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Hence we have developed a new dynamic transition theory:
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Time-dependent Ginzburg-Landau (TDGL) equations:
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Lifting: For a given applied field H, with div H, =0, let A = A+ A,:

curl A, = H,,

div A, =0,

Aa : nlaQ =3}
Nondim. TDGL:

Wy + iy = —(iuV + A)* Y + b — 24, - AY — 2ipA - Vip — A2 — ||,

Neumann Dirichlet Robin




Neumann boundary condition: For the case where € is enclosed by an insulator:

oy _

=0, A,=0, curlAxn=0 on 0f).
on

Dirichlet boundary condition: For the case where () is enclosed by a magnetic
material:

=0, A,=0, curlAxn=0 on Of).




Function Spaces:

H = L*(Q,C) x Li (2, R?),

H, = H3(Q,C) x H, (Q,R°).,

H%(Q,C) = {¢p € H*(Q,C) | 4 satisfy one of BC's},
L3 (Q R} ={Ac L*(Q,R?) | divA=0,A4,|sq =0},
H: (Q,R%) ={Aec H*NL;,(QR?) | curlA x nlagq = 0}.
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Eigenvalue problems: With one of BC's, the following eigenvalue problem
(ipV + A’ = oy,  zEQ,
has ap < g < -, limy_, o0 o, = 00,

and {e, € HE(Q,C) | n=1,2,..}.

Let the has multiplicity 2m (m > 1) with eigenvectors
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Nondim. parameters:

_ 2vbm,DNo T, — T

a=a(l) eh T,

B=2msD/h

where T, is the critical temperature where incipient superconductivity property can
be observed.

Physical requirement:
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For simplicity, consider the case where . Let e € H?(Q),C) be a first

eigenvector of (2.5). Let

n B . 2 [o, |cur|;40|2da:
o o lel*dx

curl>Ay + Vo = le|?A, + gi(e*Ve —eVe"),

diV.A() — 0,
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Theorem [Ma & W., 04] If R < 0, then the following are true:

(1) If a < aq, the steady state (v, A) = 0 is locally asymptotically stable,

(2) The equations bifurcate from ((v, A),a) = (0,a1) to an attractor X, = S*
for a > a1, which consists of steady state solutions.

(3) There is a neighborhood U C H of (¥, A) =0 s.t. X attracts U\ T in H,
where I is the stable manifold of (¢, A) = 0 with codim. two in H.
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(4) For any (¥, A) € ¥, can be expressed as

0= 25 ero (1952,

Rl Rl
a —
Ry

R — YR [, le|*dx

curl’A = —| |- [le]*Aq + pIm(eVe*)] + o (a _ al) :

Ry

fQ le|?dx




15

Theorem [Ma & W., 04] If R > 0, then for the TDGL with one of the B.C.s,
the following are true:

(1) The steady state (1, A) = 0 is locally asymptotically stable at o < «ay, and
unstable at o > o,

(2) The equations bifurcate from (1, A), ) = (0,a1) to an invariant set ¥, on
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An example

Let

Qg = Dy X (O,h) c R?
Q(L) — {(L$,7$3)| 0<L< o0, & = (33’,%3) < QO}
H, = H,(z") = (0,0, H(z")) 1’ = (x1,22) € Dy
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Then we can find the parameter R = R(L, H) defined on Q(L):

(1) R(L,H) = — K2 + 2L(p3L4 + poL? + p1)

where e(x’) = e11 + ie1o be the first eigenfuction of ( ), and
4p? fDo curl By|?dx’ 41 fDO curl Ay - curl Bydz'
ST T et P Tl
- s, curl Ag|?da’

>0 >0 V0 < L < oo,

P3
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Results (Ma-Wang, 07):

Under the assumptions, the following statements hold true:
For a given applied field H, # 0, there is a critical scale Ly > 0 given by
5 3 1 5 5
pslo + p2lig +pilo = 5K7p

such that

(a) the phase transition in €2(L) is continuous if L < Ly, and
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1. Dynamic Bifurcation Theory

3) W~ Lyu+ Glu ),

u(0) = up.
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1. Dynamic Bifurcation Theory

© W~ Lyu+ Glu ),

u(0) = up.

u: [0,00) — H,

Hy — H dense and compact,
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Attractor Bifurcation (Ma & W., 04): Equation ( ) bifurcates from
(u, \) = (0, A\g) to attractors Xy, if there exist attractors {3 } of (1) such that

0¢ Xy, lim A\, = Ao, lim max ||x|g = 0.

n— 00 n— oo erAn

I/ B
40
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Examples:

For x € R, .
d_f = Az — 2° + o(z°)

bifurcates from (z,\) = (0,0) to an attractor ¥\ = {x7, 25} for A > 0.

x ¢




Consider:

dxq
dt

dx 2
dt

23
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This bifurcated attractor is as shown in Figure , and contains

exactly 4 nodes (the points a, b, ¢, and d),
4 saddles (the points e, f, g, h), and

orbits connecting these 8 points.

