Rapidly rotating Bose-Einstein condensates*

Alexander Fetter, Stanford University

$$
\text { Singapore, November, } 2007
$$

1. Physics of one vortex line in harmonic trap
2. Experimental creation and detection of vortices
3. Vortex arrays in mean-field Thomas-Fermi regime
4. Vortex arrays in mean-field quantum-Hall regime
5. Behavior for $\Omega \rightarrow \omega_{\perp}$

1 Physics of one vortex line in harmonic trap

Assume general axisymmetric trap potential

$$
V_{\mathrm{tr}}(\boldsymbol{r})=V_{\mathrm{tr}}(r, z)=\frac{1}{2} M\left(\omega_{\perp}^{2} r^{2}+\omega_{z}^{2} z^{2}\right)
$$

Basic idea (Bogoliubov): for weak interparticle potentials, nearly all particles remain in condensate for $T \ll T_{c}$

- for ideal gas at $T=0$, all particles are in condensate.
- hence treat occupation of non-condensate as small
- dilute: s-wave scattering length $a_{s} \ll$ interparticle spacing $n^{-1 / 3}$
- equivalently, require $n a_{s}^{3} \ll 1$
- assume self-consistent condensate wave function $\Psi(\boldsymbol{r})$
- gives nonuniform condensate density $n(\boldsymbol{r})=|\Psi(\boldsymbol{r})|^{2}$
- for $T \ll T_{c}$, normalization requires $N=\int d V|\Psi(\boldsymbol{r})|^{2}$
- assume an energy functional

$$
E[\Psi]=\int d V[\underbrace{\Psi^{*}\left(\mathcal{T}+V_{\text {tr }}\right) \Psi}_{\text {harmonic oscillator }}+\underbrace{\frac{1}{2} g|\Psi|^{4}}_{2 \text {-body term }}]
$$

where $\mathcal{T}=-\hbar^{2} \nabla^{2} / 2 M$ is kinetic energy operator and $g=4 \pi a_{s} \hbar^{2} / M$ is interaction coupling parameter

- balance of kinetic energy $\langle\mathcal{T}\rangle$ and trap energy $\left\langle V_{\text {tr }}\right\rangle$ gives mean oscillator length $d_{0}=\sqrt{\hbar / M \omega_{0}}$ where $\omega_{0}=\left(\omega_{\perp}^{2} \omega_{z}\right)^{1 / 3}$ is geometric mean
- balance of kinetic energy $\langle\mathcal{T}\rangle$ and interaction energy $\langle g n\rangle$ gives healing length

$$
\xi=\frac{\hbar}{\sqrt{2 M g n}}=\frac{1}{\sqrt{8 \pi a_{s} n}}
$$

- with fixed normalization and μ the chemical potential, variation of $E[\Psi]$ gives Gross-Pitaevskii (GP) eqn

$$
\left(\mathcal{T}+V_{\operatorname{tr}}+g|\Psi|^{2}\right) \Psi=\mu \Psi
$$

- can interpret nonlinear term as a Hartree potential $V_{H}(\boldsymbol{r})=g n(\boldsymbol{r})$, giving interaction with nonuniform condensate density
- generalize to time-dependent GP equation

$$
i \hbar \frac{\partial \Psi}{\partial t}=\left(\mathcal{T}+V_{\mathrm{tr}}+V_{H}\right) \Psi
$$

- this result implies that stationary solutions have time dependence $\exp (-i \mu t / \hbar)$

Introduce hydrodynamic variables

- write $\Psi(\boldsymbol{r}, t)=|\Psi(\boldsymbol{r}, t)| \exp [i S(\boldsymbol{r}, t)]$ with phase S
- condensate density is $n(\boldsymbol{r}, t)=|\Psi(\boldsymbol{r}, t)|^{2}$
- current is

$$
\boldsymbol{j}=\frac{\hbar}{2 M i}\left[\Psi^{*} \nabla \Psi-\Psi \nabla \Psi^{*}\right]=|\Psi|^{2} \frac{\hbar \boldsymbol{\nabla} S}{M}
$$

- identify last factor as velocity $\boldsymbol{v}=\hbar \boldsymbol{\nabla} S / M$
- note that \boldsymbol{v} is irrotational so $\boldsymbol{\nabla} \times \boldsymbol{v}=0$
- general property: circulation around contour \mathcal{C} is

$$
\oint_{\mathcal{C}} d \boldsymbol{l} \cdot \boldsymbol{v}=\frac{\hbar}{M} \oint_{\mathcal{C}} d \boldsymbol{l} \cdot \nabla S=\left.\frac{\hbar}{M} \Delta S\right|_{\mathcal{C}}
$$

$$
\text { since } \boldsymbol{v}=\hbar \boldsymbol{\nabla} S / M
$$

- change of phase $\left.\Delta S\right|_{\mathcal{C}}$ around \mathcal{C} must be integer times 2π since Ψ is single-valued
- hence circulation in BEC is quantized in units of $\kappa \equiv$ $2 \pi \hbar / M$
- rewrite time-dependent GP equation in terms of $|\Psi|$ and S
- imaginary part gives conservation of particles

$$
\frac{\partial n}{\partial t}+\boldsymbol{\nabla} \cdot(n \boldsymbol{v})=0
$$

- real part gives generalized Bernoulli equation

Presence of harmonic trap yields much richer system than a uniform interacting Bose gas [5]

