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Motivation of this work

Physical context : description of the transport of a Bose-Einstein condensate

strongly confined along one or two directions, via the Gross-Pitaevskii equation

(mean field theory).

Objective : justify a model in reduced dimensions thanks to asymptotics analysis.

3d NLS equation
ε→0−→ 2d or 1d model
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1. Scaling and heuristics 3

Consider a quantum gas described by the GP equation and subject to a strong

anisotropic harmonic potential with 0 < ε≪ 1 :

i∂tΨ = −∆Ψ − ΩLzΨ +

(
|x|2 +

z2

εα

)

︸ ︷︷ ︸
Ψ + δ εβ |Ψ|2Ψ

confinement potential

z

2x
x1

The space variables denoted (x1, x2, z) do not play

the same roles :

– strong confinement in direction z ∈ R

– transport allowed in directions x = (x1, x2) ∈ R
2

(Disk-shape confinement in the talk. But cigar-shape

also works by setting z ∈ R
2, x ∈ R)
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Rescaling the equation

We have in mind that
√
ε≪ 1 is the size of the condensate in direction z :

Ψ(t, x, z) =
1

ε1/4
ψ

(
t, x,

z√
ε

)

Then

i∂tψ = Hxψ +
1

ε
(−∂2

z + ε2−α z2)ψ + δ εβ−1/2 |ψ|2ψ
with

Hx = −∆x + |x|2 − ΩLz

.
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Rescaling the equation

We have in mind that
√
ε≪ 1 is the size of the condensate in direction z :

Ψ(t, x, z) =
1

ε1/4
ψ

(
t, x,

z√
ε

)

Then

i∂tψ = Hxψ +
1

ε
(−∂2

z + ε2−α z2)ψ + δ εβ−1/2 |ψ|2ψ
with

Hx = −∆x + |x|2 − ΩLz

Tuning of the parameters : let us choose α = 2, β = 1/2.
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Formal asymptotics as ε→ 0

i∂tψ = Hxψ +
1

ε
Hzψ + δ |ψ|2ψ with Hz = −∂2

z + z2
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Formal asymptotics as ε→ 0

i∂tψ = Hxψ +
1

ε
Hzψ + δ |ψ|2ψ with Hz = −∂2

z + z2

At the order ε−1 : we have i∂tψ =
1

ε
Hzψ

This is a spectral problem : introduce the eigenpairs (Ep, χp(z))p∈N of Hz

Hz χp = Ep χp (p ∈ N)

then for all z one can decompose ψ on this complete orthonormal basis :

ψ =
∞∑

p=0

φp e
−itEp/ε χp(z)
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Modulation of the coefficients w.r.t. the other variables (t, x) :

ψ(t, x, z) =
∞∑

p=0

φp(t, x) e
−itEp/ε χp(z)

Finally, the initial problem is equivalent to the system of coupled bidimensional

GP equations :

i∂tφp = Hxφp +
∑

q,r,s

γp,q,r,s e
−it(Eq+Er−Es−Ep)/ε φq φr φs

where γp,q,r,s = δ

∫
χp χq χr χs dz
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Modulation of the coefficients w.r.t. the other variables (t, x) :

ψ(t, x, z) =
∞∑

p=0

φp(t, x) e
−itEp/ε χp(z)

Finally, the initial problem is equivalent to the system of coupled bidimensional

GP equations :

i∂tφp = Hxφp +
∑

q,r,s

γp,q,r,s e
−it(Eq+Er−Es−Ep)/ε φq φr φs

where γp,q,r,s = δ

∫
χp χq χr χs dz

At the order ε0 : pass to the limit in the red terms =⇒ 0 or 1
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The formal limiting model

ψ(t, x, z) =
∞∑

p=0

φp(t, x) e
−itEp/ε χp(z)

where the φp’s solve an infinite system of coupled 2D Schrödinger equations

i∂tφp = Hxφp +
∑

(q,r,s)∈Λp

γp,q,r,s φq φr φs

Λp =
{
(q, r, s) ∈ N

3 : Ep + Es = Eq + Er

}

Major difficulty : well-posedness of the limiting model and summation of series

for initial data not prepared on one single mode.
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Two former works :

[Ben Abdallah-F.M.-Schmeiser-Weishäupl 2005]

Rigourous convergence proof in the special case ψ(t = 0) = φ0 χ0 by simple

energy arguments.

