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Abstract : We present new particle statistics intermediate between Bose and Fermi statistics,

namely the half-Bose half-Fermi statistics and the Fuzzy Bose-Fermi statistics. The two statistics have

Hilbert spaces that are invariant under particle permutation operation, and obeying cluster decompo-

sition. Additionally the Fuzzy Bose-Fermi statistics can have small deviation from Bose statistics and

interpolate between the Bose and Fermi statistics. Starting from the grand canonical partition function

of both statistics, we could obtained thermodynamics properties for the case of free non interacting

particles (ideal gas). In particular, we show a Bose-like condensation for both statistics, in which the

critical temperatures are lower than the Bose case.
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1 INTRODUCTION

All elementary particles that we know exist right now obey either Bose or Fermi statistics. When
there is interaction between particles, and if the interaction is small enough, then perturbation
theory can be applied. We know that perturbation method never change the statistics of the
particles, because we always use the bosonic or fermionic states as the basis states. When
interaction between particles is strong enough, the free particle approximation is no longer valid
and bound states could be formed. A bound state of even number of fermions will behave like
boson, while a bound state of odd number of fermions will behave like fermion. One may thought
that in the transition between free states and bound states, the particle could obey some kind
of intermediate statistics.

In handling interactions people has used mean field theory and perturbation theory. Beyond
these two method, interaction is difficult to handle. We also know that repulsive interaction
between bosons can make bosons behaves as fermions, while an attractive interaction between
fermion can make fermions behaves like bosons. In this direction, it could be thought that
a system of interacting bosons or fermions may be approximated effectively by a free particle
system obeying different kind of statistics other than Bose and Fermi, and replacing effectively
their dynamical interaction with ‘statistical interaction’. Even though there is no known exact
correspondence (in dimension greater than one) between the dynamical interaction and statis-
tical interaction, the simplicity of obtaining exact thermodynamics properties directly through
the statistics method provides us with a lot of unexplored possible phenomena that cannot be
given by the mean field and perturbative methods. Started from the fractional statistics paper
of Haldane’s [1], there have been some efforts to use several intermediate statistics and other
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fractional statistics as an effective theory for many quasi-particle system in condensed matter
physics. Several recent ones are [2][3][4], see also [5].

In this presentation, first, after some definition and notation, I will explain the statistics. Then
I will continue with formulating the grand canonical partition function, of the new statistics.
Once the GCPF is known, then almost all thermodynamics properties, including the critical
temperature could be easily obtained.

The new statistics that we want to obtained is bassically the simplest statistics that is still
invariant under particle permutation operation and obeying cluster decomposition properties —
measuring a physical properties of a set isolated of particles should not depend on the existence
or non existence of particle elsewhere —, having non negative counting functions, and for one
of the case, interpolating between Bose and Fermi statistics. The new statistics obtained are
just two of many possibilities inside a class of particle statistics whose Hilbert space is invariant
under particle permutation operation and obeys the cluster decomposition properties, a more
generalized parastatistical system whose grand canonical partition function have been worked
out by Tom Imbo, Randall Espinoza and myself in an unpublished work (but see also [6]). A
possible second quantize realization of these statistics has also been considered [7].

2 SOME DEFINITION AND NOTATION

As already known, the symmetry group for a system of identical particle in spatial dimension
d ≥ 3 is the permutation group Sn. For n-particle Hilbert space that is invariant under the action
of Sn, the states can be classified according to how they transform under permutation opera-
tion. The states will be superselected into irreducible subspace representation of the permutation
group. For each number of particle n, these irreducible subspace representation of the permuta-
tion group Sn can be labeled by partition of n, denoted with λ = (λ1, λ2, . . . ) with λi ≥ λi+1 and∑

i λi = n. These partitions can be visualized with Young tableau, a left justified array of boxes
in which there are λi boxes in the i-th row. For example, the Young tableau for λ = (4, 2, 1)
is given below. The Young tableau visualization are useful because state whose particles being

Figure 1: Young tableau for λ = (4, 2, 1)

represented by boxes in the same row can be simultaneously symmetrized while whose particles
are represented by boxes in the same column can be simultaneously antisymmetrized. In Bose
(Fermi) statistics the Hilbert space has only totally symmetric (one row) or totally antisymmetric
states (one column), correspond to the one dimensional irreducible subspaces of Sn.

