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Part of a more general work done by Myself, Randall Espinoza and

Tom D. Imbo (Phys. Dept. Univ. of Illinois at Chicago) about Gener-

alized Particle Statistics.
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Abstract

We present two statistics intermediate between Bose and Fermi statis-

tics, namely the half-Bose half-Fermi statistics and the Fuzzy Bose-Fermi

statistics. The two statistics have Hilbert spaces that is invariant un-

der particle permutation operation, and obeying cluster decomposition.

Additionally the Fuzzy Bose-Fermi statistics can have small deviation

from Bose statistics and interpolate between the Bose and Fermi statis-

tics. Starting from the grand canonical partition function of both statis-

tics, we could obtained thermodynamics properties for the case of free

non interacting particles (ideal gas). In particular, we show a Bose-like

condensation for both statistics, in which the critical temperatures are

different than the Bose case.

Keywords :Bose-like condensation, Intermediate statistics, quantum

statistics
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Introduction

• All elementary particles that exist right now obey either Bose or

Fermi statistics.

• Interaction between particles, and if the interaction is small enough,

then use perturbation theory. But perturbation method never change

the statistics.

• When interaction is strong enough, free particle approximation is no

longer valid and bound states could be formed. The bound state

could be treated as particle which may have different statistics than

its composition.

• One may thought that in the transition between free states and

bound states, the particle could be treated by some kind of interme-

diate statistics.
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• In handling interaction between particles, people have used mean

field theory and perturbation theory. Beyond these two methods,

interaction is difficult to handle.

• Non interacting particles could also have ‘interaction’ due to their

statistics.

• Is it possible a system of interacting bosons or fermions could be

approximated effectively by a free particle system obeying different

kind of statistics other than Bose and Fermi (?). No known exact

correspondence.

• Since Haldane’s fractional statistics paper [‘Fractional Statistics’ In

Arbitrary Dimensions: A Generalization Of The Pauli Principle’,

Phys. Rev. Lett. 67, 937 (1991)], there have been some efforts to

use several intermediate statistics and other exotic statistics as an

effective theory for many quasi-particle system in condensed matter

physics. Recent ones: [Phys. Rev. A75, 042111 (2007], [J.Phys.

A37 2527-2536 (2004)], [arXiv:cond-mat/0610400v2], see also [A.
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Khare, Fractional Statistics and Quantum Theory, (World Sci-

entific Publ., Singapore, 2005)].
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What I am going to do here

• Describe two (new) statistics

• Find their grand canonical parition function (GCPF)

• Show simple Bose-like condensation phenomena for free non inter-

acting identical particle system (ideal gas) obeying the new statistics.

Also some other thermodynamics properties.
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We consider two statistics, that we call the half-Bose half-Fermi statis-

tics and the Fuzzy Bose-Fermi statistics.

The simplest statistics having both Bose and Fermi states (but also

have more besides those two) whose Hilbert space is invariant under

particle permutation and obeys the cluster decomposition properties —

that is, measuring any physical properties of a set of “isolated” par-

ticles should not depend on the existence or nonexistence of particles

elsewhere.
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The Statistics

Some definition and notation

• Hilbert space invariant under permutation operation → the states

can be classified according to how they transform under permutation

operation. (n-particle states will be superselected into irreducible

subspace representation (IRREPS) of the permutation group Sn).

• The IRREPS of Sn are labeled by partition of n, denoted with λ =

(λ1, λ2, . . . ) with λi ≥ λi+1 and
∑

i λi = n.

• The labels of Sn IRREPS ↔ Young tableau, a left justified array of

boxes, with λi boxes in the i-th row.

• State(s) in IRREPS λ → State with symmetry type λ
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For example, the Young tableau for λ = (4, 3, 2) is

Figure 1: Young tableau for λ = (4, 2, 1)
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Defining the statistics

• Determining the statistics → determining the states symmetry type

(determining the Hilbert space). But there should be some con-

straint .

• For example we cannot just form a Hilbert space consist of totally

symmetric and totally anti symmetric states (or in other word we

cannot just add Bose and Fermi statistics).

• Cluster decomposition properties → Constraint on the allowed set

of state symmetry types (constraint on λ).

• Hartle, Stolt and Taylor [Phys. Rev. D 2, 1759 (1970)],[Phys. Rev. D

1, 2226 (1970)] have shown that for permutation invariant statistics

to obey cluster decomposition properties →

1. All λ has to be included.
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2. Or all λ inside the (p, q)-envelope has to be included.

(p, q)-envelope is a set of Young tableau whose p + 1-th row has no

more than q boxes.