- trap gives new energy scale $\hbar \omega_{0}$ and new length scale $d_{0}=\sqrt{\hbar / M \omega_{0}}$
- assume repulsive interactions with $a_{s}>0$
- trap leads to new dimensionless parameter $N a_{s} / d_{0}$
- typical value of ratio of lengths: $a_{s} / d_{0} \sim 10^{-3}$
- but $N a_{s} / d_{0}$ is large for typical $N \sim 10^{6}$
- in strong repulsive limit ($N a_{s} / d_{0} \gg 1$), condensate expands to mean radius $R_{0} \gg d_{0}$
- neglect radial gradient of Ψ when $R_{0} \gg d_{0}$
- GP equation then simplifies and gives local density

$$
\frac{4 \pi a_{s} \hbar^{2}}{M}|\Psi(r, z)|^{2}=\mu-V_{\operatorname{tr}}(r, z)
$$

[called Thomas-Fermi (TF) limit]

- harmonic trap produces quadratic density variation with condensate dimensions $R_{j}^{2}=2 \mu /\left(M \omega_{j}^{2}\right)$

One vortex line in trapped BEC

First assume bulk condensate with uniform density n and a single straight vortex line along z axis

- Gross and Pitaevskii $[6,7]$: take condensate wave function

$$
\Psi(\boldsymbol{r})=\sqrt{n} e^{i \phi} f(r / \xi)
$$

where r and ϕ are two-dimensional polar coordinates

- speed of sound is $s=\sqrt{g n / M}$
- assume $f(0)=0$ and $f(r / \xi) \rightarrow 1$ for $r \gg \xi$
- velocity has circular streamlines with $\boldsymbol{v}=(\hbar / M r) \hat{\boldsymbol{\phi}}$
- this is a quantized vortex line with $\oint d \boldsymbol{l} \cdot \boldsymbol{v}=2 \pi \hbar / M$ - $v \sim s$ when $r \sim \xi$, so vortex core forms by cavitation
- equivalently, centrifugal barrier gives vortex core of radius ξ

Static behavior of a vortex line in axisymmetric trap

$$
V_{\mathrm{tr}}(r, z)=\frac{1}{2} M\left(\omega_{\perp}^{2} r^{2}+\omega_{z}^{2} z^{2}\right)
$$

- If $\omega_{z} \gg \omega_{\perp}$, strong axial confinement gives disk-shaped condensate
- If $\omega_{\perp} \gg \omega_{z}$, strong radial confinement gives cigar-shaped condensate
- for vortex on axis, condensate wave function is

$$
\Psi(\boldsymbol{r}, z)=e^{i \phi}|\Psi(r, z)|
$$

- velocity is $\boldsymbol{v}=(\hbar / M r) \hat{\boldsymbol{\phi}}$, like uniform condensate
- centrifugal energy again forces wave function to vanish for $r \lesssim \xi$
- density is now toroidal; hole along symmetry axis
- TF limit: separated length scales with

$$
\xi(\text { vortex core }) \ll d_{0}(\text { mean oscillator length })
$$

d_{0} (mean oscillator length) $\ll R_{0}$ (mean condensate radius)

- hence TF density is essentially unchanged by vortex apart from small hole along the vortex core

Energy of rotating TF condensate with one vortex

- use density of vortex-free TF condensate; cut off the logarithmic divergence at core radius ξ
- if condensate is in rotational equilibrium at angular velocity $\boldsymbol{\Omega}$, the appropriate energy functional is [8] $E^{\prime}[\Psi]=E[\Psi]-\boldsymbol{\Omega} \cdot \boldsymbol{L}[\Psi]$ where \boldsymbol{L} is the angular momentum
- let E_{0}^{\prime} be energy of rotating vortex-free condensate
- let $E_{1}^{\prime}\left(r_{0}, \Omega\right)$ be energy of a rotating condensate with straight vortex that is displaced laterally by distance r_{0} from symmetry axis
- approximation of straight vortex works best for disk-shaped condensate $\left(\omega_{z} \gtrsim \omega_{\perp}\right)$
- Difference of these two energies is energy associated with formation of vortex $\Delta E^{\prime}\left(r_{0}, \Omega\right)=E_{1}^{\prime}\left(r_{0}, \Omega\right)-E_{0}^{\prime}$
- $\Delta E^{\prime}\left(r_{0}, \Omega\right)$ depends on position r_{0} of vortex and on Ω

Plot $\Delta E^{\prime}\left(r_{0}, \Omega\right)$ as function of ζ_{0} for various fixed $\Omega[9]$, where $\zeta_{0}=r_{0} / R_{0}$ is scaled displacement from center
curve (a) is $\Delta E^{\prime}\left(r_{0}, \Omega\right)$ for $\Omega=0$

- $\Delta E^{\prime}\left(r_{0}, 0\right)$ decreases monotonically with increasing ζ_{0}
- curvature is negative at $\zeta_{0}=0$
- for no dissipation, fixed energy means constant ζ_{0}
- only allowed motion is uniform precession at fixed r_{0}
- angular velocity is given by variational Lagrangian $\operatorname{method}[10,11,3] \dot{\phi}_{0} \propto-\partial E\left(r_{0}\right) / \partial r_{0}$
- precession arises from nonuniform trap potential (not image vortex) and nonuniform condensate density
- in presence of weak dissipation, vortex moves to lower energy and slowly spirals outward

As Ω increases, curvature near $\zeta_{0}=0$ decreases

- curve (b) is when curvature near $\zeta_{0}=0$ vanishes
- it corresponds to angular velocity

$$
\Omega_{m}=\frac{3}{2} \frac{\hbar}{M R_{\perp}^{2}} \ln \left(\frac{R_{\perp}}{\xi}\right)
$$