In forming intermediate statistics between Bose and Fermi, we cannot just form a Hilbert
space consist of totally symmetric and totally anti symmetric states (or in other word we cannot
just add Bose and Fermi statistics). Because the Hilbert space in this case will not obey cluster
decomposition properties[8][9]. This cluster decomposition properties translates into restriction
on the allowed λ in the Hilbert space. Hartle, Stolt and Taylor have shown that for permutation
invariant statistics to obey cluster decomposition properties, either all state symmetry type has
to be included (the case of infinite statistics) or all states whose symmetry type lies inside
the (p, q)-envelope of Young tableaux has to be included [8][9]. The (p, q)-envelope is a set of
Young tableau whose p + 1-th row has no more than q boxes. Bose statistics correspond to
the (1, 0)-envelope while Fermi statistics correspond to (0, 1)-envelope. Therefore if we want to
have an intermediate statistics, that has Bose and Fermi states, then all states in the (1, 1)-
envelope has to be included and there are more states than the totally symmetric and totally
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Figure 2: (p, q)-envelope

antisymmetric states. There will be mix states also, the one that are not totally symmetric or
totally antisymmetric. In general the states in our system has symmetry type denoted with
λ = (N − k, 1, . . . , 1︸ ︷︷ ︸

k

) ≡ (N − k, 1k). Lets just call this new statistics, the half-Bose half-Fermi

statistics. Later on we will impose additional restriction, to get another new statistics.

3 GRAND CANONICAL PARTITION FUNCTION

The thermodynamics properties of any statistics can be obtained once the grand canonical par-
tition function (GCPF) is obtained. The half-Bose half Fermi statistics falls into the class of
statistics whose Hilbert space is invariant under particle permutation symmetry, the same like
the case of parastatistics. For a system of non interacting particles inside m energy level, the
GCPF for parastatistics has been known and it is given by [10],[11],[12]

Z(x1, . . . , xm) =
∑
λ∈Λ

sλ(x1, . . . , xm). (1)

where xi = eβ(µ−Ei), Λ is the set of symmetry type (λ) allowed in the corresponding statistics,
and sλ(x1, . . . , xm) is the Schur polynomial in m variables (see for ex. [13][14][15] for detail
definition of Schur function and other symmetric polynomial in this paper). It turns out that the
derivation for the parastatistics case is general and can also be applied to any statistics that is
invariant under particle permutation, including for the half-Bose half-Fermi statistics. Thus, for
the half-Bose half Fermi statistics, the GCPF is given by (1), but with Λ is the (1, 1)-envelope
(denoted as Λ = λ ∈ (1, 1)).

It can be shown that for the case of Λ ∈ (1, 0)) and (0, 1)-envelope the sum in (1) reduced
into the known forms of the Bose and Fermi GCPF

ZBose(x1, . . . , xm) =
∑

λ∈(1,0)

sλ(x1, . . . , xm) =
m∏

i=1

(1− xi)−1. (2)

ZFermi(x1, . . . , xm) =
∑

λ∈(0,1)

sλ(x1, . . . , xm) =
m∏

i=1

(1 + xi). (3)

While for our case, the sum in (1) is not so easy to simplify without using some technique from
the symmetric function as follows.

First, the simplification involves Pieri’s formula from the theory of symmetric functions [15]:

eksλ =
∑

µ

sµ, (4)
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where ek ≡ s1k is the elementary symmetric polynomial, and the µ sum is over all Young tableau
obtained by adding k boxes to λ (as a tableau), with no two boxes in the same row. From
this formula, the sum over sλ in the (1, 1)-envelope can be written as the sum over sλ in the
(1, 0)-envelope (which is equal to the GCPF for Bose) multiplied by

∑
k=0 e2k.

