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Bose-Einstein Condensate (BEC)

I BECs play important roles in present-day physics. Understanding
BECs’ behavior is of fundamental importance.

I Dynamical phenomena: Rotation and quantized vortices are
connected to superfluidity

I Experimentation set-up: rotational trapping potential

I Mathematical description: celebrated Gross-Pitaevskii equation
(GPE):

i~ ∂tψ = − ~2

2m
∆ψ + V (x)ψ + κ|ψ|2ψ + iΩx⊥ · ∇xψ, (1)

where x⊥ = (x2,−x1, 0)> in d = 3 spatial dimensions.

[N. Ben Abdallah, W. Bao, Q. Du, D. Jaksch, T.-C. Lin, P. Markowich, C. Sparber,

...]
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Questions of physical interest:

I Nucleation mechanisms (analysis?)

I Observation of density and phase (how to compute);

I Stability, decay, precession (analysis?)

I Shape and dynamics of a single vortex (simulation).

I Formation and dynamics of vortex lattices (analysis?)

I Fast rotating condensates and giant vortices (simulation)

I Coreless vortices and textures in spinor condensates (visualization)

I interaction with thermal atoms, solitons, surface modes.

I Vortex rings, vortex-antivortex pairs, etc.

I ...
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Hydrodynamic equations—Thomas-Fermi Limit

In semi-classical regime the dynamics is presumably well described by the
hydrodynamical equations for rotating super-fluids:

∂tρ+∇x ·
(
ρ(v − Ωx⊥)

)
= 0,

∂tv +∇x

(
|v|2

2
− Ωx⊥ · v + V0 + f (ρ)

)
= 0,

(2)

where ρ := |ψ|2 denotes the particle density, f (ρ) = ρ, and v the
corresponding superfluid velocity defined by

v :=
~
m

Im
(
ψ∇xψ

)
|ψ|2

.
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Two questions of our interest

The passage from (1) to (2) is usually explained by using the classical
Madelung transformation of the wave function

ψ(t, x) =
√
ρ(t, x) exp (iΦ(t, x)/~) ,

and consequently identifies v := ∇xΦ–irrotational velocity field

I Semiclassical convergence: equation (2) approximates (1) when
~ → 0 (for smooth solutions)?

I Can one use (2) as a computational model for computing
semiclassical limit of (1)?

[Madelung E. Z. Phys. 40, 322 (1927)]
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I. Semiclassical convergence [w/ Christof Sparber, 2007]

 iε ∂tψ
ε = − ε2

2
∆ψε + V (x)ψε + f (|ψε|2)ψε + iεΩx⊥ · ∇xψ

ε

ψε
∣∣
t=0

= ψε
in(x) = aε

in(x) e iΦin(x)/ε,

(3)

where t ∈ R, x ∈ Rd , for d = 2, 3, and Ω ≥ 0
Assumptions:
(i) The nonlinearity f ∈ C∞(R) and f ′ > 0.
(ii) The potential V quadratic
(iii) Initial amplitude aε

in is complex-valued whereas Φin(x) is
ε-independent, real-valued, and sub-quadratic.
We aim
(i) to give a rigorous justification of (2) as limit of (3).
(ii) to describe the dynamical features of rotational BECs from the
semi-classical point of view.
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The modified WKB approach

I Classical Madelung transformation is not suited
Re: Grenier(98), Liu and Tadmor(02), Carles(07)

I The modified WKB

ψε(t, x) = aε(t, x)e iΦε(t,x)/ε, (4)

where from now on the “amplitude” aε is allowed to be
complex-valued. Moreover aε and (real-valued) phase Φε are
assumed to admit an asymptotic expansion of the form

aε ∼ a + εa1 + ε2a2 + · · · , Φε ∼ Φ + εΦ1 + ε2Φ2 + · · · . (5)

I The main gain: it yields a separation of scales within the appearing
fast, i.e. ε-oscillatory, phases and slowly varying phases.
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Equivalent equations

1) Schrödinger equation
∂tΦ

ε +
1

2
|∇xΦ

ε|2 + V (x)− Ωx⊥ · ∇xΦ
ε + f (|aε|2) = 0,

∂ta
ε +∇xΦ

ε · ∇xa
ε +

1

2
aε∆Φε − Ωx⊥ · ∇xa

ε =
iε

2
∆aε.