- for $\Omega \gtrsim \Omega_{m}$, energy $\Delta E^{\prime}\left(\zeta_{0}, \Omega\right)$ has local minimum near $\zeta_{0}=0$
- dissipation would now drive vortex back toward the symmetry axis
- Ω_{m} is angular velocity for onset of metastability
- vortex at center is locally stable for $\Omega>\Omega_{m}$, but not globally stable, since $\Delta E^{\prime}\left(0, \Omega_{m}\right)$ is positive

2 Experimental creation/detection of vortices in dilute trapped BEC

- first vortex made at JILA (1999) [12]
- use nearly spherical ${ }^{87} \mathrm{Rb}$ condensate containing two different hyperfine components
- use coherent (Rabi) process to control interconversion between two components
- spin up condensate by coupling the two components with a stirring perturbation
- turn off coupling, leaving one component with trapped quantized vortex surrounding nonrotating core of other component
- use selective tuning to make nondestructive image of either component

- this vortex with large filled core precesses around trap center
- can also create vortex with (small) empty core [13] that also precesses
- theory predicts $\dot{\phi} / 2 \pi \approx 1.58 \pm 0.16 \mathrm{~Hz}$, and
- experiment finds $\dot{\phi} / 2 \pi \approx 1.8 \pm 0.1 \mathrm{~Hz}$
- see no outward radial motion for $\sim 1 \mathrm{~s}$, so dissipation is small on this time scale

École Normale Supérieure (ENS) in Paris studied vortex creation in elongated rotating cigar-shaped condensate with one component $[14,15]$

- used off-center toggled rotating laser beam to deform the transverse trap potential and stir the condensate at an applied frequency $\Omega / 2 \pi \lesssim 200 \mathrm{~Hz}$

- find vortex appears at a critical frequency $\Omega_{c} \approx 0.7 \omega_{\perp}$ (detected by expanding the condensate, which now has a disk shape, with vortex core as expanded hole)
- vortex nucleation is dynamical process associated with surface instability (quadrupole oscillation)
- ENS group observed small vortex arrays of up to 11 vortices (arranged in two concentric rings)

- like patterns predicted and seen in superfluid ${ }^{4} \mathrm{He}[16]$

- MIT group has prepared considerably larger rotating condensates in less elongated trap
- they have observed triangular vortex lattices with up to 130 vortices [17]

- like Abrikosov lattice of quantized flux lines (which are charged vortices) in type-II superconductors
- JILA group has now made large rotating condensates with several hundred vortices and angular velocity $\Omega / \omega_{\perp} \approx 0.995$ [18]
- these rapidly rotating systems open many exciting new possibilities (discussed below)

3 Vortex arrays in mean-field Thomas-Fermi regime

Feynman's mean vortex density in a rotating superfluid

- solid-body rotation has $\boldsymbol{v}_{\mathrm{sb}}=\boldsymbol{\Omega} \times \boldsymbol{r}$
- $\boldsymbol{v}_{\mathrm{sb}}$ has constant vorticity $\boldsymbol{\nabla} \times \boldsymbol{v}_{\mathrm{sb}}=2 \boldsymbol{\Omega}$
- each quantized vortex at \boldsymbol{r}_{j} has localized vorticity

$$
\boldsymbol{\nabla} \times \boldsymbol{v}=\frac{2 \pi \hbar}{M} \delta^{(2)}\left(\boldsymbol{r}-\boldsymbol{r}_{j}\right) \hat{\boldsymbol{z}}
$$

- assume \mathcal{N}_{v} vortices uniformly distributed in area \mathcal{A} bounded by contour \mathcal{C}
- circulation around \mathcal{C} is $\mathcal{N}_{v} \times 2 \pi \hbar / M$
- but circulation in \mathcal{A} is also $2 \Omega \mathcal{A}$
- hence vortex density is $n_{v}=\mathcal{N}_{v} / \mathcal{A}=M \Omega / \pi \hbar$
- area per vortex $1 / n_{v}$ is $\pi \hbar / M \Omega \equiv \pi l^{2}$ which defines radius $l=\sqrt{\hbar / M \Omega}$ of circular cell
- intervortex spacing $\sim 2 l$ decreases like $1 / \sqrt{\Omega}$
- analogous to quantized flux lines (charged vortices) in type-II superconductors

As Ω increases, the mean vortex density $n_{v}=M \Omega / \pi \hbar$ increases linearly following the Feynman relation

- in addition, centrifugal forces expand the condensate radially, so that the area πR_{\perp}^{2} also increases
- hence the number of vortices $\mathcal{N}_{v}=n_{v} \pi R_{\perp}^{2}=M \Omega R_{\perp}^{2} / \hbar$ increases faster than linearly with Ω
- conservation of particles implies that the condensate also shrinks axially
- TF approximation assumes that interaction energy $\left.\left.\langle g| \Psi\right|^{4}\right\rangle$ and trap energy $\left.\left.\left\langle V_{\mathrm{tr}}\right| \Psi\right|^{2}\right\rangle$ are large relative to kinetic energy for density variations $\left(\hbar^{2} / M\right)\left\langle(\nabla|\Psi|)^{2}\right\rangle$
- radial expansion of rotating condensate means that central density eventually becomes small

