STRONG CONFINEMENT FOR THE GROSS-PITAEVSKII EQUATION :

A MATHEMATICAL FRAMEWORK USING ALMOST PERIODICITY

Naoufel Ben Abdallah⁽¹⁾, François Castella⁽²⁾, Florian Méhats⁽²⁾

(1) IMT, Toulouse, France (2) IRMAR, Rennes, France

IMS, Singapore, November 14, 2007

Bose-Einstein Condensation and Quantized Vortices in Superfluidity and Superconductivity

Motivation of this work

Physical context : description of the transport of a Bose-Einstein condensate strongly confined along one or two directions, via the Gross-Pitaevskii equation (mean field theory).

Objective : justify a model in reduced dimensions thanks to asymptotics analysis.

$$3d$$
 NLS equation $\xrightarrow{\varepsilon \to 0} 2d$ or $1d$ model

Outline of the presentation

1 – Scaling and heuristics
2 – Reformulation of the limiting model
3 – Functional framework based on almost periodicity
4 – Consequences and main result
5 – Final remarks

Consider a quantum gas described by the GP equation and subject to a strong anisotropic harmonic potential with $0 < \varepsilon \ll 1$:

$$i\partial_t \Psi = -\Delta \Psi - \Omega L_z \Psi + \left(|x|^2 + \frac{z^2}{\varepsilon^{\alpha}} \right) \Psi + \delta \varepsilon^{\beta} |\Psi|^2 \Psi$$

confinement potential

The space variables denoted (x_1, x_2, z) do not play the same roles :

– strong confinement in direction $z \in \mathbb{R}$

- transport allowed in directions $x = (x_1, x_2) \in \mathbb{R}^2$ (Disk-shape confinement in the talk. But cigar-shape also works by setting $z \in \mathbb{R}^2$, $x \in \mathbb{R}$)

Rescaling the equation

We have in mind that $\sqrt{\varepsilon} \ll 1$ is the size of the condensate in direction z :

$$\Psi(t, x, z) = \frac{1}{\varepsilon^{1/4}} \psi\left(t, x, \frac{z}{\sqrt{\varepsilon}}\right)$$

Then

$$i\partial_t \psi = \mathcal{H}_x \psi + \frac{1}{\varepsilon} (-\partial_z^2 + \varepsilon^{2-\alpha} z^2) \psi + \delta \varepsilon^{\beta-1/2} |\psi|^2 \psi$$

with

$$\mathcal{H}_x = -\Delta_x + |x|^2 - \Omega L_z$$

.

Rescaling the equation

We have in mind that $\sqrt{\varepsilon} \ll 1$ is the size of the condensate in direction z :

$$\Psi(t, x, z) = \frac{1}{\varepsilon^{1/4}} \psi\left(t, x, \frac{z}{\sqrt{\varepsilon}}\right)$$

Then

$$i\partial_t \psi = \mathcal{H}_x \psi + \frac{1}{\varepsilon} (-\partial_z^2 + \varepsilon^{2-\alpha} z^2) \psi + \delta \varepsilon^{\beta-1/2} |\psi|^2 \psi$$

with

$$\mathcal{H}_x = -\Delta_x + |x|^2 - \Omega L_z$$

Tuning of the parameters : let us choose $\alpha = 2$, $\beta = 1/2$.

Formal asymptotics as $\varepsilon \to 0$

$$i\partial_t \psi = \mathcal{H}_x \psi + \frac{1}{\varepsilon} \mathcal{H}_z \psi + \delta |\psi|^2 \psi$$
 with $\mathcal{H}_z = -\partial_z^2 + z^2$

Formal asymptotics as $\varepsilon \to 0$

$$i\partial_t \psi = \mathcal{H}_x \psi + \frac{1}{\varepsilon} \mathcal{H}_z \psi + \delta |\psi|^2 \psi$$
 with $\mathcal{H}_z = -\partial_z^2 + z^2$

At the order ε^{-1} : we have $i\partial_t \psi = \frac{1}{\varepsilon} \mathcal{H}_z \psi$ This is a spectral problem : introduce the eigenpairs $(E_p, \chi_p(z))_{p \in \mathbb{N}}$ of \mathcal{H}_z

$$\mathcal{H}_z \, \chi_p = E_p \, \chi_p \qquad (p \in \mathbb{N})$$

then for all z one can decompose ψ on this complete orthonormal basis :

$$\psi = \sum_{p=0}^{\infty} \phi_p \, e^{-itE_p/\varepsilon} \, \chi_p(z)$$

Modulation of the coefficients w.r.t. the other variables (t, x) :

$$\psi(t, x, z) = \sum_{p=0}^{\infty} \phi_p(t, x) e^{-itE_p/\varepsilon} \chi_p(z)$$