From the physical transition point of view, as A crosses 0, the new state after the
system undergoes a transition is represented by the whole bifurcated attractor
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Example (Ma & W., 04): Consider the Bénard convection on a nondimensional
domain 2 = D x (0, 1) with with a set of physical sound BCs. Let Rayleigh

number be | R = ga(Ty — Th)h?/(kv) |.

T=T
[/ "V / /[ xg=h
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Example-continued (Ma & W., 06 & 07): Consider the 3D Bénard
convection in € = (0, Ly) x (0, Ly) x (0,1) with free top-bottom and periodic
horizontal BC's, and with

k% k2 1
4 —
*) RN RE:

for some k1, ko € Z.

Then

S*  if Lo=+k2—1L;, k=23,
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Example (Ma & W.): For the 3D Bénard convection in Q = (0, L)? x (0,1)
with free BCs and with

9 _ 21/3

2 —_—
@) 0< L <SiE_7

The bifurcated attractor X i consists of 1) exactly eight singular points and 2)
eight heteroclinic orbits connecting the singular points, as shown in Figure , with
4 of them being minimal attractors, and the other 4 saddle points.
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Principle of Exchange of Stability (PES):

B1(A), B2(N), -+ € C eigenvalues of Ly:

(<0 if A< ),
(6) ReB;(A\) 4 =0 if A = Ao, 1<i<m,
>0 ifA> )
(7) ReB;j(Ao) <0 m+1<j.
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Thm (Ma & W., 04, 05) | Assume ( )-( ), and u = 0 is locally asymptotically
stable for ( ) at A = Ag. Then

() bifurcates from (u, A) = (0, A\g) to an attractor X for any A > )\ and near
Ao, with m — 1 < dim > < m, which is connected if m > 1

the attractor ¥ is homologic to ™ 1;

for any uy € Xy, ux = vy + o(||vn]|), vx € Eo;

3
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Remarks

1. General Strategy for Applications:

Existence of the bifurcated attractor X

Classification of Xy
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2. Asymptotic stability at the critical point \j:

based on a general principle motivated by the following example, and used in
the Taylor problem below

based on the center manifold reduction

d
Example: d—f = Az — 2. At \g =0, = = 0 is locally asymptotically stable:

neutrally stable
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An asymptotic stability theorem at the critical \j: Assume that
Ly, : Hi — H is a symmetric linear completely continuous field, Ey = kerL),,, and

< G(u, A\g),u >g=0 Yu € Hy

Thm (Ma -W., 04) Under the assumptions, one and only one of the following
assertions holds true:

(1) There exists a sequence of invariant sets {I",} C Ey of ( ), such that 0 £ T,
and




33

Approximation of the center manifold function o:

Let the nonlinear operator G be in the following form
G(u, A) = Gi(u, A) + o([|u[*),

for some integer k > 2, where GG, is a k-multilinear operator.

Theorem (Ma & Wang, 05). Under the above assumptions, the center
manifold function ® can be expressed as
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VI. Dynamic Transition Theory

The attractor bifurcation theory developed earlier requires that the basic solution
u = 0 is asymptotically stable at A = .

The main motivation of the new dynamic transition theory is to develop a
corresponding theory which covers the general case where the asymptotic stability
of the basic state may not be satisfied.
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The starting point is the following theorem:
Theorem [MA & W., 2007] Under the conditions, the system (1) must have a

transition from (u, A) = (0, \g) to one of the following three types in a
neighborhood U C X of u = 0:

(1) CONTINUOUS TRANSITION: there exists an open and dense set Uy C U such
that for any ¢ € Uy, the solution ux(t,p) of (2.1) satisfies

lim limsup ||ux(t,¢)||x = 0.
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(2) JuMP TRANSITION: for any Ao < A < A\g + € with some € > 0, there is an
open and dense set Uy C U such that for any ¢ € Uy,

limsup [[ux(t, ¢)|lx = 6 > 0,

t— o0

where 0 > 0 s independent of A\. This type of transition is also called the
discontinuous transition.

(3) MIXED TRANSITION: for any Ao < A < Ao + € with some € > 0, U can be

decomposed into two open sets Uy and Us (U} not necessarily connected):
T TN L [TA A A
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V. Remarks

We believe the newly developed dynamic transition theory can be useful in many
phase transition problems in nonlinear sciences, as evidenced by various problems
in statistical physics, classical and geophysical fluid dynamics, ...
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