Z(1,1) =
∑

λ∈(1,1)

sλ =
∑
k=0

e2k

∑
λ∈(1,0)

sλ. (5)

Noting that ek’s has the following generating function,

m∏
i=1

(1 + txi) =
m∑

k=0

ek(x1, . . . , xm)tk (6)

Thus, after a little manipulation, we obtain the GCPF for the half-Bose half-Fermi statistics

Z(1,1)(x1, . . . , xm) =
∑

k=0 e2k(x1, . . . , xm)∏m
i=1(1− xi)

=
1
2

(
1 +

∏m
i=1 1 + xi∏m
i=1 1− xi

)
. (7)

4 COUNTING FUNCTION

In the last few years, there are some papers that trying to generalize the Bose and Fermi statistics,
making it a new statistics that interpolate between Bose and Fermi. The approach toward this
direction is usually through the introduction of a new counting function, modifying the Bose and
Fermi ones. It is thus important to know the counting function of our new statistics.

The counting function, w(ν1, . . . , νm) which is basically the number of physically distinct
linearly independent n-particle states for a given multiplicity ν, can be obtained from the GCPF
through

Z(x1, . . . , xm) =
∑

ν

w(ν1, . . . , νm) mν(x1, . . . , xm). (8)

where mν(x1, . . . , xm) is the monomial symmetric polynomial. Using the following relation [13][14]:

sλ(x1, . . . , xm) =
∑

ν

Kλν mν(x1, . . . , xm), (9)

where Kλν is the Kostka number(see for ex. [13]), we then have

w(ν1, . . . , νm) =
∑

λ∈Λn

Kλν . (10)

A related counting function W (n, m), gives the number of distinct linearly independent n-particle
states that can occupy m energy levels —– regardless of occupation numbers. Clearly we have

W (n, m) =
∑

ν1+···+νm=n

w(ν1, . . . , νm). (11)

For λ ∈ (1, 1)-envelope K(n−l,1l),ν =
(

g − 1
l

)
, where g is the number of non-zero νi’s. Using

this, we have
w(1,1)(ν1, . . . , νm) = 2g−1 (12)

and

W(1,1)(n, m) =
1
2

n∑
k=0

(
k + m− 1

k

)(
m

n− k

)
= m 2F1(1−m, 1− n; 2; 2). (13)

where 2F1 is the generalized hyper geometric function.
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5 FUZZY BOSE-FERMI STATISTICS

When looking at the GCPF of the half-Bose half Fermi statistics, we notice that the GCPF
does not factorizes into each single energy level GCPF, like the case of Bose and Fermi. This
factorization should be natural for any non interacting particle systems. From other aspect,
it would be nice if we could have just a small violation from the Bose statistics (or from the
Fermi statistics), while at the same time still retain the properties of the half-Bose half Fermi
statistics. Or it would be nice also if we could have a statistics interpolating continuously from
Bose to Fermi. So here, we will form a new statistics, an extension of the half-Bose half-Fermi
statistics, by adding another restriction on the GCPF, requiring it to be factorizes into one energy
level GCPF like the case of Bose and Fermi. This factorization will lead to the extensivity of the
usual extensive variable of the thermodynamics, although we could possibly also have extensivity
without it.

To implement the restriction, we modified the sum in (7) by adding a coefficient cλ in front
each Schur function.

Z(1,1)(x1, . . . , xm) =
∑

λ∈(1,1)

cλsλ(x1, . . . , xm). (14)

Previously the cλ = 1, which can be understood as the number of states in each irreducible
subspace representation denoted by λ. By adding this coefficient, we would like to see other
possibilities by allowing other values of clambda, including a non integer cλ. To guarantee
extensivity we required that

Z(1,1)(x1, . . . , xm) =
∑

λ∈(1,1)

cλsλ(x1, . . . , xm) =
m∏
i

Z(xi) (15)

But we also have
Z(x) =

∑
j

c(j)s(j)(x) =
∑

j

c(j)xj , (16)

where c(j) is cλ for λ = (j). Putting this back to (15) we hve

∑
λ∈(1,1)

cλ sλ(x1, . . . , xm) =
m∏

i=1

∑
ki

c(ki)s(ki)(xi)

=
∑

k1,...,km

c(k1) · · · c(km) xk1
1 · · ·xkm

m .