Finally, the initial problem is equivalent to the system of coupled bidimensional GP equations :

$$i\partial_t \phi_p = \mathcal{H}_x \phi_p + \sum_{q,r,s} \gamma_{p,q,r,s} e^{-it(E_q + E_r - E_s - E_p)/\varepsilon} \phi_q \phi_r \overline{\phi_s}$$

where $\gamma_{p,q,r,s} = \delta \int \chi_p \chi_q \chi_r \chi_s dz$

Modulation of the coefficients w.r.t. the other variables (t, x) :

$$\psi(t, x, z) = \sum_{p=0}^{\infty} \phi_p(t, x) e^{-itE_p/\varepsilon} \chi_p(z)$$

Finally, the initial problem is equivalent to the system of coupled bidimensional GP equations :

$$i\partial_t \phi_p = \mathcal{H}_x \phi_p + \sum_{q,r,s} \gamma_{p,q,r,s} e^{-it(E_q + E_r - E_s - E_p)/\varepsilon} \phi_q \phi_r \overline{\phi_s}$$

where $\gamma_{p,q,r,s} = \delta \int \chi_p \chi_q \chi_r \chi_s dz$

At the order ε^0 : pass to the limit in the red terms $\implies 0 \text{ or } 1$

The formal limiting model

$$\psi(t, x, z) = \sum_{p=0}^{\infty} \phi_p(t, x) e^{-itE_p/\varepsilon} \chi_p(z)$$

where the ϕ_p 's solve an infinite system of coupled 2D Schrödinger equations

$$i\partial_t \phi_p = \mathcal{H}_x \phi_p + \sum_{(q,r,s) \in \Lambda_p} \gamma_{p,q,r,s} \phi_q \phi_r \overline{\phi_s}$$

$$\Lambda_p = \left\{ (q, r, s) \in \mathbb{N}^3 : \quad E_p + E_s = E_q + E_r \right\}$$

Major difficulty : well-posedness of the limiting model and summation of series for initial data not prepared on one single mode.

Two former works :

[Ben Abdallah-F.M.-Schmeiser-Weishäupl 2005]

Rigourous convergence proof in the special case $\psi(t=0) = \phi_0 \chi_0$ by simple energy arguments.

[Bao-Markowich-Schmeiser-Weishäupl 2005]

Numerics for the limiting model in the general case, analysis of a truncated model.

Here : we prove the convergence in the general case.

General framework

$$i\partial_t \psi = \mathcal{H}_x \psi + \frac{1}{\varepsilon} \mathcal{H}_z \psi + F(|\psi|^2)\psi$$

$$\mathcal{H}_z = -\partial_z^2 + V_c(z)$$

with

$$V_c(z) \to +\infty \text{ as } z \to \pm \infty, \quad V_c \ge 0$$

and F is a smooth function.

General framework

$$i\partial_t \psi = \mathcal{H}_x \psi + \frac{1}{\varepsilon} \mathcal{H}_z \psi + F(|\psi|^2)\psi$$

$$\mathcal{H}_z = -\partial_z^2 + V_c(z)$$

with

$$V_c(z) \to +\infty \text{ as } z \to \pm \infty, \quad V_c \ge 0$$

and F is a smooth function.

Key point : do not project on the χ_p 's !

Filtering procedure

Set

$$\psi(t, x, z) = e^{-it\mathcal{H}_z/\varepsilon} \Phi(t, x, z).$$

Then the initial problem

$$i\partial_t \psi = \mathcal{H}_x \psi + \frac{1}{\varepsilon} \mathcal{H}_z \psi + F(|\psi|^2)\psi$$

is equivalent to

$$i\partial_t \Phi = \mathcal{H}_x \Phi + \widetilde{F}\left(\frac{t}{\varepsilon}, \Phi(t)\right)$$

with the nonlinearity

$$\widetilde{F}(\tau, u) = e^{i\tau \mathcal{H}_z} F\left(\left|e^{-i\tau \mathcal{H}_z} u\right|^2\right) e^{-i\tau \mathcal{H}_z} u.$$

ODE-like phenomenon : decoupling of the fast and slow time scales

Prototype :

$$y'_{\varepsilon} = ay_{\varepsilon} + f\left(\frac{t}{\varepsilon}, y_{\varepsilon}(t)\right)$$

Theorem : If the time average $f_{\rm av}(\cdot) = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(\tau, \cdot) d\tau$ exists