[Bao-Markowich-Schmeiser-Weishäupl 2005]

Numerics for the limiting model in the general case, analysis of a truncated model.

Here : we prove the convergence in the general case.
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General framework

i∂tψ = Hxψ +
1

ε
Hzψ + F (|ψ|2)ψ

Hz = −∂2
z + Vc(z)

with

Vc(z) → +∞ as z → ±∞, Vc ≥ 0

and F is a smooth function.
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General framework

i∂tψ = Hxψ +
1

ε
Hzψ + F (|ψ|2)ψ

Hz = −∂2
z + Vc(z)

with

Vc(z) → +∞ as z → ±∞, Vc ≥ 0

and F is a smooth function.

Key point : do not project on the χp’s !
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Filtering procedure

Set

ψ(t, x, z) = e−itHz/ε Φ(t, x, z).

Then the initial problem

i∂tψ = Hxψ +
1

ε
Hzψ + F (|ψ|2)ψ

is equivalent to

i∂tΦ = HxΦ + F̃

(
t

ε
,Φ(t)

)

with the nonlinearity

F̃ (τ, u) = eiτHz F
(∣∣e−iτHzu

∣∣2
)
e−iτHzu .
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ODE-like phenomenon : decoupling of the fast and slow time scales

Prototype :

y′ε = ayε + f

(
t

ε
, yε(t)

)

Theorem : If the time average fav(·) = lim
T→∞

1

T

∫ T

0

f(τ, ·) dτ exists

Then yε → y as ε→ 0 and the limiting equation is

y′ = ay + fav(y)
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ODE-like phenomenon : decoupling of the fast and slow time scales

Prototype :

y′ε = ayε + f

(
t

ε
, yε(t)

)

Theorem : If the time average fav(·) = lim
T→∞

1

T

∫ T

0

f(τ, ·) dτ exists

Then yε → y as ε→ 0 and the limiting equation is

y′ = ay + fav(y)

References

ODEs : Sanders-Verhulst 1985, Bidegaray-Castella-Degond 2004 (systems)

PDEs : Schochet 1994 (hyperbolic systems), Grenier 1997 (fluid mechanics)
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Candidate for our limiting model as ε→ 0 :

i∂tΦ = HxΦ + Fav(Φ(t))

with

Fav(u) = lim
T→∞

1

T

∫ T

0

F̃ (τ, u) dτ
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Fav(u) = lim
T→∞

1

T

∫ T

0

F̃ (τ, u) dτ

Remarks :

– unknown Φ(t, x, z) with 3d space variables but 2d dynamics

– this is a “3d rewriting” of the previous model obtained formally, where the time

averaging just “turns off” the non resonant modes
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Candidate for our limiting model as ε→ 0 :

i∂tΦ = HxΦ + Fav(Φ(t))

with

Fav(u) = lim
T→∞

1

T

∫ T

0

F̃ (τ, u) dτ

Remarks :

– unknown Φ(t, x, z) with 3d space variables but 2d dynamics

– this is a “3d rewriting” of the previous model obtained formally, where the time

averaging just “turns off” the non resonant modes

Steps of the proof :

– design a functional framework to define properly this time average

– adapt to our PDEs the ODE proof of fast/slow time scales decoupling
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We need to average with respect to τ the function

F̃ (τ, u) = eiτHz F
(∣∣e−iτHzu

∣∣2
)
e−iτHzu

where Hz has a discrete spectrum, with no uniform gap assumption.