Quantitative description of rotating TF condensate Kinetic energy of condensate involves

$$
\frac{\hbar^{2}}{2 M} \int d V|\nabla \Psi|^{2}=\underbrace{\int d V \frac{1}{2} M v^{2}|\Psi|^{2}}_{\text {superflow energy }}+\underbrace{\frac{\hbar^{2}}{2 M} \int d V(\boldsymbol{\nabla}|\Psi|)^{2}}_{\text {density variation }}
$$

where $\Psi=\exp (i S)|\Psi|$ and $\boldsymbol{v}=\hbar \nabla S / M$ is flow velocity

- generalized TF approximation: retain the energy of superflow but ignore the energy from density variation
- this approximation will fail eventually when vortex lattice becomes dense and cores start to overlap
- in rotating frame, generalized TF energy functional is

$$
\begin{gathered}
E^{\prime}[\Psi]=\int d V\left[\left(\frac{1}{2} M v^{2}+V_{\mathrm{tr}}-M \Omega \cdot \boldsymbol{r} \times \boldsymbol{v}\right)|\Psi|^{2}\right. \\
\left.+\frac{1}{2} g|\Psi|^{4}\right]
\end{gathered}
$$

- here, \boldsymbol{v} is flow velocity generated by all the vortices

For $\boldsymbol{\Omega}$ along z, can complete square and rewrite $E^{\prime}[\Psi]$ as

$$
\begin{array}{r}
E^{\prime}[\Psi]=\int d V[\frac{1}{2} M(\underbrace{\boldsymbol{v}-\boldsymbol{\Omega} \times \boldsymbol{r}}_{\boldsymbol{v}-\boldsymbol{v}_{\mathrm{sb}}})^{2}|\Psi|^{2}+\frac{1}{2} M \omega_{z}^{2} z^{2}|\Psi|^{2} \\
\\
\left.+\frac{1}{2} M\left(\omega_{\perp}^{2}-\Omega^{2}\right) r^{2}|\Psi|^{2}+\frac{1}{2} g|\Psi|^{4}\right]
\end{array}
$$

- in the rotating frame, the dominant effect of the dense vortex array is that spatially averaged flow velocity \boldsymbol{v} is close to $\boldsymbol{\Omega} \times \boldsymbol{r}=\boldsymbol{v}_{\mathrm{sb}}$
- hence can ignore first term in $E^{\prime}[\Psi]$, giving

$$
\begin{array}{r}
E^{\prime}[\Psi] \approx \int d V\left[\frac{1}{2} M \omega_{z}^{2} z^{2}|\Psi|^{2}+\frac{1}{2} M\left(\omega_{\perp}^{2}-\Omega^{2}\right) r^{2}|\Psi|^{2}\right. \\
\left.+\frac{1}{2} g|\Psi|^{4}\right]
\end{array}
$$

- E^{\prime} now looks exactly like TF energy for nonrotating condensate but with a reduced radial trap frequency $\omega_{\perp}^{2} \rightarrow \omega_{\perp}^{2}-\Omega^{2}$

Hence TF wave function depends explicitly on Ω through the altered radial trap frequency $\omega_{\perp}^{2} \rightarrow \omega_{\perp}^{2}-\Omega^{2}$

$$
|\Psi(r, z)|^{2}=n(0)\left(1-\frac{r^{2}}{R_{\perp}^{2}}-\frac{z^{2}}{R_{z}^{2}}\right)
$$

where

$$
R_{\perp}^{2}=\frac{2 \mu}{M\left(\omega_{\perp}^{2}-\Omega^{2}\right)} \quad \text { and } \quad R_{z}^{2}=\frac{2 \mu}{M \omega_{z}^{2}}
$$

- for pure harmonic trap, must have $\Omega<\omega_{\perp}$ to retain radial confinement
- normalization $\int d V|\Psi|^{2}=N$ shows that

$$
\frac{\mu(\Omega)}{\mu(0)}=\left(1-\frac{\Omega^{2}}{\omega_{\perp}^{2}}\right)^{2 / 5}
$$

in three dimensions

- central density given by $n(0)=\mu(\Omega) / g$
- $n(0)$ decreases with increasing Ω because of reduced radial confinement
- TF formulas for condensate radii show that
$\frac{R_{z}(\Omega)}{R_{z}(0)}=\left(1-\frac{\Omega^{2}}{\omega_{\perp}^{2}}\right)^{1 / 5}, \quad \frac{R_{\perp}(\Omega)}{R_{\perp}(0)}=\left(1-\frac{\Omega^{2}}{\omega_{\perp}^{2}}\right)^{-3 / 10}$
confirming axial shrinkage and radial expansion
- for nonzero Ω, aspect ratio changes

$$
\frac{R_{z}(\Omega)}{R_{\perp}(\Omega)}=\frac{\sqrt{\omega_{\perp}^{2}-\Omega^{2}}}{\omega_{z}}
$$

- this last effect provides an important diagnostic tool to determine actual angular velocity $\Omega[19,18]$

- measured aspect ratio [18] indicates that Ω / ω_{\perp} can become as large as ≈ 0.993

How uniform is the vortex array?
The analysis of the TF density profile $\left|\Psi_{T F}\right|^{2}=n_{T F}$ in the rotating condensate assumed that the flow velocity \boldsymbol{v} was precisely the solid-body value $\boldsymbol{v}_{\mathrm{sb}}=\boldsymbol{\Omega} \times \boldsymbol{r}$