ii) Hydrodynamic equation
∂tΦ +

1

2
|∇xΦ|2 + V (x)− Ωx⊥ · ∇xΦ + f (|a|2) = 0,

∂ta +∇xΦ · ∇xa +
1

2
a∆Φ− Ωx⊥ · ∇xa = 0.
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Decomposition

Decompose the phase Φε into

Φε = ϕε + S , (6)

where S is the smooth phase function satisfying the classical rotational
Hamilton-Jacobi equation (HJ)

∂tS +
1

2
|∇xS |2 + V (x)− Ωx⊥ · ∇xS = 0. (7)

Lemma
If Sin(x) ∈ C∞(Rd) is sub-quadratic, then there exists a τ > 0 such that
(7) admits a unique smooth solution for t ∈ [0, τ). Moreover, the phase
S(t, x) remains sub-quadratic in x, for all t ∈ [0, τ).
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Hyperbolic system


∂tϕ

ε +∇xS · ∇xϕ
ε +

1

2
|∇xϕ

ε|2 − Ωx⊥ · ∇xϕ
ε + f (|aε|2) = 0,

∂ta
ε +∇x(S + ϕε) · ∇xa

ε +
aε

2
∆(S + ϕε)− Ωx⊥ · ∇xa

ε =
iε

2
∆xa

ε.

(8)
The system is written as a hyperbolic system

∂tU
ε +

d∑
j=1

(Aj(U
ε) + Bj(w)) ∂xj U

ε + M(∇xw)Uε =
ε

2
LUε,

where w := ∇xS − Ωx⊥ is sub-linear and

Uε := (Re aε, Im aε, ∂x1ϕ
ε, . . . , ∂xd

ϕε)>,

Analysis is done relying on the following norm

N [Uε(t]) := ‖Uε(t) ‖s + ‖ |x |Uε(t) ‖s−1. (9)
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Local convergence and convergence rates

Local convergence
If Uε

in ∈ Hs(Rd) and |x |Uε
in ∈ Hs−1(Rd), for s > 2 + d/2. Then there

exists a time Tε ∈ (0, τ), and a unique solution of the following form

ψε(t, x) = aε(t, x)e iΦε(t,x)/ε, for 0 ≤ t ≤ Tε.

Convergence rates
Suppose that ‖aε

in − ain‖s = O(ε). Let
U := (Re a, Im a, ∂x1ϕ, . . . , ∂xd

ϕ)> be the smooth solution in (0,T ∗) to
the limit equation corresponding to the initial data (Φin, ain), then there
exists ε0 and C∗ > 0, such that for ε ≤ ε0 we have

‖ aε(t)− a(t) ‖s ≤ C∗ε, ‖Φε(t)− Φ(t) ‖s ≤ C∗εt,

for all t ∈ [0,min{T ∗,T ε}).
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Global Convergence

I A generic global convergence result
The semi-classical convergence holds true globally in time if
the super-fluid model admits global smooth solution.

I Mathematical description
Under the same assumptions as before and for any C1 satisfying

N [Uε
0 ] ≤ C0 < C1, N [Uε(t)] ≤ C1 < C , for t ∈ [0,min{T ∗,T ε}),

it holds T ε(C1) > T ∗ for ε > 0 sufficiently small.
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Rotational dynamics of semi-classical super-fluids

I The expectation value of the angular momentum:

mε(t) := iε

∫
Rd

ψε(t, x) x⊥ · ∇xψ
ε(t, x) dx , (10)

mε(t) 6= 0 signifies the vortex nucleation in BEC experiments.
I This quantity is dominated by the classical rotational effect; In

contrast, for ε = O(1) this quantity remains unchanged, as shown by
Bao, Du and Zhang (2006).

Corollary
Let f (z) = z and impose the same assumptions as before. Then, as ε→ 0 it
holds

mε(t) = m(0) +
Ω

2

�
〈|x |2〉ρ(t) − 〈|x |2〉ρin

�
+ O(ε).

