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Motivation of this work

Physical context : description of the transport of a Bose-Einstein condensate
strongly confined along one or two directions, via the Gross-Pitaevskii equation

(mean field theory).

Objective : justify a model in reduced dimensions thanks to asymptotics analysis.

e—0

3d NLS equation —— 2d or 1d model
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1. Scaling and heuristics

Consider a quantum gas described by the GP eqguation and subject to a strong

anisotropic harmonic potential with 0 < ¢ < 1 :
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confinement potential

The space variables denoted (1, T2, z) do not play
the same roles :

— strong confinement in direction z € R

— transport allowed in directions z = (21, 25) € R?

\/

X, (Disk-shape confinement in the talk. But cigar-shape

also works by setting 2 € R?, x € R)



1. Scaling and heuristics

Rescaling the equation

We have in mind that /¢ << 1 is the size of the condensate in direction = :

U(t,z,2) = gl%w (t,x, %)
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Then

with
He = —Ap + 2> — QL.



1. Scaling and heuristics

Rescaling the equation

We have in mind that /¢ << 1 is the size of the condensate in direction = :

U(t,z,2) = gl%w (t,x, %)

1
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Then

with
He = —Ap + 2> — QL.

Tuning of the parameters :  letus choose o = 2, (3 =1/2.



Formal asymptoticsas ¢ — 0

1
10, = Hath + - Hoap+ 6 )%y with H, = —0° + 27



1. Scaling and heuristics

Formal asymptoticsas ¢ — 0

1

1
Atthe order e ': we have 10,10 = — H
£

This is a spectral problem : introduce the eigenpairs (), \,,(2))pen of H.,

H. Xp = Ep Xp (p eN)

then for all z one can decompose 7/ on this complete orthonormal basis :

P = Z Pp e Hhn/E Xp(2)
p=0



1. Scaling and heuristics

Modulation of the coefficients w.r.t. the other variables (¢, ) :

Y(t, x, 2) quptx ) e /ey (2)

Finally, the initial problem is equivalent to the system of coupled bidimensional

GP equations :

104y = Hatp + D Ypgurse eI G 6

q7,r‘38

where  yp,q.rs = 0 / Xp Xq Xr Xs A2



1. Scaling and heuristics

Modulation of the coefficients w.r.t. the other variables (¢, ) :

Y(t, x, 2) quptx ) e /ey (2)

Finally, the initial problem is equivalent to the system of coupled bidimensional

GP equations :

1010y = Moty + D Ypagrs € " EETETEDE G )

q7lr.’8

where  yp,q.rs = 0 / Xp Xq Xr Xs A2

At the order £V : pass to the limit in the red terms —> Oorl



1. Scaling and heuristics

The formal limiting model

V(t,z,z) Z¢pt x) _ZtEp/gXp( )
where the gbp’s solve an infinite system of coupled 2D Schrodinger equations

i@t¢p — H;C¢p + Z pr,q,T,S ¢q ¢’r’ %

(q,r,s)EAp

A, = {(q,r,s) c N°: Ep—kES:Eq—I—ET}

Major difficulty :  well-posedness of the limiting model and summation of series

for initial data not prepared on one single mode.



1. Scaling and heuristics

Two former works :

[Ben Abdallah-F.M.-Schmeiser-Weishaupl 2005]
Rigourous convergence proof in the special case w(t — O) = (g X0 by simple

energy arguments.

[Bao-Markowich-Schmeiser-Weishaupl 2005]

Numerics for the limiting model in the general case, analysis of a truncated model.

Here : we prove the convergence in the general case.



2. Reformulation of the limiting model

General framework

10 = Hoth + éw + F([¢*)v

H. = =07 + V(2)
with
Vi(2) = +casz — too, V.>0

and F' is a smooth function.



2. Reformulation of the limiting model

General framework

10 = Hoth + %sz + F([¢*)v

H. = —07 + Vo(2)
with
Vi(z) = 4o0asz — oo, V. >0

and F' is a smooth function.

Key point : do not project on the x,’s!



2. Reformulation of the limiting model

Filtering procedure

Set
Wt x,2) = e T=ED(t x, 2).

Then the initial problem
. 1 2
10p) = Hptb + g H. + F(|9]7)y

IS equivalent to

€

10, = H,® + F (f, @(t))

with the nonlinearity

~

F(r,u)=¢e" F (‘e | )e T
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2. Reformulation of the limiting model

ODE-like phenomenon : decoupling of the fast and slow time scales

Prototype :
L
Y. = ay- + [ (g, ys(t)>
Theorem : If the time average f.,(:) = Thm T/ f(r,-)dr exists

Then y. — 1y as € — 0 and the limiting equation is

Y = ay + fav(v)

11



2. Reformulation of the limiting model 11

ODE-like phenomenon : decoupling of the fast and slow time scales

Prototype :
L
Y. = ay- + [ (g, ys(t)>
Theorem : If the time average f.,(:) = Thm ?/ f(r,-)dr exists

Then y. — 1y as € — 0 and the limiting equation is

y' = ay + fa(y)
References
ODEs : Sanders-Verhulst 1985, Bidegaray-Castella-Degond 2004 (systems)
PDEs : Schochet 1994 (hyperbolic systems), Grenier 1997 (fluid mechanics)