- this led to the cancellation of the contribution

$$
\int d V(\boldsymbol{v}-\boldsymbol{\Omega} \times \boldsymbol{r})^{2} n_{T F}
$$

in the TF energy functional

- a more careful study [20] shows that there is a small nonuniformity in the vortex lattice
- specifically, each regular vortex lattice position vector \boldsymbol{r}_{j} experiences a small displacement field $\boldsymbol{u}(\boldsymbol{r})$, so that $\boldsymbol{r}_{j} \rightarrow \boldsymbol{r}_{j}+\boldsymbol{u}\left(\boldsymbol{r}_{j}\right)$
- as a result, the two-dimensional vortex density changes to

$$
n_{v}(\boldsymbol{r}) \approx \overline{n_{v}}(1-\boldsymbol{\nabla} \cdot \boldsymbol{u})
$$

where $\overline{n_{v}}=M \Omega / \pi \hbar$ is the uniform Feynman value

- variation with respect to \boldsymbol{u} yields an Euler-Lagrange equation that can be solved to give

$$
\boldsymbol{u}(\boldsymbol{r}) \approx \frac{\bar{l}^{2}}{4 R_{\perp}^{2}} \ln \left(\frac{\bar{l}^{2}}{\xi^{2}}\right) \frac{\boldsymbol{r}}{1-r^{2} / R_{\perp}^{2}}
$$

where $\pi \bar{l}^{2}=1 / \overline{n_{v}}$ can be taken as the area of a circular vortex cell inside the slowly varying logarithm

- the deformation of the regular vortex lattice is purely radial (as expected from symmetry)
- $R_{\perp}^{2} / \bar{l}^{2}$ is the number of vortices \mathcal{N}_{v} in the rotating condensate, so that the nonuniform distortion is small, of order $1 / \mathcal{N}_{v}$ (at most a few $\%$), even though the TF number density $n_{T F}$ changes dramatically near edge
- correspondingly, the vortex density becomes

$$
n_{v}(r) \approx \overline{n_{v}}-\frac{1}{2 \pi R_{\perp}^{2}} \ln \left(\frac{\bar{l}^{2}}{\xi^{2}}\right) \frac{1}{\left(1-r^{2} / R_{\perp}^{2}\right)^{2}}
$$

(the correction is again of order $1 / \mathcal{N}_{v}$)

- recent JILA experiments [21] confirm these predicted small distortions for relatively dense vortex lattices [note suppressed zero for Figs. (a)-(d); Fig. (e) shows that effect is small]

Tkachenko oscillations of the vortex lattice

Tkachenko (1966) [22] studied equilibrium arrangement of a rotating vortex array as model for superfluid ${ }^{4} \mathrm{He}$

- assumed two-dimensional incompressible fluid with straight vortices
- showed that a triangular lattice has lowest energy in rotating frame
- small perturbations about equilibrium positions had unusual collective motion in which vortices undergo nearly transverse wave of lattice distortions (like twodimensional transverse "phonons" in vortex lattice, but with no change in fluid density)
- for long wavelengths (small k), Tkachenko found a linear dispersion relation $\omega_{k} \approx c_{T} k$
- speed of Tkachenko wave $c_{T}=\sqrt{\frac{1}{4} \hbar \Omega / M}=\frac{1}{2} \hbar / M \bar{l}$, where $\bar{l}=\sqrt{\hbar / M \Omega}$ is radius of circular vortex cell

In a rotating two-dimensional gas, the compressibility becomes important, as shown by Sonin $[23,24]$ and Baym [25]

- let the speed of sound in the compressible gas be c_{s}
- coupling between the vortices and the compressible fluid leads to generalized dispersion relation

$$
\omega^{2}=c_{T}^{2} \frac{c_{s}^{2} k^{4}}{4 \Omega^{2}+c_{s}^{2} k^{2}}
$$

- if $c_{s} k \gg \Omega$, recover Tkachenko's result $\omega=c_{T} k$ (short-wavelength incompressible limit)
- but if $c_{s} k \ll \Omega$ (long wavelength), mode becomes soft with $\omega \propto k^{2}$
- Sonin [24] obtains dynamical equations for waves in a nonuniform condensate, along with appropriate boundary conditions at the outer surface
- Baym [25] uses theory for uniform condensate plus approximate boundary conditions from Anglin and Crescimanno [26]
- rough agreement with JILA experiments [27] on low-lying Tkachenko modes in rapidly rotating BEC (up to $\Omega / \omega_{\perp} \approx 0.975$)

- A is $1 / 4$ period after weak perturbation (note deformation of lines of vortices)
- B is $3 / 4$ period after weak perturbation (note reversed deformation of lines of vortices)

4 Vortex arrays in mean-field quantum-Hall regime

Lowest-Landau-Level (quantum-Hall) behavior
When the vortex cores overlap, kinetic energy associated with density variation around each vortex core becomes important

- hence the TF approximation breaks down (it ignores this kinetic energy from density variations)
- return to full GP energy $E^{\prime}[\Psi]$ in the rotating frame.
- in this limit of rapid rotations $\left(\Omega \lesssim \omega_{\perp}\right)$, Ho [28] incorporated kinetic energy exactly
- condensate expands and is effectively two dimensional
- for simplicity, treat a two-dimensional condensate that is uniform in the z direction over a length Z
- condensate wave function $\Psi(\boldsymbol{r}, z)$ can be written as $\sqrt{N / Z} \psi(\boldsymbol{r})$, where $\psi(\boldsymbol{r})$ is a two-dimensional wave function with unit normalization $\int d^{2} r|\psi|^{2}=1$