Then $y_{\varepsilon} \to y$ as $\varepsilon \to 0$ and the limiting equation is

$$y' = ay + f_{\rm av}(y)$$

ODE-like phenomenon : decoupling of the fast and slow time scales

Prototype :

$$y'_{\varepsilon} = ay_{\varepsilon} + f\left(\frac{t}{\varepsilon}, y_{\varepsilon}(t)\right)$$

Theorem : If the time average $f_{\rm av}(\cdot) = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(\tau, \cdot) \, d\tau$ exists

Then $y_{\varepsilon} \to y$ as $\varepsilon \to 0$ and the limiting equation is

$$y' = ay + f_{\rm av}(y)$$

References

ODEs : Sanders-Verhulst 1985, Bidegaray-Castella-Degond 2004 (systems) PDEs : Schochet 1994 (*hyperbolic systems*), Grenier 1997 (*fluid mechanics*)

Candidate for our limiting model as $\varepsilon \to 0$:

$$i\partial_t \Phi = \mathcal{H}_x \Phi + F_{\mathrm{av}}(\Phi(t))$$

with

$$F_{\rm av}(u) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \widetilde{F}(\tau, u) \, d\tau$$

Candidate for our limiting model as $\varepsilon \to 0$:

$$i\partial_t \Phi = \mathcal{H}_x \Phi + F_{\mathrm{av}}(\Phi(t))$$

with

$$F_{\rm av}(u) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \widetilde{F}(\tau, u) \, d\tau$$

Remarks :

- unknown $\Phi(t, x, z)$ with 3d space variables but 2d dynamics
- this is a "3d rewriting" of the previous model obtained formally, where the time averaging just "turns off" the non resonant modes

Candidate for our limiting model as $\varepsilon \to 0$:

$$i\partial_t \Phi = \mathcal{H}_x \Phi + F_{\mathrm{av}}(\Phi(t))$$

with

$$F_{\rm av}(u) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \widetilde{F}(\tau, u) \, d\tau$$

Remarks :

- unknown $\Phi(t, x, z)$ with 3d space variables but 2d dynamics
- this is a "3d rewriting" of the previous model obtained formally, where the time averaging just "turns off" the non resonant modes

Steps of the proof :

- design a functional framework to define properly this time average
- adapt to our PDEs the ODE proof of fast/slow time scales decoupling

13

We need to average with respect to au the function

$$\widetilde{F}(\tau, u) = e^{i\tau \mathcal{H}_z} F\left(\left|e^{-i\tau \mathcal{H}_z} u\right|^2\right) e^{-i\tau \mathcal{H}_z} u$$

where \mathcal{H}_z has a discrete spectrum, with no uniform gap assumption.

Two crucial mathematical tools :

- Adapted functional spaces : a Sobolev scale adapted to the two operators $\mathcal{H}_z = -\partial_z^2 + V_c(z)$ and $\mathcal{H}_x = -\Delta_x + |x|^2 - \Omega L_z$
- Existence of average in time : Hilbert–valued almost periodic functions

3. Functional framework based on almost periodicity 14

Sobolev scale adapted to \mathcal{H}_z and \mathcal{H}_x

$$B^{m} = \left\{ u: \|u\|_{B^{m}}^{2} = \|u\|_{L^{2}}^{2} + \|\mathcal{H}_{x}^{m/2}u\|_{L^{2}}^{2} + \|\mathcal{H}_{z}^{m/2}u\|_{L^{2}}^{2} < \infty \right\}$$

where $m \in \mathbb{N}$

Interest : $e^{-it\mathcal{H}_z/\varepsilon}$ commutes with \mathcal{H}_x and $\mathcal{H}_z \implies$ uniform estimates

Sobolev scale adapted to \mathcal{H}_z and \mathcal{H}_x

$$B^m = \left\{ u: \|u\|_{B^m}^2 = \|u\|_{L^2}^2 + \|\mathcal{H}_x^{m/2}u\|_{L^2}^2 + \|\mathcal{H}_z^{m/2}u\|_{L^2}^2 < \infty \right\}$$

where $m \in \mathbb{N}$

Interest : $e^{-it\mathcal{H}_z/\varepsilon}$ commutes with \mathcal{H}_x and $\mathcal{H}_z \implies$ uniform estimates

Difficulty : in order to manipulate such spaces, there is a need to identify this norm. One can prove that it is equivalent to the more convenient norm

$$||u||_{H^m}^2 + ||x|^m u||_{L^2}^2 + ||V_c(z)^{m/2}u||_{L^2}^2$$

15

Proof in the case without rotation ($\Omega = 0$ and $\mathcal{H}_x = -\Delta_x + |x|^2$) Not obvious !