Moreover we have

d

dt
mε(t) = Ω〈x · v〉ρ(t) +

δ

2ω2
⊥
〈x1x2〉ρ(t) + O(ε),

where δ =
ω2

1−ω2
2

ω2
1+ω2

2
denotes the trap deformation and ω2

⊥ = 1
2
(ω2

1 + ω2
2) the

radial frequency.
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II. Computation of semi-classical limit

Outline:

I Background

I Jet/phase space based level set method
—The Schrödinger equation with an external potential

I Field space based level set method
— The Schrödinger equation with a self-consistent potential

I Bloch-band based level set method
— The Schrödinger equation with a periodic potential
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Background

Consider the re-scaled Schrödinger equation of the form

iε∂tψ = −ε
2

2
∆ψ + Wψ,

with
W = {Ve(x),Vp,V (

x

ε
)}.⊙

Its role in quantum mechanics for microscopic particles (such as
electrons, atomic nuclei, etc.) is analogous to Newton’s second law in
classical mechanics for macroscopic particles.⊙

Semiclassical approximation—a high frequency approximation (ε ↓ 0)
that is used to approximate quantum mechanics.
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Goals and tools

⊙
Goals:

I Efficient numerical methods for capturing semi-classical field
statistics

I Evaluation of physical observables

I Reconstruction of the wave field⊙
Tools and methods:

I Asymptotic methods to obtain effective equations

I Level set method for capturing semi-classical field statistics

I Projection for evaluation of physical observables
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Highly oscillatory problems (HOP)

I Semiclassical approximation of Schrödinger equations

I High frequency wave propagation in: geometrical optics, seismology,
medical imaging, ...

I Math Theory: semiclassical analysis, Lagrangian path integral, wave
dynamics in nonlinear PDEs ...

Computational challenge: when wave field is highly oscillatory, direct
numerical simulation of the wave dynamics can be very costly and
approximate models for wave propagation must be used. The effective
equation is often nonlinear, and classical entropy solutions are inadequate
...
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The WKB system

I The WKB method applied to a linear wave equation typically results
in a weakly coupled system of an eikonal equation for phase S and a
transport equation for position density ρ = |A|2 respectively:

∂tS + H(x,∇S) = 0, (t, x) ∈ R+ × Rn,

∂tρ+∇x · (ρ∇kH(x,∇xS)) = 0.

I The semiclassical limit of the Schrödinger equations:

H =
1

2
|k|2 + V (x)− Ωx⊥ · k.

I 1D free motion with u = Sx is governed by the Burgers’ equation

ut + uux = 0.

I Advantage and disadvantage: ε-free, superposition principle lost ...
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Multi-valued solutions

I u must be a gradient of phase S ;

I we must allow S to be a multi-valued function, otherwise a
singularity would appear in

∇xψ
ε = (∇A/A + i∇S/ε)ψε

I (enforce quantization) In order for the wave field to remain single
valued, one needs to impose∮

L

u · dl = 2πj , j ∈ Z .

— phase shift, Keller-Maslov index.
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Computing high frequency limit

I Ray tracing (rays, characteristics), ODE based;

I Hamilton-Jacobi Methods—nonlinear PDE based
[Fatemi-Engquist-Osher], [Benamou], [Abgrall], [Symes-Qian] ...

I Kinetic Methods — linear PDE based
(i)Wave front methods:

[Engquist-Tornberg], [Runborg], [Formel-Sethian],

[Osher-Cheng-Kang-Shim and Tsai] ...

(ii)Moment closure methods:
[Brenier-Corrias], [Engquist-Runborg], [Gosse], [Jin-Li]...

I Configuration space based level set method
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A powerful tool–level set method

Collaborators: L.T. Cheng(UCSD), S. Jin(Wisconsin-Madison), S. Osher(UCLA), R.

Tsai(Texas-Austin) and Z.-M. Wang (ISU).

I Level set methods for WKB system [L.T. Cheng, H.-L. Liu and S.
Osher (03)][Jin and Osher (03)]

I Level set methods for computing physical observables [Jin, Liu,
Osher and Tsai (05)]

I Level set framework for general first order equation
[Liu-Cheng-Osher (06)].