Figure 2: (p, q)-envelope
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Thus, the simplest statistics that has both totally symmetric (Bose)

and totally antisymmetric (Fermi) states has to include all states λ in

(1, 1)-envelope, or λ = (N − k, 1, . . . , 1︸ ︷︷ ︸
k

) ≡ (N − k, 1k).

Meaning, we have to include mixed symmetry, not just the Bose and

Fermi.

Lets just call this new statistics as the half-Bose half-Fermi statis-
tics.
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Figure 3: λ for 4 particles
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Grand Canonical Partition Function

• Almost all thermodynamics properties are easy to derive once we get

the grand canonical partition function (GCPF).

• The GCPF for non interacting particles in m energy levels obey-

ing parastatistics has been known and can be written formally as

[A. P. Polychronakos, ‘Path Integrals and Parastatistics’, Nucl. Phys.

B 474, 529 (1996)], [arXiv:hep-th/9605064], [arXiv:hep-th/9509150]

Z(x1, . . . , xm) =
∑
λ∈Λ

sλ(x1, . . . , xm). (1)

where xi = eβ(µ−Ei), Λ is the set of symmetry type (λ) allowed in

the corresponding parastatistics.
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• sλ(x1, . . . , xm) is the Schur polynomial in m variables defined as

sλ(x1, . . . , xm) =

 |xm+λi−i
j |

∆(x1,...,xm) for λm+1 = 0

0 otherwise,
(2)

with ∆(x1, . . . , xm) =
∏m

i<j(xi−xj) being the Vandermonde poly-

nomial.
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• But it turns out that their result also applied for any statistics whose

(n-particle) Hilbert space is invariant under Sn.

• The half-Bose half Fermi statistics, the GCPF is given by (1) with

Λ is the (1, 1)-envelope, denoted as Λ = λ ∈ (1, 1).

•
Z(x1, . . . , xm) =

∑
λ∈Λ

sλ(x1, . . . , xm). (3)

• But the sum in its current forms is useless unless if we can simplify

it. (Like the case of Bose and Fermi)
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Simplification of (3)

• The calculation involves Pieri’s formula (from the theory of symmet-

ric functions, see for ex. [W. Fulton, Young Tableaux, (Cambridge

Univ. Press, New York, 1991)]):

eksλ =
∑

µ

sµ, (4)

ek ≡ s(1k) is the elementary symmetric polynomial, and the µ sum

is over all Young tableau obtained by adding k boxes to λ (as a

tableau), with no two boxes in the same row.

• Illustration

• The sum over sλ in (1, 1)-envelope can be written as the sum over

sλ in the (1, 0)-envelope (which is equal to the GCPF for Bose)

multiplied by
∑

k=0 e2k.
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Figure 4: Example of Pieri’s formula

• Illustration

• Thus,

Z(1,1)(x1, . . . , xm) =

∑
k=0 e2k(x1, . . . , xm)∏m

i=1(1− xi)
=

1

2

(
1+

∏m
i=1 1 + xi∏m
i=1 1− xi

)
.

(5)
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Figure 5: Rewriting the (1,1)-envelope
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A side issue: Counting function

The counting function, w(ν1, . . . , νm) → the number of physically

distinct linearly independent n-particle states for a given multiplicity ν,

• Can be obtained from the GCPF

Z(x1, . . . , xm) =
∑

ν

w(ν1, . . . , νm) mν(x1, . . . , xm). (6)

mν(x1, . . . , xm) is the monomial symmetric polynomial.

• Using the following relation [I. G. Macdonald, Symmetric Func-

tions and Hall Polynomials, (Clarendon Press, Oxford 1995)][W.

Fulton, J. Harris, Representation Theory, (Springer, New York,

1991)]

sλ(x1, . . . , xm) =
∑

ν

Kλν mν(x1, . . . , xm), (7)
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Kλν is Kostka number

• We then have

w(ν1, . . . , νm) =
∑
λ∈Λn

Kλν. (8)

• A related counting function W (n,m), the number of distinct linearly

independent n-particle states that can occupy m energy levels —–

regardless of occupation numbers.

W (n, m) =
∑

ν1+···+νm=n

w(ν1, . . . , νm). (9)

• For λ ∈ (1, 1)-envelope K(n−l,1l),ν =

(
g − 1

l

)
, where g is the

number of non-zero νi’s. Using this, we have

w(1,1)(ν1, . . . , νm) = 2g−1 (10)
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•

W(1,1)(n, m) =
1

2

n∑
k=0

(
k + m− 1

k

)(
m

n− k

)
(11)

=m 2F1(1−m, 1− n; 2; 2). (12)

where 2F1 is the generalized hyper geometric function.
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Another new statistics

• How about something that interpolate between Bose and Fermi

statistics? But still obey cluster decomposition.

