and that are localized at the sites (regions around the potential minima) of the
optical lattice is given by the Wannier functions [47]

wn(x− xi) = N−1/2
∑

q

e−iqxiφ(n)
q (x), (39)
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Figure 3: Band structure of an optical lattice with the optical potential V0(x) = V0 sin2(kx) for
different depths of the potential: a) V0 = 5ER, b) V0 = 10ER, c) V0 = 15ER, and d) V0 = 25ER.

where xi is the position of the lattice site and N is a normalization constant. Figure 4 shows an
example of a Wannier function with n = 0. These Wannier functions w0(x − xi) tend towards
the gaussian ground state wave function localized in lattice sites with center at xi when V0 →∞
at constant k since we may then neglect all the terms involving the Bloch wave number q and it
is valid to approximate the optical potential by a harmonic potential. The advantages of using
Wannier functions w0(x− xi) to describe particles in the lowest band are that

• a mean position xi may be attributed to the particle if it is found to be in the mode
corresponding to the Wannier function w0(x− xi) (cf. Fig. 4) and

• local interactions between particles can be described easily since the dominant contribution
comes from particles located at the same position xi.
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Figure 4: Wannier function for an optical lattice with V0 = 10ER (with ER = k2/2m, the
recoil energy). Plot a) shows the mode function w0(x) (solid curve) and plot b) the probability
distribution w0(x)2 (solid curve) as a function of position x. The dashed curves indicate the
shape of the optical potential V0(x) = V0 sin2(kx).

4.4 GPE for optical lattices

In the case of a weak optical lattice potential where the interaction energy of two particles in a
lattice site does not dominate the dynamics and particles can still move easily between the lattice
sites the bose gas is well described by a GPE equation where the trap potential is replaced by
the sum of magnetic trap and optical lattice potential. By increasing the depth of the lattice the
description in terms of a GPE becomes invalid and the following description must be adopted.

4.5 Realizing the Bose–Hubbard Hamiltonian

We will now show how to reduce the Hamiltonian Hfull of many interacting particles in an optical
lattice to the Bose–Hubbard Hamiltonian. We start with

Hfull =
∫
dxψ†(x)

(
p2

2m
+ V0(x) + VT (x)

)
ψ(x)

+
g

2

∫
dxψ†(x)ψ†(x)ψ(x)ψ(x) (40)

with ψ (x) the bosonic field operator for atoms in the given internal atomic state |0〉, VT (x)
describes a (slowly varying compared to V0(x)) external trapping potential, e.g. a magnetic
trap. g is the interaction strength between the particles. We assume all the particles to be in
the lowest band of the optical lattice and expand the field operator in terms of the Wannier
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functions ψ(x) =
∑

i aiw
(0)(x − xi), where ai is the destruction operator for a particle in site

xi. w(0)(x− xi) is the three dimensional version of the Wannier functions discussed in Sec. 4.3.
We find

Hfull = −
∑
i,j

Jija
†
iaj +

1
2

∑
i,j,k,l

Uijkla
†
ia

†
jakal, (41)

where

Jij = −
∫
dxw0(x− xi)

(
p2

2m
+ V0(x) + VT (x)

)
w0(x− xj) (42)

and
Uijkl = g

∫
dxw0(x− xi)w0(x− xj)w0(x− xk)w0(x− xl). (43)

We first compare the interaction matrix element for particles in the same site U0000 with the
interaction matrix elements for particles in two adjacent sites U0101 and the interaction matrix
element U0001 as shown in Fig. 5a. We find the offsite interaction matrix elements U0101 and
U0001 to be more than one order of magnitude smaller than the onsite interaction matrix element
U0000 which allows us to neglect offsite interactions. Due to the orthogonality of the Wannier
functions hopping is only possible along the x, y and z directions. In Fig. 5b the hopping matrix
elements between nearest neighbors J01 and between 2nd J02 and 3rd J03 nearest neighbors
(along one of the axes) are compared with each other. For V0 > 5ER the latter are at least one
order of magnitude smaller than the hopping matrix elements between nearest neighbors and
may thus be neglected.

Therefore we arrive at the standard Bose–Hubbard Hamiltonian in the grand canonical
ensemble (i.e. we subtract µN̂)

HBH = −J
∑
〈i,j〉

a†iaj +
U

2

∑
i

a†ia
†
iaiai +

∑
i

(εi − µ)a†iai, (44)

where J ≡ J01 and U ≡ U0000. The terms εi arise from the additional (in comparison to the
localization of the Wannier functions slowly varying) trapping potential, and are given by

εi = VT (xi). (45)

J is called the hopping (tunneling) matrix element for a particle to jump from site xi to one of
the nearest neighbors xj , and 〈i, j〉 denotes all pairs of nearest neighbors. The chemical potential
µ acts as a Lagrangian multiplier to fix the mean number of particles in the grand canonical
case. The repulsive interaction between particles in the same site is described by the interaction
matrix element U > 0.