I A review article at CICP [H. Liu, S. osher and R. Tsai (06)].

I Field-space based level set method for Euler-Poisson equations [H.
Liu and Z.M. Wang (06)]

I Bloch-band based level set method [H. Liu and Z.M. Wang (07)]
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Level set method based on graph evolution

I 1-D Burgers’ equation

∂tu + u∂xu = 0, u(x , 0) = u0(x).

Characteristic method gives u = u0(α), X = α+ u0(α)t

I In physical space (t, x): u(t, x) = u0(x − u(t, x)t).

I In the space (t, x , y) (graph evolution)

φ(t, x , y) = 0, φ(t, x , y) = y − u0(x − yt),

with φ(t, x , y) satisfying

∂tφ+ y∂xφ = 0, φ(0, x , y) = y − u0(x).
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A. External potential – Jet/phase space based method

Consider the HJ equation

∂tS + H(x ,∇xS) = 0, H(x , k) =
1

2
|k|2 + V (x).

For this equation the graph evolution is not enough to unfold the
singularity since H is also nonlinear in ∇xS .

Our strategy:

I to choose the Jet space (x , k, z) with z = S(x , t) and k = ∇xS ;

I to select and evolve an implicit representative of the solution
manifold.
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Characteristic dynamics and the level set equation

I Characteristic equation: In the jet space (x , k, z) the HJ equation is
governed by a closed ODE system

dx

dt
= k, x(0, α) = α,

dk

dt
= −∇xV , k(0, α) = ∇xS0(α),

dz

dt
= |k|2/2− V (x), z(0, α) = S0(α).

I Level set function ' global invariants of the above ODEs.

I Level set equation for φ ∈ Rn+1

∂tφ+ k · ∇xφ−∇xV · ∇kφ+

(
|k|2

2
− V (x)

)
∂zφ = 0.
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The Liouville equation

I Hamitonian dynamics: If one just wants to capture the velocity
k = ∇xS or to track the wave front, z direction is unnecessary.

dx

dt
= ∇kH(x , k), x(0, α) = α,

dk

dt
= −∇xH(x , k), k(0, α) = ∇xS0(α).

I Liouville equation

∂tφ+ k · ∂xφ−∇xV (x) · ∇kφ = 0, φ ∈ Rn.

Note here φ is a geometric object — level set function, instead of
the distribution function.
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Evaluation of density (w/Jin, Osher and Tsai (05)

I The multi-valued velocity is realized by

u(x , t) ∈ {k, φ(t, x , k) = 0}.

I We evaluate the density in physical space by projecting its value in
phase space (x, k) onto the manifold φ = 0, i.e., for any x we
compute

ρ̄(x, t) =

∫
Rk

f (t, x, k)δ(φ)dk,

where f := ρ̃(t, x, k)|J(t, x, k)| and J := det(∇kφ).
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A new quantity f

I It is shown that

f (t, x, k) := ρ̃(t, x, k)|J(t, x, k)|

solves again the Liouville equation

∂t f +∇kH · ∇xf −∇xH · ∇kf = 0, f0 = ρ0|J0|.

I Post-processing

ρ̄(x , t) =

∫
f (t, x , k)δ(φ)dk,

ū(x , t) =

∫
kf (t, x , k)δ(φ)dk/ρ̄.

δ(φ) :=
∏n

j=1 δ(φj) with φj being the j-th component of φ.
O(nlogn) minimal effort, local level set method.
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Multi-valued density and superposition

Let ui be multi-valued velocity given by

ui ∈ {k| φ(t, x , k) = 0}.

I Superposition principle (w/Wang (2006))∫
fg(x , k)δ(φ)dk =

N∑
i=1

g(x , ui )ρi (t, x).

I Level set approach

ρi ∈

 f∣∣∣det
(

∂φ
∂k

)∣∣∣
∣∣∣φ = 0

 ,

where φ is the vector level set function used to determine the
multi-valued velocity, and f solves the same level set equation in
phase space (x , p), subject to the given initial density ρ0.
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B. The self-consistent potential (w/Wang (06))

I The re-scaled Schrödinger-Poisson equation

iεψε
t = −ε

2

2
∆xψ

ε + KVψε, −∆xV = |ψε|2 − c(x).