• In this direction, there are several attemmpt for example, the Hal-

dane’s fractional statistics. Defining the interpolating counting func-

tion.

W (n,m) =
[m− (g − 1)(n− 1)]!

n![m− g(n− 1)− 1]!
, (13)

for 0 ≤ g ≤ 1, (g = 0 Bose) (g = 1 Fermi). (Note that if the

argument of the factorial above is fractional, it should be understood

as a gamma function).

• But not just interpolate, the GCPF also has to factorizes into one

energy level GCPF (→ non interacting particles). If the Bose and

Fermi GCPF’s factorizes, in the intermediate it should also factorizes.
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Z(x1, . . . , xm) =

m∏
i

Z(xi) (14)
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Fractional Counting

• We approach the problem by modifying the sum for the GCPF in

(5) by adding cλ in front of each Schur function.

Z(1,1)(x1, . . . , xm) =
∑

λ∈(1,1)

cλsλ(x1, . . . , xm) (15)

• Previously cλ = 1, → The number of states in each IRREPS λ

(counting the states).

• Imposing the constraint in (14)

Z(1,1)(x1, . . . , xm) =
∑

λ∈(1,1)

cλsλ(x1, . . . , xm) =

m∏
i

Z(xi) (16)
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• But we also have

Z(x) =
∑

j

c(j)s(j)(x) =
∑

j

c(j)x
j, (17)

• Putting this back to (16) we have∑
λ∈(1,1)

cλ sλ(x1, . . . , xm) =

m∏
i=1

∑
ki

c(ki)s(ki)(xi)

=
∑

k1,...,km

c(k1) · · · c(km) xk1
1 · · ·xkm

m .

(18)

• By rewriting the sum over ki’s above as a sum over all integers n ≥ 0

and over all ki’s such that k1 + · · · + km = n, we can replace the

above relation with∑
λ∈(1,1)

cλ sλ(x1, . . . , xm) =
∑
all ν

c(ν1) · · · c(νm) mν(x1, . . . , xm),

(19)

mν is the monomial symmetric polynomial [I. G. Macdonald].
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• Using the relation between the Schur polynomials and the monomial

symmetric polynomials, (19) can be written as∑
ν

∑
λ∈(1,1)

cλKλν mν(x1, . . . , xm) =
∑

ν

c(ν1) · · · c(νm) mν(x1, . . . , xm).

(20)

• We thus have ∑
λ∈(1,1)

Kλν cλ = c(ν1) · · · c(νm). (21)

• From the theory of symmetric functions, this set of relations is

equivalent to the following determinant formula (see for example

[I. G. Macdonald][W. Fulton, J. Harris],

cλ = det
(
c(λi+j−i)

)
. (22)

• Once the values of the c(k)’s are given, all the cλ’s are determined.

• A reflection of the fact that all information in the GCPF is contained

inside the single energy level GCPF.
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• From (21) for ν = (1, 1, . . . , 1) ≡ (1n) we have∑
λ`n

dλcλ = cn
(1), (23)

where we have used the fact that Kλ(1n) = dλ [W. Fulton, J.

Harris].

dλ is the dimension of IRREPS λ



30/49

menu

�

�

�

�

�

�

	

The meaning of cλ’s

• The value of c(1) should be set to 1, because there exists only one

state for one-particle (with any fixed quantum number).

• As a consequence of this we have
∑

λ`n dλcλ = 1.

• Suggests a probabilistic interpretation of cλ.

• Because dλ always integer then cλ must be fractional → fractional

counting.

• Fractional dimensionality of Hilbert (sub)space (?)
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Another Condition

• The cλ has to be non-negative (either it is a probability, a frac-

tional counting or fractional dimension). Lets call this condition as

unitarity condition.

• Unitarity condition ↔ non-negativity of the determinants in (22).

• It has been shown that this condition is a constraint on the gener-

ating function for the c(k)’s (see [I. G. Macdonald]), which for the

case of λ ∈ (1, 1)-envelope, it can be written as∑
k

c(k)t
k =

(1 + at)

(1− bt)
, (24)

• The a and b are non negative numbers satisfying a+b = 1 (because

c(1) = 1).
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• If we choose t = x in (24), this generating function is just the single

energy level GCPF.