General two-dimensional energy functional in rotating frame becomes
$E^{\prime}[\psi]=\int d^{2} r \psi^{*}(\underbrace{\frac{p^{2}}{2 M}+\frac{1}{2} M \omega_{\perp}^{2} r^{2}-\Omega L_{z}}_{\text {one-body oscillator } \mathcal{H}_{0}}+\underbrace{\frac{1}{2} g_{2 D}|\psi|^{2}}_{\text {interaction }}) \psi$,
where $\boldsymbol{p}=-i \hbar \boldsymbol{\nabla}, L_{z}=\hat{\boldsymbol{z}} \cdot \boldsymbol{r} \times \boldsymbol{p}$, and $g_{2 D}=N g / Z$
One-body oscillator hamiltonian in rotating frame \mathcal{H}_{0} is exactly soluble and has eigenvalues [29]

$$
\epsilon_{n m}=\hbar\left[\omega_{\perp}+n\left(\omega_{\perp}+\Omega\right)+m\left(\omega_{\perp}-\Omega\right)\right]
$$

where n and m are non-negative integers

- in limit $\Omega \rightarrow \omega_{\perp}$, these eigenvalues are essentially independent of m (massive degeneracy)
- n becomes the Landau level index
- lowest Landau level with $n=0$ is separated from higher states by gap $\sim 2 \hbar \omega_{\perp}$

Large radial expansion means small central density $n(0)$, so that interaction energy $g n(0)$ eventually becomes small compared to gap $2 \hbar \omega_{\perp}$

Hence focus on "lowest Landau level" (LLL), with $n=0$ and general non-negative $m \geq 0$

- ground-state wave function is Gaussian $\psi_{00} \propto e^{-r^{2} / 2 d_{\perp}^{2}}$
- general LLL eigenfunctions have a very simple form

$$
\psi_{0 m}(\boldsymbol{r}) \propto r^{m} e^{i m \phi} e^{-r^{2} / 2 d_{\perp}^{2}}
$$

- here, $d_{\perp}=\sqrt{\hbar / M \omega_{\perp}}$ is analogous to the "magnetic length" in the Landau problem
- in terms of a complex variable $\zeta \equiv x+i y$, these LLL eigenfunctions become

$$
\psi_{0 m} \propto \zeta^{m} e^{-r^{2} / 2 d_{\perp}^{2}} \propto \zeta^{m} \psi_{00}
$$

with $m \geq 0$ (note that $\zeta=r e^{i \phi}$ when expressed in two-dimensional polar coordinates)

- apart from ground-state Gaussian ψ_{00}, this is just ζ^{m} (a non-negative power of the complex variable)
- assume that the GP wave function is a finite linear combination of these LLL eigenfunctions

$$
\psi_{L L L}(\boldsymbol{r})=\sum_{m \geq 0} c_{m} \psi_{0 m}(\boldsymbol{r})=f(\zeta) e^{-r^{2} / 2 d_{\perp}^{2}}
$$

where $f(\zeta)=\sum_{m \geq 0} c_{m} \zeta^{m}$ is an analytic function of the complex variable ζ

- specifically, $f(\zeta)$ is a complex polynomial and thus can be factorized as $f(\zeta)=\prod_{j}\left(\zeta-\zeta_{j}\right)$ apart from overall constant
- $f(\zeta)$ vanishes at each of the points $\left\{\zeta_{j}\right\}$, which are the positions of the zeros of $\psi_{L L L}$
- in addition, phase of wave function increases by 2π whenever ζ moves around any of these zeros $\left\{\zeta_{j}\right\}$
- we conclude that the LLL trial solution has singly quantized vortices located at positions of zeros $\left\{\zeta_{j}\right\}$
- basic conclusion: vortices are nodes in the condensate wave function
- spatial variation of number density $n(\boldsymbol{r})=\left|\psi_{L L L}(\boldsymbol{r})\right|^{2}$ is determined by spacing of the vortices
- core size is comparable with the intervortex spacing $\bar{l}=\sqrt{\hbar / M \Omega}$ which is simply d_{\perp} in the limit $\Omega \approx \omega_{\perp}$
- unlike TF approximation at lower Ω, wave function $\psi_{L L L}$ automatically includes all the kinetic energy
- since LLL wave functions play a crucial role in the quantum Hall effect (two-dimensional electrons in a strong magnetic field), this LLL regime has been called "mean-field quantum-Hall" limit [30]
- note that we are still in the regime governed by GP equation, so there is still a BEC
- corresponding many-body ground state is simply a Hartree product with each particle in same one-body solution $\psi_{L L L}(\boldsymbol{r})$, namely

$$
\Psi_{G P}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \cdots, \boldsymbol{r}_{N}\right) \propto \prod_{n=1}^{N} \psi_{L L L}\left(\boldsymbol{r}_{n}\right)
$$

- this is coherent (superfluid) state, since a single GP state $\psi_{L L L}$ has macroscopic occupation

Take this LLL trial function seriously

- for any LLL state $\psi_{L L L}$ that is linear combination of $\psi_{0 m}$, can show that (use oscillator units with ω_{\perp} and d_{\perp} for energy and length) $[28,30,31]$

$$
\int d^{2} r r^{2}\left|\psi_{L L L}\right|^{2}=1+\int d^{2} r \psi_{L L L}^{*} L_{z} \psi_{L L L}
$$

namely $M \omega_{\perp}\left\langle r^{2}\right\rangle=\hbar+\left\langle L_{z}\right\rangle$ in dimensional units

- dimensionless energy functional becomes

$$
E^{\prime}\left[\psi_{L L L}\right]=\Omega+\int d^{2} r\left[(1-\Omega) r^{2}\left|\psi_{L L L}\right|^{2}+\frac{1}{2} g_{2 D}\left|\psi_{L L L}\right|^{4}\right]
$$

