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The m-coupled Nonlinear Schrödinger equations

The time-independent m-coupled NLSE:





∆φj − λjφj + µj|φj|2φj +
∑

i6=j βij |φi|2φj = 0,

φj > 0 in Rn, j = 1, . . . , m,

φj(x)→ 0, as |x| → ∞,

(1)

where λj , µj > 0, n ≤ 3, and βij = βji for i 6= j are coupling

constants.

2-component example:

{
∆φ1 − λ1φ1 + µ1|φ1|2φ1 + β21|φ2|2φ1 = 0

∆φ2 − λ2φ2 + µ2|φ2|2φ2 + β12|φ1|2φ2 = 0
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Physical Model

∆φj − λjφj + µj|φj|
2φj +

∑

i6=j

βij|φi|
2φj = 0

Nonlinear optics (Kerr-like photorefractive media)

φj: the j-th component of the beam

λj: chemical potential

µj: self-focusing in the j-th component of the beam

βij: interaction between the beams

βij > 0, the interaction between φi and φj is attractive

βij < 0, the interaction between φi and φj is repulsive
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Ground State Solution for m = 1

The weak solution of the decoupled NLSE can be obtained by solving

inf
φ ≥ 0

φ ∈ H1(R
n)

∫
Rn |∇φ|2 + λ

∫
Rn φ2

(∫
Rn φ4

)1/2
(2)
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Ground State Solution for m = 1

or equivalently

inf
φ∈N1

E(φ) (3a)

where the energy functional on the Nehari manifold are

E(φ) =
1

2

∫

Rn

|∇φ|2 +
λ

2

∫

Rn

φ2 −
µ

4

∫

Rn

φ4 (3b)

and

N1 =

{
φ ∈ H1(Rn)| φ ≥ 0, φ ≡/ 0,

∫

Rn

|∇φ|2 + λ

∫

Rn

φ2 = µ

∫

Rn

φ4

}
, (3c)

respectively.

If φ satisfies (3) then φ is called a ground state solution.
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Ground State Solution for m ≥ 2

Consider the minimization problem

inf
φ∈Nm

E(φ), (4a)

where

E(φ) =
m∑

j=1

(
1

2

∫

Rn

|∇φj |
2 +

λj

2

∫

Rn

φ2
j −

µj

4

∫

Rn

φ4
j

)
−

1

4

m∑

i6=j

βij

∫

Rn

φ2
i φ2

j , (4b)

and

Nm =
{
φ = (φ1, φ2, . . . , φm) ∈ (H1(Rn))m| φj ≥ 0, φj ≡/ 0,

∫

Rn

|∇φj |
2 + λj

∫

Rn

φ2
j = µj

∫

Rn

φ4
j +

∑

i6=j

βij

∫

Rn

φ2
i φ2

j , j = 1, . . . , m




 (4c)
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Ground State Solution for m ≥ 2

Definition of the ground state solution:

If φ = (φ1, . . . , φm) satisfies the following properties

1 φj > 0 for all j and φ satisfies NLSE.

2 E(φ) ≤ E(ψ) for any other solution ψ of NLSE.
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Discrete m-coupled Nonlinear Schrödinger Eqs

We consider the m-coupled DNLSE:

{
Auj − λjuj + µju

©2
j ◦ uj +

∑m
i6=j βiju

©2
i ◦ uj = 0,

uj > 0 for j = 1, . . . , m,
(5)

where λj > 0, µj > 0 and βij = βji, are coupling constants.

A ∈ R
N×N corresponding to the operator ∆, uj ∈ R

N is

defined by the a approximation of φj(x) for j = 1, . . . ,m.

For u = (u1, . . . , uN )⊤, v = (v1, . . . , vN )⊤ ∈ R
N ,

u ◦ v = (u1v1, . . . , uNvN )⊤ is the Hadamard product of u & v.

u©r = u ◦ · · · ◦ u denotes the r-time Hadamard product of u.
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The Discrete Minimization Problem for m = 1

One-component DNLSE
{
Au− λu+ µu©2 ◦ u = 0,

u > 0,
(6)

where λ, µ > 0 and A is diagonal dominant with positive

off-diagonal entries.