Two crucial mathematical tools :

➠ Adapted functional spaces : a Sobolev scale adapted to the two operators

Hz = −∂2
z + Vc(z) and Hx = −∆x + |x|2 − ΩLz

➠ Existence of average in time : Hilbert–valued almost periodic functions
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Sobolev scale adapted to Hz and Hx

Bm =
{
u : ‖u‖2

Bm = ‖u‖2
L2 + ‖Hm/2

x u‖2
L2 + ‖Hm/2

z u‖2
L2 <∞

}

where m ∈ N

Interest : e−itHz/ε commutes with Hx and Hz =⇒ uniform estimates
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Sobolev scale adapted to Hz and Hx

Bm =
{
u : ‖u‖2

Bm = ‖u‖2
L2 + ‖Hm/2

x u‖2
L2 + ‖Hm/2

z u‖2
L2 <∞

}

where m ∈ N

Interest : e−itHz/ε commutes with Hx and Hz =⇒ uniform estimates

Difficulty : in order to manipulate such spaces, there is a need to identify this

norm. One can prove that it is equivalent to the more convenient norm

‖u‖2
Hm + ‖|x|mu‖2

L2 + ‖Vc(z)
m/2u‖2

L2
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Proof in the case without rotation (Ω = 0 and Hx = −∆x + |x|2)

Not obvious !

It requires adapted Weyl-Hörmander pseudodifferential calculus.

Ref. : Helffer 1984, Bony-Chemin 1994.

Extension to condensates in rotation

It works under the condition Ω < 1, which ensures that −ΩLz is strictly

bounded by −∆x + |x|2.
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Hilbert–valued almost periodic functions

Definition

AP (R, Bm) is the closure of the set of trigonometric polynomials

K∑

k=1

eiλkτ uk, λk ∈ R, uk ∈ Bm

with respect to the L∞(R, Bm) norm.
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Properties of AP (R, Bm)

Time average

Let Θ(τ) ∈ AP (R, Bm). Then the following strong limit exists in Bm :

Θav := lim
T→∞

1

T

∫ T

0

Θ(τ) dτ.
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Properties of AP (R, Bm)

Time average

Let Θ(τ) ∈ AP (R, Bm). Then the following strong limit exists in Bm :

Θav := lim
T→∞

1

T

∫ T

0

Θ(τ) dτ.

Stability

(i) Let Θ(τ) ∈ AP (R, Bm). Then the following function also belongs to Bm :

eiτHz Θ(τ) discrete spectrum of Hz !

(ii) If m ≥ 2 the space Θ(τ) ∈ AP (R, Bm) is an algebra.
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Take m ≥ 2, F ∈ C∞ and u(x, z) ∈ Bm. Then the function

F̃ (τ, u) = eiτHz F
(∣∣e−iτHzu

∣∣2
)
e−iτHzu

belongs to AP (R, Bm).

Hence one can define the long time average

Fav(u) = lim
T→∞

1

T

∫ T

0

F̃ (τ, u) dτ ,

the function u 7→ Fav(u) is locally Lipschitz continuous on Bm and it satisfies

the tame estimate

‖Fav(u)‖Bm ≤ CF (‖u‖L∞) ‖u‖Bm .
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Main result

➠ If 0 ≤ Ω < 1, the limiting model as ε→ 0

i∂tΦ = HxΦ + Fav(Φ(t))

is well-posed on Bm locally in time.

➠ For the initial model

i∂tΦ = HxΦ + F̃

(
t

ε
,Φ(t)

)
,

the fast and slow time scales can be decoupled and one can prove

convergence as ε→ 0 to the limit model in Bm, locally in time.
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➠ Only the discrete spectrum of Hz is used (no small divisor assumption).
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➠ The life time of the solution of the initial model can be as close to the life time

of those of the limiting model as we want, provided ε is small enough.
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➠ Only the discrete spectrum of Hz is used (no small divisor assumption).

➠ The life time of the solution of the initial model can be as close to the life time

of those of the limiting model as we want, provided ε is small enough.

➠ The limiting models enjoys the following conservation laws :

‖Φ(t)‖L2 = const, ‖(Hm/2
z )Φ(t)‖L2 = const,

‖(Hx)
1/2Φ(t)‖2

L2 +

∫
Gav(Φ(t)) dxdz = const,

where Gav(Θ) := lim
T→∞

∫ T

0

G
(∣∣e−iτHzΘ

∣∣2
)
dτ, G′ = F,

Proof in the framework of the energy space : see talk of N. Ben Abdallah.
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