- unrestricted variation with respect to $|\psi|^{2}$ would lead to inverted parabola

$$
|\psi|^{2}=n(r)=\frac{2}{\pi R_{0}^{2}}\left(1-\frac{r^{2}}{R_{0}^{2}}\right)
$$

where $\pi R_{0}^{4}=2 g_{2 D} /(1-\Omega)$ fixes condensate radius

- looks like earlier TF profile, but here include all kinetic energy explicitly
- these results ignore vortices and violate form of $\psi_{L L L}$
- to include effect of vortices, study logarithm of the particle density for any LLL state
- use $\psi_{L L L}$ to find

$$
\ln n_{L L L}(\boldsymbol{r})=-\frac{r^{2}}{d_{\perp}^{2}}+2 \sum_{j} \ln \left|\boldsymbol{r}-\boldsymbol{r}_{j}\right|
$$

where \boldsymbol{r}_{j} is the position of the j th vortex

- apply two-dimensional Laplacian: use standard result $\nabla^{2} \ln \left|\boldsymbol{r}-\boldsymbol{r}_{j}\right|=2 \pi \delta^{(2)}\left(\boldsymbol{r}-\boldsymbol{r}_{j}\right)$ to obtain

$$
\nabla^{2} \ln n_{L L L}(\boldsymbol{r})=-\frac{4}{d_{\perp}^{2}}+4 \pi \sum_{j} \delta^{(2)}\left(\boldsymbol{r}-\boldsymbol{r}_{j}\right)
$$

- here, sum over delta functions is precisely the vortex density $n_{v}(\boldsymbol{r})$
- this result relates particle density $n_{L L L}(\boldsymbol{r})$ in LLL approximation to vortex density $n_{v}(\boldsymbol{r})[28,30,31]$

$$
n_{v}(\boldsymbol{r})=\frac{M \omega_{\perp}}{\pi \hbar}+\frac{1}{4 \pi} \nabla^{2} \ln n_{L L L}(\boldsymbol{r})
$$

- if vortex lattice is exactly uniform (so n_{v} is constant), then density profile is strictly Gaussian, with $n_{L L L}(\boldsymbol{r}) \propto \exp \left(-r^{2} / \sigma^{2}\right)$ and $\sigma^{-2}=M \omega_{\perp} / \hbar-\pi n_{v}=M\left(\omega_{\perp}-\Omega\right) / \hbar$
- note that $\sigma^{2} \gg d_{\perp}^{2}$, so that this resulting Gaussian is much bigger than original ground stat
- to better minimize the energy, mean density profile $\bar{n}_{L L L}$ should approximate inverted parabolic shape $\bar{n}_{L L L}(\boldsymbol{r}) \propto 1-r^{2} / R_{\perp}^{2}$
- then find nonuniform vortex density with

$$
n_{v}(r) \approx \frac{1}{\pi d_{\perp}^{2}}-\frac{1}{\pi R_{\perp}^{2}} \frac{1}{\left(1-r^{2} / R_{\perp}^{2}\right)^{2}}
$$

similar to result at lower $\Omega[20]$ (in both cases, small correction term is of order $\sim \mathcal{N}_{v}^{-1}$)

- independently, numerical work by Cooper et al. [32] shows that allowing the vortices in the LLL to deviate from the triangular array near the outer edge lowers the energy

5 Behavior for $\Omega \rightarrow \omega_{\perp}$

What happens beyond the "mean-field quantum Hall" regime is still subject to vigorous debate

Predict quantum phase transition from coherent BEC states to various correlated many-body states

- define the ratio $\nu \equiv N / \mathcal{N}_{v}=$ the number of atoms per vortex
- because of similarities to a two-dimensional electron gas in a strong magnetic field, ν is called the "filling fraction" $[33,34]$
- current experiments [18] have $N \sim 10^{5}$ and $\mathcal{N}_{v} \sim$ several hundred, so $\nu \sim$ a few hundred
- numerical studies [34] for small number of vortices $\left(\mathcal{N}_{v} \lesssim 8\right)$ and variable N indicate that the coherent GP state is favored for $\nu \gtrsim 6-8$
- softening of Tkachenko spectrum for rapid rotation can induce melting of vortex lattice at similar filling fraction $\nu[35,36]$
- in either scenario, BEC and the associated coherent state disappears at a quantum phase transition for $\nu \sim 5-10$
- replaced by qualitatively different correlated states that are effectively incompressible vortex liquids
- for smaller ν, there is a sequence of highly correlated states similar to some known from the quantum Hall effect
- in particular, theorists have proposed boson version of the Laughlin state [34] (here $z_{n}=x_{n}+i y_{n}$ refers to nth particle)

$$
\Psi_{\mathrm{Lau}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \cdots, \boldsymbol{r}_{N}\right) \propto \prod_{n<n^{\prime}}^{N}\left(z_{n}-z_{n^{\prime}}\right)^{2} \exp \left(-\sum_{n=1}^{N} \frac{\left|z_{n}\right|^{2}}{2 d_{\perp}^{2}}\right)
$$

Note: these correlated many-body states are qualitatively different from the coherent GP state

- the GP state $\Psi_{G P}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \cdots, \boldsymbol{r}_{N}\right) \propto \prod_{n} \psi\left(\boldsymbol{r}_{n}\right)$ is the Hartree product of N factors of same one-body function $\psi(\boldsymbol{r})$
- in the Laughlin state $\Psi_{\text {Lau }}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \cdots, \boldsymbol{r}_{N}\right)$, the 2-body product $\prod_{n<n^{\prime}}\left(z_{n}-z_{n^{\prime}}\right)^{2}$ involves $N(N-1) / 2$ factors for all possible pairs of particles
- note that this correlated wave function vanishes when any two particles approach each other
- thus it minimizes total interaction energy for shortrange repulsive potentials, which is the source of the correlations
- for large N, the correlated Laughlin state is much more difficult to use

What is physics of this phase transition?
Why does it occur for relatively large $\nu \sim 10$?