4.6 Connection between J and the bandstructure

In the case where U = 0 the Hamiltonian HBH Eq. (44) reduces to a tight binding model
Hamiltonian. We assume periodic boundary conditions and that the one particle eigenstates of
HBH are of the form

|Ψ〉 =
∑

n

eiαna†n |0〉 , (46)

with the constant α obeying the equation αl = 2πM where l is an integer. The eigenvalue
equation for |Ψ〉 reads

HBH |Ψ〉 = Eα |Ψ〉 , (47)

12



10
-1

10
0

10
1

10
2

H.O.

onsite

offsite

U a

E aSR

a)

10
-6

10
-4

10
-2

10
0

next neighbour

2nd and 3rd neighbour

0 10 20 30 40 50

V /E0 R

J/ER

b)

Figure 5: a) Comparison of on site U0000 (solid curve) to off site interactions U0101 (dash dotted
curve) and U0001 (dashed curve). The dashed curve labelled HO is the interaction matrix element
U0000 if the Wannier functions are approximated by the ground state wave function of a harmonic
oscillator approximating the optical potential around its minimum. b) Comparison of nearest
neighbor hopping J01 (solid curve) and hopping to the 2nd J02 (dashed curve) and 3rd J03 (dash
dotted curve) neighbors. All calculations presented in this figure are for a three dimensional
optical lattice with equal lattice properties in each direction x, y and z.

from which we find
−2J cos(α) = Eα. (48)

From Eq. (48) it is clear that the hopping matrix element is given by

J =
max(E(0)

q )−min(E(0)
q )

4
. (49)
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4.7 Approximate ground state

We characterize the ground state of HBH for εi = 0 for two limiting cases. In the case U � J the
system is dominated by the kinetic energy and the ground state turns out to be a BEC. In the
opposite limit U � J the repulsive interaction dominates and the particles are in an insulating
ground state.

4.7.1 Limit U � J

In this case the particles behave almost as if they were free. The ground state is thus approxi-
mately given by

|SF 〉 ∝ (a†1 + a†2 + a†3 · · · a
†
M )N |0〉 (50)

(see Fig. 6), where M is the number of lattice sites, N the number of particles, and |0〉 the
vacuum state. This ground state corresponds to a macroscopic occupation of the single particle
momentum eigenstate

ãk =
1√
M

∑
j

aje
−ikj (51)

with k = 0 of N particles
|SF 〉 = (ã†0)

N |0〉 (52)

and thus to the wave function of a BEC. This kind of state is shown in Fig. 6. In the limit U = 0
we obtain excitation energies for the lowest Bloch band εq = J(1 − cos(qa)) and therefore the
smallest excitation energy ε1 ∝ J/M2 which tends to 0 for large systems M → ∞. The mean
particle number in a lattice site is nj = N/M . The fluctuations of the particle number in the
ground state in lattice site j is given by

∆n2
j = 〈ψ|a†jaja

†
jaj |ψ〉 −

(
N

M

)2

=
N(M − 1)

M2
≈ N

M
. (53)

Therefore the particle number fluctuations remain finite for large systems M →∞.

4.7.2 Limit U � J

By increasing the repulsive interaction U compared to J a quantum phase transition (at tem-
perature T = 0) from the superfluid to a Mott–insulator phase takes place. It becomes less
favorable for the particles to jump from one site to the next, since the interaction between two
particles in one site increases the energy. For commensurate filling of the sites (i.e. N/M an
integer number) the ground state turns into a state where the number of particles per site is
integer and the particle number fluctuations tend to zero (see Fig. 6). The ground state is then
approximately given by

|MI〉 ∝
M∏
i=1

(
a†i

)N/M
|0〉 . (54)

The lowest excited states can then approximately be written as

|n, l〉 ∝ a†n
∏
j 6=l

a†j |0〉 (55)
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Figure 6: Ground and excited states of HBHM for J � U and J � U .

where n 6= l. These have an energy of U independent of the size of the system (gap). For large
U the ground state is thus insensitive to perturbations. The mean particle number for N = M
per site is then nj = 1 and the fluctuations are

∆n2
j = 0. (56)

The ground state is thus isolating, and is called a Mott Insulator (MI) and is shown in Fig. 6.
Commensurate filling means that N/M is an integer. Because of its well defined particle number
per lattice site and the vanishing particle number fluctuations this MI state is of particular
interest for quantum information processing. There MI atoms can function as quantum memory
bits (qubits).