I In semi-classical approximation of Schrödinger-Poisson equation via
ψε =

√
ρεe iSε/ε, one arrives at a Quantum Euler-Poisson system

ρε
t + (ρεuε)x = 0,

uε
t + uεuε

x = KE +
ε2

2
{· · · },

Ex = ρε − c(x), E = −Vx .
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Euler-Poisson equations

I Fluid equations: We shall compute multi-valued solutions to 1D
Euler-Poisson equations

ρt + (ρu)x = 0,

ut + uux = KE ,

Ex = ρ− c(x),

where K is a physical constant indicating the property of forcing, i.e.
repulsive when K > 0 and attractive when K < 0

I Applications:
Plasma dynamics
Beam propagation in Klystons
Semi-classical approximation of Schrödinger-Poisson equations ...
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Phase space-based method?

I Kinetic approach (Vlasov-Poisson)

ft + ξωx + KE (t, x)fξ = 0

Ex =

∫
R

f (t, x , ξ)dξ − c .

However, this description is inadequate where the electric field
E (t, x) also becomes multi-valued.

I Lagrangian approach may be applied to handle the multi-valued
electric field [Gosse-Mauser (06)].

I We shall adopt a geometric point of view...
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A novel field space approach (w/Zhongming Wang (05))

Consider an augmented field space,

(x , p, q),

with
p = u(t, x),

q = E (t, x),

so that
(u,E ) ∈ {(p, q), Φ(t, x , p, q) = 0}.

A key equation for deriving the level set dynamics is

Et + uEx = −cu.
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Level set formulation for u and E

Let u(t, x) and E (t, x) be any solution of the EP system and be
determined by

Φ(t, x , u(t, x),E (t, x)) = 0, Φ = (φ1, φ2)
T ∈ R2.

I The level set equation reads

Φt + pφx + KqΦp − cpΦq = 0, Φ ∈ R2. (11)

I Initialization:
I φ1(0, x , p, q) = p − u0(x),
I φ2(0, x , p, q) = q − E0(x), E0 ← ρ0.

I The projection of common zeros of Φ onto the physical space gives
multi-values of u and E .
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Evaluate density ρ

By projection of a density representative ρ̃(t, x , p, q) onto the manifold

M = {(p, q)|φ1 = 0, φ2 = 0},

the density ρ(t, x) can be evaluated by

ρ(t, x) =

∫
f (t, x , p, q)δ(φ1)δ(φ2)dpdq,

where
ft + pfx + Kqfp − cpfq = 0, f (0, x , p, q) = ρ0(x).
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A kinetic point of view

One could also compute the density ρ̄ by solving the field transport
equation

∂tη + p∂xη + Kq∂pη − c(x)p∂qη = 0,

subject to initial data involving delta functions,

η(0, x , p, q) = ρ0(x)δ(p − u0(x))δ(q − E0(x)).

The density is then evaluated by

ρ̄ =

∫
ηdpdq.
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Multi-valued density

I Level set method

ρi ∈

 f∣∣∣det
(

∂(φ1,φ2)
∂(p,q)

)∣∣∣
∣∣∣φ1 = 0, φ2 = 0

 ,

where φ1, φ2 are two level set functions needed to determine both
multi-valued velocity u and electric field E , and f solves the same
level set equation in field space (x , p, q), subject to the given initial
density ρ0.

I Superposition principle

ρ̄(t, x) =
N∑

i=1

ρi (t, x).
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C. Periodic structure

I The re-scaled Schrödinger equation

iε∂tψ = −ε
2

2
∂x

(
a
(x

ε

)
∂xψ

)
+ V

(x

ε

)
ψ + Ve(x)ψ,

ψ(0, x) = exp

(
iS0

ε

)
f

(
x ,

x

ε

)
,

where the lattice potential V and a > 0 are 2π− periodic functions
and Ve is a given smooth function.

I Scale separation leads to a shifted cell problem

A(k, y)Zn(y) = En(k)Zn(y), Z ∈ H1(0, 2π).