- for small N and large L (namely small ν), exact ground states have correlated form [33]
- different symmetry of ground states for small and large ν requires a quantum phase transition at some intermediate critical ν_{c}
- For N particles in two dimensions, there are $2 N$ degrees of freedom
- each vortex has one collective degree of freedom
- hence \mathcal{N}_{v} vortices have \mathcal{N}_{v} collective degrees of freedom
- usually treated as additive, but in fact only $2 N-\mathcal{N}_{v}$ particle degrees of freedom remain
- for $N \gg \mathcal{N}_{v}$ (namely large ν), depletion of particle degrees is unimportant
- eventually, when \mathcal{N}_{v} is a finite fraction of N (namely $\nu \sim 10$), original description fails and get transition to new correlated ground state

How to reach the highly correlated regime?

- need to reduce the ratio $\nu=N / \mathcal{N}_{v}$ (number of atoms per vortex)
- very challenging since need small $N \lesssim 100$ and rapid rotation $\Omega \gtrsim 0.999 \omega_{\perp}$
- one possibility is to use one-dimensional array of small pancake condensates trapped in optical lattice
- need to rotate each condensate to a relatively high angular velocity
- several experimental groups working on this option

References

[1] F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).
[2] A. L. Fetter, in Bose-Einstein Condensation in Atomic Gases, edited by M. Inguscio, S. Stringari and C. E. Wieman (IOP Press, Amsterdam, 1999), p. 201.
[3] A. L. Fetter and A. A. Svidzinsky, J. Phys.: Condens. Matter 13, R135 (2001).
[4] A. L. Fetter, J. Low Temp. Phys. 129, 263 (2002).
[5] G. Baym and C. J. Pethick, Phys. Rev. Lett. 76, 6 (1996).
[6] E. P. Gross, Nuovo Cimento 20, 454 (1961).
[7] L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)].
[8] L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford (1960); E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Pergamon Press, Oxford (1980).
[9] A. A. Svidzinsky and A. L. Fetter, Phys. Rev. Lett. 84, 5919 (2000).
[10] E. Lundh and P. Ao, Phys. Rev. A 61, 063612 (2000).
[11] S. A. McGee and M. J. Holland, Phys. Rev. A 63, 043608 (2001).
[12] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).
[13] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).
[14] K. W. Madison, F. Chevy, W. Wohllenben and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[15] K. W. Madison, F. Chevy, W. Wohllenben and J. Dalibard, J. Mod. Opt. 47, 2725 (2000).
[16] E. J. Yarmchuk, M. J. V. Gordon, and R. E. Packard, Phys. Rev. Lett. 79, 214 (1979).
[17] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Science 292, 476 (2001).
[18] V. Schweikhard, I. Coddington, P. Engels, V.P. Mogendorff, and E. A. Cornell, Phys. Rev. Lett. 92, 040404 (2004).
[19] P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Phys. Rev. Lett. 87, 210403 (2001).
[20] D. E. Sheehy and L. Radzihovsky, Phys. Rev. A 70, 051602(R) (2004); Phys. Rev. A 70, 063620 (2004) .
[21] I. Coddington, P. C. Haljan, P. Engels, V. Schweikhard, S. Tung, and E. A. Cornell, Phys. Rev. A 70, 063607 (2004).
[22] V. K. Tkachenko, Zh. Eksp. Teor. Fiz. 49, 1875 (1965) [Sov. Phys. JETP 22, 1282 (1966)]; Zh. Eksp. Teor. Fiz. 50, 1573 (1966) [Sov. Phys. JETP 23, 1049 (1966)].
[23] E. B. Sonin, Rev. Mod. Phys. 59, 87 (1987).
[24] E. B. Sonin, Phys. Rev. A 71, 011603(R) (2005).
[25] G. Baym, Phys. Rev. Lett. 91, 110402 (2003).
[26] J. R. Anglin and M. Crescimanno, cond-mat/0210063.
[27] I. Coddington, P. Engels, V. Schweikhard and E. A. Cornell, Phys. Rev. Lett. 91, 100402 (2003).
[28] T.-L. Ho, Phys. Rev. Lett. 87, 060403 (2001).
[29] C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics (J. Wiley \& Sons, New York, 1977), Volume I, pp. 742-764.
[30] G. Watanabe, G. Baym, and C. J. Pethick, Phys. Rev. Lett. 93, 190401 (2004).
[31] A. Aftalion, X. Blanc, and J. Dalibard, Phys. Rev. A 71, 023611 (2005).
[32] N. R. Cooper, S. Komineas, and N. Read, Phys. Rev. A 70, 033604 (2004).
[33] N. K. Wilkin and M. J. F. Gunn, Phys. Rev. Lett. 84, 6 (2000).
[34] N. R. Cooper, N. K. Wilkin, and M. J. F. Gunn, Phys. Rev. Lett. 87, 120405 (2001).
[35] J. Sinova, C. B. Hanna, and A. H. MacDonald, Phys. Rev. Lett. 89, 030403 (2002).
[36] G. Baym, Phys. Rev. A 69, 043618 (2004).