(17)

By rewriting the sum over ki’s above as a sum over all integers n ≥ 0 and over all ki’s such that
k1 + · · ·+ km = n, we can replace the above relation with∑

λ∈(1,1)

cλ sλ(x1, . . . , xm) =
∑
all ν

c(ν1) · · · c(νm) mν(x1, . . . , xm), (18)

where we have used the definition of the monomial symmetric polynomial[13]. Using the relation
between the Schur polynomials and the monomial symmetric polynomials, (18) can be written
as ∑

ν

∑
λ∈(1,1)

cλKλν mν(x1, . . . , xm) =
∑

ν

c(ν1) · · · c(νm) mν(x1, . . . , xm). (19)

Because for different ν’s the mν(x1, . . . , xm)’s are linearly independent, we thus have∑
λ∈(1,1)

Kλν cλ = c(ν1) · · · c(νm). (20)

This is a set of relations between the coefficients cλ and the c(k)’s. From the theory of symmetric
functions, this set of relations is equivalent to the following determinant formula (see for example
[13][14]),

cλ = det
(
c(λi+j−i)

)
. (21)
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Thus, once the values of the c(k)’s are given, the rest of the cλ’s in (1, 1)-envelope are determined.
This is a reflection of the fact that all information in an extensive GCPF is contained inside the
single energy level GCPF.

From (20) for ν = (1, 1, . . . , 1) ≡ (1n) we have∑
λ`n

dλcλ = cn
(1), (22)

where we have used the fact that Kλ(1n) = dλ. The value of c(1) is normally set to be 1, which
means that there exists only one state for one-particle (with any fixed quantum number). Since
there is only 1 one-particle state (for each quantum number), then logically c(1) = 1. As a
consequence of this we have

∑
λ`n dλcλ = 1. This suggests a probabilistic interpretation of

cλ. The coefficient dλ in (22) represents the (maximum) number of equivalent irreducible Sn

subspaces corresponding to λ. We can also interpret a fractional cλ as a fractional dimensionality
of the Hilbert space or the fractional counting state, in the same spirit of the fractional exclusion
statistics introduced by Haldane [1]. Nevertheless, the cλ has to be non-negative. We call the
condition that cλ ≥ 0 as unitarity condition.

The unitarity condition is equivalent to the non-negativity of the determinants in (21). It
has been shown that this condition is a constraint on the generating function for the c(k)’s [13],
which for the case of λ ∈ (1, 1)-envelope, it is written as∑

k

c(k)t
k =

(1 + at)
(1− bt)

, (23)

where the a and b are non negative numbers satisfy a + b = 1 (because c(1) = 1). If we choose
t = x, this generating function is just the single energy level GCPF. Thus the GCPF is then
given by

Zfuzzy(x1, x2, . . . , xm) =
m∏

i=1

(1 + axi)
(1− bxi)

. (24)

The b and a above can be interpreted as the probability that the particles behave like boson or
fermion. This GCPF interpolating continuously from boson (b = 1, a = 0) to fermion (b = 0, a =
1), but also obeys cluster decomposition properties and unitarity. Let us called this as Fuzzy
Bose-Fermi statistics.

The counting function w(ν1, . . . , νm) for Fuzzy Bose-Fermi statistics can be obtained easily
from (15) and (23)

W (n, m) =
∑

k+j=n

(
j + m− 1

j

)(
m
j

)
bkaj , (25)

W (n, m) =
(n + m + 1)!
n!(m− 1)! 2F1(1− n,−n; 1−m− n; 1− b), (26)

where 2F1 is the generalized hypergeometric function.