I The wave field can be then decomposed (Bloch waves) as

ψε =
∑

j

aj(t, x)Zj(k, y)e iSj (t,x)/ε, y =
x

ε
, k = ∇xSj .
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Bloch band based level set method

I In each Bloch band associated with En, one solves a WKB system
with Hamiltonian Hn(k, x) = En(k) + Ve(x)

∂tS + En(∇xS) + Ve(x) = 0.

I Our aim: (1) to develop a level set method to capture the field
statistics in each band.

(2) to reconstruct the wave field from the obtained field
statistics in each band

I This work is in progress ...

Ref: [1] Bensoussan, Lions and Papanicolaou (1978)(before caustics)

[2] L.Gosse and P.A. Markowich (2004) (computing multi-valued solutions).
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III. Some numerical examples

I Optical waves

I Superposition of multi-valued solutions

I Euler-Poisson equations
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Wave Guide
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Contracting ellipse in 2D
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Contracting ellipse in 2D
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Superposition

SUPERPOSITION IN HIGH FREQUENCY WAVE DYNAMICS 17
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Figure 7. Example 4, at t = 0.3515. Sub-figures, from up left, are velocity,
g = 1, g = ∇pH and g = H with ε̃ = 0.01 and ε = 2h. Circle and solid line
represent the results from integration and superposition.
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Figure 8. Example 4, at t = 0.408500. Sub-figures, from up left, are velocity,
g = 1, g = ∇pH and g = H with ε̃ = 0.008 and ε = h. Circle and solid line
represent the results from integration and superposition.
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Figure 9. Example 2, at t = 1.00700. Sub-figures, from up left, are velocity,
g = 1, g = ∇pH and g = H with ε̃ = 0.01 and ε = h. Circle and solid line
represent the results from integration and superposition.

error of the results from integration and superposition. We notice that in this case the
error does not depend on the support size ε too much.

Remark 1. In this example, numerical error is also introduce by the approximation of
| det(∇pΦ)|. Especially, when ui coincides with any of computational grids, | det(∇pΦ)| =
0 and ρi = ∞ at those points. This could result in huge numerical error. Numerical tests
are performed on this issue in two dimensional space, and large error is observed. Thus
a new approximation of | det(∇pΦ)| is expected in order to use (3.4).

Remark 2. From above examples, we notice that the integration support ε in (5.2) plays
an important role in the error control. Moreover, optimal ε depends on the appearance

of singularity or multi-valuedness. For some cases with H = |p|2
2

+ V , the singularity
appears in finite time, so optimal ε is larger before singularity and smaller after singularity
formation. For some cases with H = c|p|, the multi-valued solution appears immediately,
the choice of ε does not affect the error much, which can be observed in Table 3 and 4.
The reason for those observations could be that, if multi-valued u’s, say ui and ui+1, are
close, then ε is better to be small to avoid the overlap of the support in the numerical
integration.
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Case I: multi-valued u and E

c = 0, K = 0.01, u(0, x) = sin3(x), ρ(0, x) = 1
π e−(x−π)2

In this figure and what follows, solid blue line is the exact solution while red dots are numerical results.
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density profile

ρ
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Case II. multi-valued u and E

c = 0, K = −1, u(0, x) = 0.01, ρ(0, x) = 1
π e−(x−π)2
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density ρ

c = 0, K = −1, u(0, x) = 0.01, ρ(0, x) = 1
π e−(x−π)2
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Case III. multi-valued u and E

c = 1, K = 1, u(0, x) = 2 sin4 x , ρ(0, x) = 1
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density profile ρ

c = 1, K = 1, u(0, x) = 2 sin4 x , ρ(0, x) = 1
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Summary

We have presented

I A rigorous derivation of the rotational super-fluid model as a
semiclassical limit of the GPE;

I Several configuration space based level set methods for capturing
semi-classical limit in Schrödinger equations with different potentials

I The level set equation is derived from the WKB approximation,
independent of the Wigner approach;

I The geometric solution set captured by the level set method gives
much more information than the kinetic formulation; In particular,
the jet space method offers the multi-valued phase.

I The techniques discussed here are naturally geometrical and well
suited for handling multi-valued solutions, arising in a large class of
highly oscillatory problems.
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