4.8 Phase diagram of the Bose–Hubbard model

To give a more quantitative picture of the phase transition described above we will show some
results obtained by a Pade analysis by N. Elstner and H. Monien [48] for εi = 0. The calculations
there are carried out for a given chemical potential µ and thus for a fixed mean number of
particles corresponding to a grand canonical calculation. In this case the superfluid phase is
characterized by a finite order parameter 〈ai〉 6= 0 while in the Mott–insulator phase the order
parameter 〈ai〉 = 0 (For a fixed number of particles the order parameter is always zero). Figure
7 shows the phase diagram obtained in [48] for the square lattice in two dimensions. The phase
diagram shows the boundary between the Mott–insulator phase and the superfluid phase as a
function of J/U and µ/U . The two lobes represent Mott–insulator phases with one and two
particles per lattice site, respectively. If the chemical potential is increased further lobes with
larger number of particles per lattice site can be found. In [48] the boundary between the
superfluid and the Mott–insulator phase is found by calculating the energy difference of particle
and hole excitations from a Mott–insulator state |ΨMIC〉. The values of µ/U and J/U where this
energy difference vanishes defines the boundary between the two phases (for details see [48, 49]).
Using mean field calculations [50] one finds the condition

Uc = (3 + 2
√

2)JZ (57)
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Figure 7: Phase diagram obtained in [48]. The different curves represent different degrees of
approximation but are all very close to each other. The calculation was performed for a two
dimensional square lattice with Z = 4 nearest neighbors.

for the onset of the Mott–insulator phase with one particle per site, where Z is the number of
nearest neighbors of one cell. This estimate agrees well with more rigorous calculations like [48].

4.9 One– two– and three dimensional Bose–Hubbard model

The intensities of the laser beams producing the optical potentials in x, y and z direction can
be adjusted independently. Also the frequencies have to be adjusted such that the potentials
add and do not interfere. Choosing the laser intensity large enough tunneling along different
directions can selectively be turned off since the tunneling matrix element decreases rapidly for
large V0 (cf. Fig. 5b). By choosing the laser intensity large along one direction a two dimensional
Bose–Hubbard model can be realized whereas by choosing a large laser intensity along two
dimensions a one dimensional Bose–Hubbard model is created. The different situations are
shown in Fig. 8.

5 Experimental techniques

One of the ultimate goals of laser cooling is to achieve BEC in dilute gases. Due to reabsorption
of photons, spontaneous emission and various other heating and loss mechanism this goal has
still not been achieved by purely optical methods. Several other experimental techniques for
trapping cooling and probing neutral atoms had to be developed to achieve BEC. In this section
we will briefly describe the most important of those experimental techniques.
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1D 3D2D

Figure 8: One– two– and three dimensional Bose–Hubbard model. Hopping is only possible
along sites connected by lines. In the other directions hopping is turned off by choosing a large
laser intensity and thus producing high optical barrier.

5.1 Trapping neutral atoms

The first stage of creating a BEC is usually to load bosonic atoms into a Magneto–Optical–Trap
(MOT) and to cool the atoms by Doppler cooling. Then all the laser beams are turned off and
the precooled sample of atoms is loaded into a purely magnetic trap. There are various different
ways to trap neutral atoms in those magnetic traps. They all work in the adiabatic regime where
the spin of the atom follows the direction of a (possibly time averaged) magnetic field so that the
potential felt by the atoms only depends on the magnitude of the field but not on its direction.
One of the difficulties is to avoid Majorana spin flips [51] in positions where the magnetic field
is close to zero. The first magnetic trap that allowed trapping of neutral atoms and avoided the
spin flips was invented by E.A. Cornell [51]. The zero magnetic field appearing in the center
of two anti-Helmholtz coils is moved along a circle by an additional time dependent magnetic
field. The time averaged magnetic field felt by the atom is never zero and harmonic around the
center. In the first experiments by W. Ketterle and collaborators a blue detuned laser producing
a repulsive potential barrier at the center of a magnetic trap was used to prevent the atoms from
the region of zero magnetic field [52]. Also several other ways of trapping neutral atoms have
been invented like, e.g. the Joffe–Pritchard trap [53]. Later the group by W. Ketterle was even
able to load a magnetically trapped BEC into a purely optical trap [5].

5.2 Cooling in magnetic traps

The cooling mechanism used to achieve BEC is evaporative cooling [41]. The trapping potential
is truncated at a certain energy value Ecut such that only particles with an energy less than
Ecut can be trapped. Elastic collisions between the atoms trying to bring the gas into thermal
equilibrium produce highly energetic atoms with an energy larger than Ecut. They leave the
trap and take away more than the average energy of the trapped particles. The effect is twofold:
(i) the temperature of the gas cloud and thus its size shrinks which increases the particle density
and (ii) the number of particles and thus the density of the cloud decreases. In order for
evaporative cooling to work the effect (ii) has to be smaller than (i) so that the elastic collision
rate increases. This regime is called runaway evaporation. The conditions necessary to achieve
runaway evaporation are described in detail in [41].