6 BOSE-LIKE CONDENSATION

Here we will consider some thermodynamic properties of a system of free non interacting particles
(ideal gas) that obey half-Bose half Fermi statistics and Fuzzy Bose-Fermi statistics in a d-
dimensional space. In particular, we will consider the Bose-like condensation phenomena.

6.1 In half-Bose half-Fermi Statistics

Start from the GCPF given in (7), we can derive many thermodynamics functions. Because of
the form of (7), it is useful to introduce the following reduced grand potential

Φ̃ ≡ − 1
β

log
(
Z(x1, . . . , xm)− 1

2

)
=

1
β

log 2− 1
β

m∑
i=1

(
log(1 + xi)− log(1− xi)

)
,

(27)
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In term of this the GCPF is

Z(x1, . . . , xm) = exp(−βΦ̃) +
1
2
. (28)

The average number of particles in each energy level is given by

Nk = − 1
β

∂

∂Ek
log Z = (1− 1

2Z
)

2xk

1− x2
k

. (29)

Certainly, it must always hold that 0 ≤ Nk ≤ N with N =
∑

k Nk, for all energy levels Ek. In
particular, the ground state

2z

1− z2
≥ 0. (30)

Therefore, 0 ≤ z ≤ 1, which is the same restriction as on the bosonic fugacity. From here, the
calculation is straightforward, just like the case of ideal Bose and Fermi gas. In the continuum
energy limit (free particles), the reduced potential in (27) becomes

Φ̃ = −kTV

λ
d/2
T

(fd/2+1(z) + gd/2+1(z)) + kT log 2− kT log
1 + z

1− z
(31)

with λT =
√

2πh̄2β/m is the thermal wavelength. From this the continuum limit for the GCPF
can be obtained from

Z(T, V, µ) = exp(−βΦ̃) +
1
2

(32)

The average number of particles in the continuum energy limit is

N(T, V, µ) = z
∂

∂z
log Z(T, V, µ)

=
(
1− 1

2Z(T, V, µ)

)( V

λ
d/2
T

(fd/2(z) + gd/2(z)) +
2z

1− z2

)
≡ Ne + N0,

(33)

where
N0 ≡

(
1− 1

2Z(T, V, µ)

) 2z

1− z2
(34)

is the average particle number in ground state, and

Ne =
(
1− 1

2Z(T, V, µ)

) V

λ
d/2
T

(fd/2(z) + gd/2(z)) (35)

is the average particle number in the excited states. Because Z(T, V, µ → 0) → ∞, we have for
the critical density and temperature

Ncrit

V
=λ−d

T ζ(d/2)2(1− 1
2d/2

), (36)

Tc =
2πh̄2

mk

(N

V

)2/d(
ζ(d/2)2(1− 1

2d/2
)
)−2/d

, (37)

For spatial dimensions d ≥ 3, both cases above have higher critical particle density, and lower
critical temperature, than the Bose case. A well-known result for Bose statistics that condensa-
tion cannot occur in a system with spatial dimension less than three remains true. The internal
energy U is also straight forwardly obtained

U =
d

2
kTV

λd
T

(
1− 1

2Z

)
(fd/2+1(z) + gd/2+1(z)) (38)
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From which, we can also obtained the specific heat at constant volume

CV

Nk
=

d(d + 2)
4

V

λd
T

(fd/2+1(z) + gd/2+1(z)), T ≤ Tc, (39)

CV

Nk
=

d

2

(fd/2+1(z) + gd/2+1(z)
fd/2(z) + gd/2(z)

(40)

+
∂z

∂T

1
z

(
1 +

(fd/2+1(z) + gd/2+1(z))fd/2−1(z) + gd/2−1(z)
(fd/2(z) + gd/2(z))2

))
, T > Tc. (41)

6.2 Bose-Like condensation in Fuzzy Bose-Fermi statistics

We start from the GCPF in (24)

Zfuzzy(x1, x2, . . . , xm) =
m∏

i=1

(1 + axi)
(1− bxi)

