

<text><text><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><text>

$$\mathbf{C}$$

Superconductor	T_c (K)	B_{c2} (T)	ξ (nm)	λ (nm)	
Al	1.2	0.01	550	40	
Nb	9.3	0.21	38	39	Type
\mathbf{Sn}	3.7	0.031	230	34	Type
Pb	7.2	0.078	83	37	
Nb_3Ge	23.2	39	3	90	
Nb_3Sn	17.9	24	3	65	
V_3Si	17	23	3	60	
$PbMo_6S_8$	15.2	60	2.2	215	
$LaMo_8Se_8$	11	5			
MgB_2	39	19-40	2-5	85-180	
UPd ₂ Al ₃	2.0	~ 40			
UPt ₃	0.46	1.9	12 - 14	600	
K_3C_{60}	19.3	17-32	~ 3	240	
Rb_3C_{60}	29.6	38	~ 2		
$La_{2-x}Ba_xCuO_4^1$; x=0.2	30		3.3	290	
$YBa_2Cu_3O_{7-\delta}^1$	93	115	2.5	150	
nT_c Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀ ¹	110	198	2.9		
$TbBa_2Ca_2Cu_3O_9^1$	123			173	
HgBa ₂ Ca ₂ Cu ₃ O _{8+δ} ¹ at 30 GPa	164	190	1.3	130	

6

Imaging of vortices

STM image of Abrikosov vortices in ${\rm MgB}_2$

M.R. Eskildsen et al, Phys. Rev. Lett. **89**, 187003 (2002)

Magneto-optical image of vortex lattice in NbSe₂

P.E. Goa et al, Supercond. Sci. Technol. 14, 729 (2001)

Vortices in superconducting films with arrays of artificial pinning sites

Scanning Hall microscopy S.B. Field et al, Phys. Rev. Lett. **88**, 067003 (2002)

Lorentz microscopy

K. Harada et al, Science **274**, 1167 (1996)

49

Universiteit Antwerpen