• Thus the GCPF is then given by

Zfuzzy(x1, x2, . . . , xm) =

m∏
i=1

(1 + axi)

(1− bxi)
. (25)

The b and a above can be interpreted as probabilities that the par-

ticles behave like boson or fermion.

• Note that this GCPF interpolating continuously from boson (b =

1, a = 0) to fermion (b = 0, a = 1)

• But also obeys cluster decomposition properties and unitarity.

• Let us called this as Fuzzy Bose-Fermi statistics.
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Side Issue: Fuzzy Counting Function
• The counting function w(ν1, . . . , νm) for Fuzzy Bose-Fermi statistics

can be obtained easily from (16) and (24)

W (n, m) =
∑

k+j=n

(
j + m− 1

j

)(
m

j

)
bkaj, (26)

W (n,m) =
(n + m + 1)!

n!(m− 1)!
2F1(1− n,−n; 1−m− n; 1− b), (27)

where 2F1 is the generalized hypergeometric function.

• As a comparison, the Haldane’s statistics: the single energy level

counting function for this theory is given by w(n) = [1−(g−1)(n−1)]!
n![1−g(n−1)−1]!,

which we see is negative if 2k−1 < g(n−1) < 2k for k = 1, 2, . . . .

Only when g = 0, 1 is W (n,m) in (13) become non-negative for

all n. Thus Haldane’s statistics does not obey unitarity condition.
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Cluster coefficient

• Defined S(k) through the single energy level GCPF by

log Z(x) =
∑
k=1

S(k)

k
xk. (28)

• For Fuzzy Bose-Fermi statistics, in the continuum limit S(k) is re-

lated to the cluster coefficient bk by bk = S(k)/k. For simplicity,

we will often refer to S(k) itself as a cluster coefficient.

•
S(k) = bk + (−1)k+1ak. (29)
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Bose-like Condensation

Consider a system of ideal gas obeying the half-Bose half Fermi statis-

tics and the Fuzzy Bose-Fermi statistics in a d-dimensional spatial space.

In half-Bose half-Fermi Statistics

Start from the GCPF

Z(1,1)(x1, . . . , xm) =

∑
k=0 e2k(x1, . . . , xm)∏m

i=1(1− xi)
=

1

2

(
1 +

∏m
i=1 1 + xi∏m
i=1 1− xi

)
.

(30)
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Defined the following reduced grand potential

Φ̃ ≡ − 1

β
log
(
Z(x1, . . . , xm)− 1

2

)
=

1

β
log 2− 1

β

m∑
i=1

(
log(1 + xi)− log(1− xi)

)
,

(31)

from which

Z(x1, . . . , xm) = exp(−βΦ̃) +
1

2
. (32)

The average number of particles in each energy level

Nk = − 1

β

∂

∂Ek
log Z = (1− 1

2Z
)

2xk

1− x2
k

. (33)

Certainly, it must always hold that 0 ≤ Nk ≤ N with N =
∑

k Nk, for

all energy levels Ek.

In particular, the ground state

2z

1− z2
≥ 0. (34)
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Therefore, 0 ≤ z ≤ 1, which is the same as the restriction on the

bosonic fugacity.
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The GCPF in the continuum energy limit

• In the continuum energy limit, the reduced potential in (31) becomes

Φ̃ = −kTV

λ
d/2
T

(fd/2+1(z)+gd/2+1(z))+kT log 2−kT log
1 + z

1− z
(35)

with λT =
√

2π~2β/m is the thermal wavelength.

• From this the continuum limit for the GCPF can be obtained from

Z(T, V, µ) = exp(−βΦ̃) +
1

2
(36)
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• The average number of particles

N(T, V, µ) = z
∂

∂z
log Z(T, V, µ)

=
(
1− 1

2Z(T, V, µ)

)( V

λ
d/2
T

(fd/2(z) + gd/2(z)) +
2z

1− z2

)
≡ Ne + N0,

(37)

where

N0 ≡
(
1− 1

2Z(T, V, µ)

) 2z

1− z2
(38)

is the average particle number in ground state, and

Ne =
(
1− 1

2Z(T, V, µ)

) V

λ
d/2
T

(fd/2(z) + gd/2(z)) (39)

• Because Z(T, V, µ → 0) →∞ in this limit, we have for the critical
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density and temperature

Ncrit

V
=λ−d

T ζ(d/2)2(1− 1

2d/2
), (40)

Tc =
2π~2

mk

(N

V

)2/d(
ζ(d/2)2(1− 1

2d/2
)
)−2/d

, (41)

For spatial dimensions d ≥ 3, both cases above have higher criti-

cal particle densities, and lower critical temperatures, than the Bose

case. A well-known result for Bose statistics that condensation can-

not occur in a system with spatial dimension less than three remains

true.