We also want to mention that care has to be taken about the so called “bad” collisions.
These are the inelastic two and three particle collisions that change the hyperfine levels and lead
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to additional loss from the trap and heating. In certain species of atoms, e.g. in Cs inelastic
collisions have prevented successful BEC experiments up to now [54].

5.3 Probing a BEC

The experimental techniques on how to measure the properties of a BEC have also undergone
some development during the last few years. In the first experiments the BECs were probed
by time of flight measurements [55, 56] where the cloud of atoms is released from the trap
and allowed to expand for a certain time. After letting the cloud expand, its shape represents
the initial velocity distribution [57], and thus by imaging the atom cloud, density and velocity
profiles of the condensate can be measured. Note that this technique is destructive.

To allow for multiple measurements on a single condensate the MIT group developed the
phase contrast imaging method [58]. Phase shifts in a very far detuned laser beam induced by
the refractive index of the condensate are transformed into intensity variations of the laser. The
condensate is not destroyed by the far detuned laser beam so that it is possible to perform a
sequence of measurements on a single condensate. Also it has become possible to do quantitative
non-destructive measurements of the surface area of a condensate [59].
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6 Problems

1. Ideal Bose gas in a power law potential:

Consider an ideal Bose gas in 3D trapped by a trapping potential of the form U(x) = κr3/δ

where κ, δ are constants and r is the distance from the origin. The case δ = 3/2 corresponds
to a harmonic oscillator trap and δ = 0 is a box potential.

The Hamiltonian Ĥ =
∑N

i=1 ĥi of the ideal Bose gas with N particles is given by

ĥi =
p̂2

i

2m
+ κr̂3/δ. (58)

(i) Calculate the semiclassical approximation to the density of states ρ(ε) of the trapped
Bose gas. For which temperatures T may this semiclassical density of states be used
for finding the thermodynamic properties of the Bose gas.

(ii) Find the grand canonical partition function ZG.

(iii) Deduce the equation for the number of particles N(T,Z, κ, δ), where Z = exp(µ/kBT )
is the fugacity of the system and kB the Boltzmann constant.
Remark: For finite particle number N we always have Z < 1. How can a thermo-
dynamic limit be defined in this case?

(iv) Determine the maximum number of particles which can occupy the excited one par-
ticle states. Find the critical temperature Tc.

(v) Show that for very large particle numbers the number of condensate particles is given
by

N0

N
= 1−

(
T

Tc

)3/2+δ

(59)

for T < Tc and N0 = 0 for T ≥ Tc where N0 = Z/(1−Z) is the number of condensate
particles.

(vi) Numerically find the value of Z for given N and T from the above results. Plot N0/N
as a function of T/Tc for N = 100, 103, 107,∞ for δ = 3/2 and δ = 0.

(vii) For δ = 3/2 compare the semiclassical result with exact quantum calculations.

2. The Gross-Pitaevskii equation (GPE) in 3D:

(i) Derive the GPE starting from the Hamiltonian Eq. (20) and the ansatz for the wave
function Eq. (21).

(ii) Discuss the meaning of the healing length and investigate the validity of the Thomas-
Fermi approximation.

(iii) Calculate the ground state wave function for a harmonic oscillator trap potential in
Thomas Fermi approximation.

(iv) Find the dependence of the chemical potential µ on the number of condensate parti-
cles.

(v) Calculate the potential and interaction energy in Thomas Fermi approximation

(vi) Use the ansatz ϕ0(x) =
√
ρ(x) exp(iS(x)) for the GPE wave function with real

functions ρ and S and find evolution equations for ρ and S from the time dependent
GPE. Investigate similarities and difference with hydrodynamics. In which limit is
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the quantum pressure term (this is the term that makes the difference between the
GPE and hydrodynamics) negligible? What are the properties of the BEC in this
case?

3. Bose-Hubbard model:

(i) Starting from Eq. (20) derive the Bose-Hubbard Hamiltonian (BHM) for a potential
consisting of a harmonic trap superimposed by an optical lattice.

(ii) Calculate the ground state of the BHM in the limit U = 0 and the opposite limit
J = 0.

(iii) Approximate the Wannier functions by ground state wave functions of harmonic
oscillators (centered at the potential minima and for frequency ωT ) and calculate the
hopping matrix element J and the interaction strength U as a function of the optical
lattice depth V0 for a given scattering length as.
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