It requires adapted Weyl-Hörmander pseudodifferential calculus.

Ref. : Helffer 1984, Bony-Chemin 1994.

Extension to condensates in rotation

It works under the condition $\Omega < 1$, which ensures that $-\Omega L_z$ is strictly bounded by $-\Delta_x + |x|^2$.

16

Hilbert-valued almost periodic functions

Definition

 $AP(\mathbb{R}, B^m)$ is the closure of the set of trigonometric polynomials

$$\sum_{k=1}^{K} e^{i\lambda_k \tau} u_k, \qquad \lambda_k \in \mathbb{R}, \quad u_k \in B^m$$

with respect to the $L^{\infty}(\mathbb{R}, B^m)$ norm.

3. Functional framework based on almost periodicity 17

Properties of $AP(\mathbb{R}, B^m)$

Time average

Let $\Theta(\tau) \in AP(\mathbb{R}, B^m)$. Then the following strong limit exists in B^m :

$$\Theta_{\rm av} := \lim_{T \to \infty} \frac{1}{T} \int_0^T \Theta(\tau) \, d\tau.$$

Properties of $AP(\mathbb{R}, B^m)$

Time average

Let $\Theta(\tau) \in AP(\mathbb{R}, B^m)$. Then the following strong limit exists in B^m :

$$\Theta_{\rm av} := \lim_{T \to \infty} \frac{1}{T} \int_0^T \Theta(\tau) \, d\tau.$$

Stability

(i) Let $\Theta(\tau) \in AP(\mathbb{R}, B^m)$. Then the following function also belongs to B^m :

 $e^{i\tau \mathcal{H}_z} \Theta(\tau)$ discrete spectrum of \mathcal{H}_z !

(ii) If $m \geq 2$ the space $\Theta(\tau) \in AP(\mathbb{R}, B^m)$ is an algebra.

4. Consequences and main result

Take $m \geq 2$, $F \in C^{\infty}$ and $u(x, z) \in B^m$. Then the function

$$\widetilde{F}(\tau, u) = e^{i\tau \mathcal{H}_z} F\left(\left|e^{-i\tau \mathcal{H}_z} u\right|^2\right) e^{-i\tau \mathcal{H}_z} u$$

belongs to $AP(\mathbb{R}, B^m)$.

Hence one can define the long time average

$$F_{\rm av}(u) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \widetilde{F}(\tau, u) \, d\tau,$$

the function $u \mapsto F_{\rm av}(u)$ is locally Lipschitz continuous on B^m and it satisfies the tame estimate

$$||F_{\mathrm{av}}(u)||_{B^m} \le C_F(||u||_{L^{\infty}}) ||u||_{B^m}.$$

Main result

 \blacksquare If $0 \leq \Omega < 1$, the limiting model as $\varepsilon \to 0$

$$i\partial_t \Phi = \mathcal{H}_x \Phi + F_{\mathrm{av}}(\Phi(t))$$

is well-posed on B^m locally in time.

For the initial model

$$i\partial_t \Phi = \mathcal{H}_x \Phi + \widetilde{F}\left(\frac{t}{\varepsilon}, \Phi(t)\right),$$

the fast and slow time scales can be decoupled and one can prove convergence as $\varepsilon \to 0$ to the limit model in B^m , locally in time.

5. Final remarks

• Only the discrete spectrum of \mathcal{H}_z is used (no small divisor assumption).

- \blacksquare Only the discrete spectrum of \mathcal{H}_z is used (no small divisor assumption).
- The life time of the solution of the initial model can be as close to the life time of those of the limiting model as we want, provided ε is small enough.

- \blacksquare Only the discrete spectrum of \mathcal{H}_z is used (no small divisor assumption).
- The life time of the solution of the initial model can be as close to the life time of those of the limiting model as we want, provided ε is small enough.
- The limiting models enjoys the following conservation laws :

 $\|\Phi(t)\|_{L^2} = \text{const}, \qquad \|(\mathcal{H}_z^{m/2})\Phi(t)\|_{L^2} = \text{const},$

$$\|(\mathcal{H}_x)^{1/2}\Phi(t)\|_{L^2}^2 + \int G_{\mathrm{av}}(\Phi(t)) \, dx \, dz = \text{const},$$

where
$$G_{\mathrm{av}}(\Theta) := \lim_{T \to \infty} \int_0^T G\left(\left| e^{-i\tau \mathcal{H}_z} \Theta \right|^2 \right) d\tau, \qquad G' = F,$$

Proof in the framework of the energy space : see talk of N. Ben Abdallah.