• The internal energy U

U =
d

2

kTV

λd
T

(
1− 1

2Z

)
(fd/2+1(z) + gd/2+1(z)) (42)

• The specific heat at constant volume

CV

Nk
=

d(d + 2)

4

V

λd
T

(fd/2+1(z) + gd/2+1(z)), T ≤ Tc, (43)
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For T > Tc,

CV

Nk
=

d

2

(fd/2+1(z) + gd/2+1(z)

fd/2(z) + gd/2(z)
(44)

+
∂z

∂T

1

z

(
1 +

(fd/2+1(z) + gd/2+1(z))fd/2−1(z) + gd/2−1(z)

(fd/2(z) + gd/2(z))2
))

.

(45)

Bose-Like condensation in Fuzzy Bose-Fermi statistics

Start from the GCPF

Zfuzzy(x1, x2, . . . , xm) =

m∏
i=1

(1 + axi)

(1− bxi)
. (46)

• The fugacity z = eβµ is not fixed and should be restricted according

to the following condition for the particle number:

N =
∑

i

Ni = −βz
∂Φ

∂z
, (47)
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• For ground state

N0 =
bz

1− bz
+

az

1 + az
. (48)

Thus, if b 6= 0 a finite zc > 1 exists, and this Fuzzy Bose-Fermi

statistics will exhibit a Bose-like condensation. From (48) we have

zc = 1/b.

• The grand canonical potential is given by

Φ = −kT
V

λd
T

(fd/2+1(z1) + gd/2+1(z2))−
1

β
log

1 + z1

1− z2
, (49)

where z1 = az and z2 = bz.

• The average particle number

N(T, V, µ) =
V

λd
T

(fd/2(z1) + gd/2(z2)) + N0, (50)

where

Ne =
V

λT
(fd/2+1(z1) + gd/2+1(z2)) (51)
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is for the excited level,

N0 =
z1

1 + z1
+

z2

1− z2
(52)

is for the ground state level (if z = zc, the first part above is negli-

gible).

• Ne remains finite at zc, and thus the system exhibit a Bose-like

condensation.

• The critical density of the excited states can be obtained in the limit

when z → zc as
Ncrit

V
=

1

λd
T

Gd/2(zc). (53)

• Critical Temperature

Tc =
2π~2

mk

(N

V

)2/d

(Gd/2(zc))
−2/d, (54)
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where Gn(z) is defined as

Gn(z) = fn(z1) + gn(z2) =

∞∑
k=1

S(k)zk

kn
. (55)

and S(k) = bk + (−1)k+1ak

• The internal energy U

U =
kTV

λd
T

d

2
Gd+2

2
(z), (56)

• The heat capacity at constant volume CV .

CV

Nk
=

d(d + 2)

4

V

Nλd
T

Gd+2
2

(zc), T ≤ Tc, (57)

CV

Nk
=
(d(d + 2)

4

Gd+2
2

(z)

Gd
2
(z)

− d2

4

Gd
2
(z)

Gd−2
2

(z)

)
, T > Tc, (58)
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Tc comparison in d = 3

For a fixed particle density N/V

• Bose :

Tc =
2π~2

mk

(N

V

)2/3

(ζ(3/2))−2/3, (59)

• Half-Bose half-Fermi :

Tc =
2π~2

mk

(N

V

)2/3(
ζ(3/2)2(1− 1

23/2
)
)−2/3

, (60)

• Fuzzy Bose-Fermi (b 6= 0):

Tc =
2π~2

mk

(N

V

)2/3

(f3/2(
1

b
− 1) + ζ(3/2))−2/3, (61)
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Conclusion

We have present two intermediate statistics, the half-Bose half-Fermi

statistics and the Fuzzy Bose-Fermi statistics. The half-Bose half-Fermi

statistics is an intermediate statistics that still obey cluster decomposi-

tion property and its Hilbert space is invariant under permutation oper-

ation. For free non interacting particles in d ≥ 3 this statistics shows

a Bose-like condensation phenomena with a lower Tc than the Bose

case. The Fuzzy statistics is an intermediate statistics that still retain

the properties of half-Bose and half-Fermi statistics but has a parame-

ter that interpolating between Bose and Fermi statistics. This statistics

also able to give a small deviation from Bose statistics but still retain a

nice properties of Bose statistics, that is unitarity, extensivity and cluster

decomposition. A Bose-like condensation also occur for this statistics,

with Tc that can have small deviation from the Bose case.
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