2. Reformulation of the limiting model

Candidate for our limiting modelas ¢ — O
i0,® = Ho® + Foy(D(1))

with

T—o0

1 /T
Fov(u) = lim _/o F(r,u)dr

12



2. Reformulation of the limiting model

Candidate for our limiting modelas ¢ — O
10,® = H,® + Foy((1))
with
T—00

1 [~
Fov(u) = lim _/o F(r,u)dr

Remarks :
— unknown CID(t, X, z) with 3d space variables but 2d dynamics
— this is a “3d rewriting” of the previous model obtained formally, where the time

averaging just “turns off” the non resonant modes
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2. Reformulation of the limiting model 12

Candidate for our limiting modelas ¢ — O
10, ® = H, O + F. (D(1))

with

Fov(u) = lim 1 /T F(r,u)dr
=00 0
Remarks :
— unknown CID(t, X, z) with 3d space variables but 2d dynamics
— this is a “3d rewriting” of the previous model obtained formally, where the time

averaging just “turns off” the non resonant modes

Steps of the proof :
— design a functional framework to define properly this time average

— adapt to our PDEs the ODE proof of fast/slow time scales decoupling



3. Functional framework based on almost periodicity

We need to average with respect to 7 the function

~

};1(7_7 ’LL) _ e’iTHz I (‘e—iTqu|2) e—iTqu

where H_. has a discrete spectrum, with no uniform gap assumption.

Two crucial mathematical tools :
Adapted functional spaces : a Sobolev scale adapted to the two operators
H,=—-0+V.(2)and H, = —A, + |z]* — QL,

Existence of average in time : Hilbert—valued almost periodic functions

13



3. Functional framework based on almost periodicity 14

Sobolev scale adapted to  H, and H.,

B" ={u: |ulfn = lullZs + [H72ullgs + HI2ull7> < oo}

where m € N

—itHz /e

Interest : e commutes with H, and H, == uniform estimates



3. Functional framework based on almost periodicity 14

Sobolev scale adapted to  H, and H.,

B" ={u: |ulfn = lullZs + [H72ullgs + HI2ull7> < oo}

where m € N

—itHz /e

Interest : e commutes with H, and H, == uniform estimates

Difficulty : in order to manipulate such spaces, there is a need to identify this

norm. One can prove that it is equivalent to the more convenient norm

Jull o + Ml ullZe + [Ve(z)™2ullZs



3. Functional framework based on almost periodicity 15

Proof in the case without rotation (=0 and H,=-—-A,+ |£C|2)

Not obvious!
It requires adapted Weyl-Hormander pseudodifferential calculus.

Ref. : Helffer 1984, Bony-Chemin 1994,

Extension to condensates in rotation

It works under the condition {2 < 1, which ensures that —{) L., is strictly
bounded by — A, + |z



3. Functional framework based on almost periodicity 16

Hilbert—valued almost periodic functions

Definition
AP(R, B™) is the closure of the set of trigonometric polynomials

K
Z e T Uy, M. €R, u, € B™
k=1

with respect to the L°°(IR, B™) norm.



3. Functional framework based on almost periodicity 17

Properties of AP(R, B™)

Time average
Let O(7) € AP(R, B™). Then the following strong limit exists in B :

1 T
O, = lim —/ O(7)dr.
0

T—o0 T



3. Functional framework based on almost periodicity

Properties of AP(R, B™)

Time average
Let O(7) € AP(IR, B™). Then the following strong limit exists in B :

1 /T
O, = lim —/ O(7)dr.
0

T—o0 T

Stability

() Let©O(7) € AP(IR, B™). Then the following function also belongs to B :

e 0(7) discrete spectrum of ., !

(i) Ifm > 2the space O(7) € AP(R, B™) is an algebra.

17



4. Consequences and main result

Take m > 2, F' € C* and u(x, z) € B™. Then the function

~

F(r,u) =€ F (‘e_”qu

belongs to AP(RR, B™).

Hence one can define the long time average

1 /T
Fov(u) = lim _/o F(r,u)dr,

T—o0

the function u — F,,(u) is locally Lipschitz continuous on B™ and it satisfies

the tame estimate

| Fav(w)][pm < Cr (Jlullze) lull .

18



4. Consequences and main result

Main result

If 0 < () < 1, the limiting model as ¢ — 0
10y P = H, P + F,, (P(1))

is well-posed on B"" locally in time.

For the initial model

E

i0,® = H,® + F (f, <I>(t)> ,

the fast and slow time scales can be decoupled and one can prove

convergence as ¢ — () to the limit model in 5", locally in time.

19



5. Final remarks

Only the discrete spectrum of H , is used (no small divisor assumption).
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5. Final remarks

Only the discrete spectrum of H , is used (no small divisor assumption).
The life time of the solution of the initial model can be as close to the life time

of those of the limiting model as we want, provided ¢ is small enough.
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5. Final remarks 20

Only the discrete spectrum of H , is used (no small divisor assumption).
The life time of the solution of the initial model can be as close to the life time
of those of the limiting model as we want, provided ¢ is small enough.

The limiting models enjoys the following conservation laws :

[@(t)][z2 = const,  [[(H'/?)®(t)]|2 = const,

H(Hw)l/%b(t)H%g + /GaV(CI)(t)) dxdz = const,

T

where G, (O) := lim G (‘e_”Hz@f) dr, G =F,

T_)OO 0

Proof in the framework of the energy space : see talk of N. Ben Abdallah.
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