. (42)

We can calculate the grand potential Φ = −kT log Z. The fugacity z = eβµ is not fixed and
should be restricted so that the particle number in each energy level non negative, particularly
for the ground state

N0 =
bz

1− bz
+

az

1 + az
. (43)

Thus, we should have a maximum z ≡ zc = 1/b. In the continuum energy limit, we have for the
grand potential

Φ = −kT
V

λd
T

(fd/2+1(z1) + gd/2+1(z2))−
1
β

log
1 + z1

1− z2
, (44)

where z1 = az and z2 = bz. The average particle number is

N(T, V, µ) =
V

λd
T

(fd/2(z1) + gd/2(z2)) + N0, (45)

where
Ne =

V

λT
(fd/2+1(z1) + gd/2+1(z2)) (46)

is for the excited level,
N0 =

z1

1 + z1
+

z2

1− z2
(47)

is for the ground state level (if z = zc, the first part above is negligible). We can see that Ne

remains finite at zc, and thus the system exhibit a Bose-like condensation.
The critical density of the excited states can be obtained in the limit when z → zc as

Ncrit

V
=

1
λd

T

Gd/2(zc). (48)

While the critical temperature is

Tc =
2πh̄2

mk

(N

V

)2/d

(Gd/2(zc))−2/d, (49)

where Gn(z) is defined as
Gn(z) = fn(z1) + gn(z2) (50)

The internal energy U can be obtained also easily

U =
kTV

λd
T

d

2
G d+2

2
(z), (51)
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from which we can obtained the heat capacity at constant volume

CV

Nk
=

d(d + 2)
4

V

Nλd
T

G d+2
2

(zc), T ≤ Tc, (52)

CV

Nk
=
(d(d + 2)

4

G d+2
2

(z)

G d
2
(z)

− d2

4

G d
2
(z)

G d−2
2

(z)
)
, T > Tc, (53)

7 TC COMPARISON IN D = 3

If we compare the threestatistics, the Bose, the half-Bose half-Fermi and the fuzzy Bose-Fermi
statistics, we found out that the two new statistics have critical temperature that are lower than
the Bose case. The critical temperature of the three statistics in d = 3 are given below For a
fixed particle density N/V

1. Bose :

Tc =
2πh̄2

mk

(N

V

)2/3

(ζ(3/2))−2/3, (54)

2. Half-Bose half-Fermi :

Tc =
2πh̄2

mk

(N

V

)2/3(
ζ(3/2)2(1− 1

23/2
)
)−2/3

, (55)

3. Fuzzy Bose-Fermi (b 6= 0):

Tc =
2πh̄2

mk

(N

V

)2/3

(f3/2(
1
b
− 1) + ζ(3/2))−2/3, (56)

For the last equation, the b = 0 case is equal to the Fermi statistics, and it can be seen that in the
limit b → 0 we have Tc → 0. The fact that the new statistics have lower critical temperature is
understandable, because here we have antisymmetric and mixed symmetry states. These states
will introduce a kind of ‘repulsive statistical interaction’, thus it takes more lower temperature
to condense.

8 CONCLUSION

We have present two intermediate statistics, the half-Bose half-Fermi statistics and the Fuzzy
Bose-Fermi statistics. The half-Bose half-Fermi statistics is an intermediate statistics that still
obey cluster decomposition property and its Hilbert space is invariant under permutation oper-
ation. For free non interacting particles in d ≥ 3 this statistics shows a Bose-like condensation
phenomena with a different Tc than the Bose condensation. The Fuzzy statistics is an interme-
diate statistics that still retain the properties of half-Bose and half-Fermi statistics but has a
parameter that interpolating between Bose and Fermi statistics. This statistics also able to give
a small deviation from Bose statistics but still retain a nice properties of Bose statistics, that
is unitarity, extensivity and cluster decomposition. A Bose-like condensation also occur for this
statistics, with Tc that can have small deviation from the Bose value.
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