The minimization problem:

inf
u≥0

Ê(u), (7a)

where

Ê(u) =
−u⊤Au+ λu⊤u

(u©2 ⊤u©2 )1/2
. (7b)
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The Discrete Minimization Problem for m ≥ 2

The corresponding discrete minimization problem:

inf
x∈Nm

E(x). (8a)

where

E(x) =
m∑

j=1

(
−

1

2
u⊤

j Auj +
λj

2
u⊤

j uj −
µj

4
u
©2 ⊤
j u

©2
j

)
−

1

4

m∑

i6=j,i=1

βiju
©2 ⊤
i u

©2
j , (8b)

and

Nm =
{
(u⊤

1 , . . . , u⊤
m)⊤ ∈ R

Nm| uj ≥ 0, x ≡/ 0 and

−u⊤
j Auj + λju⊤

j uj = µju
©2 ⊤
j u

©2
j +

m∑

i6=j,i=1

βiju
©2 ⊤
i u

©2
j , j = 1, . . . , m




 .

(8c)
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Iterative Method for One-Component DNLSE I

Recall that the one-component DNLSE is

{
Au− λu+ µu©2 ◦ u = 0,

u > 0,
(9)

Some notations and facts

Let

Ā = λI −A. (10)

Since λ > 0, then Ā is an irreducible M-matrix and Ā
−1

is

positive definite matrix with positive entries.

W. Wang (NTU) HCCM for NLSE Workshop on BEC 15 / 77



Iterative Method for One-Component DNLSE II

Define the set

M =
{
u ∈ R

N | ‖u‖4 = 1,u ≥ 0
}

, (11)

where ‖u‖4 = (u©2 ⊤u©2 )1/4.

If u ∈M then Ā
−1
u = (λI −A)−1u > 0.

Define a mapping f :M→M by

f(u) =
Ā

−1
u©3

‖Ā
−1
u©3 ‖4

. (12)
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The Fixed Point Iterations

Algorithm 2.1 Fixed Point Iteration.

(i) Given Ā ∈ R
N×N and u0 > 0 with ‖u0‖4 = 1, let i = 0;

(ii) Solve the linear system

Āui+1 = u
©3
i .

Compute ui+1 = ui+1/‖ui+1‖4.

(iii) If converges, then u∗ ← ui+1, stop; else i← i + 1, go to (ii).
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Convergence Analysis of the Fixed Point Iterations

Existence of fixed point and the resulting solution of the

one-component DNLSE

Globally convergent subsequence

Globally convergent sequence derived from a mild assumption
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Fixed Point and the One-Comp DNLSE Solution

Theorem

The function f :M→M given in (12) has a fixed point u∗ in
◦

M.

Furthermore, the point

ū(µ) =
1

µ1/2
‖Ā

−1
u∗©3 ‖−1/2

4 u∗ ∈ N1, (13)

is the solution of Au− λu+ µu©2 ◦ u = 0.
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Globally Convergent Subsequence I

Theorem

(i) If u ∈M and v = f (u), then Ê(v) ≤ Ê(u), where Ê(·) is

defined as Ê(u) = −u⊤Au+λu⊤u

(u©2 ⊤u©2 )1/2 . The equality holds if and only if u

is a fixed point of f :M→M, i.e., f(u) = u.

(ii) For a sequence {ui}∞i=0 generated by the Fixed Point Algorithm,

there exists a subsequence {uni
}∞i=0 such that

lim
i→∞

uni
= u∗. (14)

Furthermore, u∗ is a fixed point of the function f (u) = Ā
−1

u©3

‖Ā
−1

u©3 ‖4
.
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Globally Convergent Subsequence II

Corollary

If the minimization problem (7) has a unique global minimizer

u∗ ∈M, then there exist a neighborhood Ru∗ of u∗ such that the

fixed point iteration converges to u∗ for any initial vector u0 ∈ Ru∗ .

inf
u≥0

Ê(u), (15a)

where

Ê(u) =
−u⊤Au+ λu⊤u

(u©2 ⊤u©2 )1/2
. (15b)
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Globally Convergent Sequence

Theorem

If u∗ given in (14) is strictly local minimum of (7), then the

sequence {ui} converges to u∗ ∈M.

Remark
Numerical experience shows that for any arbitrary initial positive

vector u0 with ‖u0‖4 = 1, the fixed point iteration converges to the

global minimizer of (7).
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Continuation Method for the DNLSE

Recall that the m-coupled DNLSE is
{
Auj − λjuj + µju

©2
j ◦ uj +

∑m
i6=j βiju

©2
i ◦ uj = 0,

uj > 0 for j = 1, . . . , m,

where λj > 0, µj > 0 and βij = βji, i 6= j.

Let βij = βδij (β: continuation parameter) and rewrite as

G(x, β) = (G1, . . . ,Gm)(x, β) = 0, (16)

where x = (u⊤
1 , . . . ,u⊤

m)⊤ ∈ RNm, G : RNm × R→ RNm and

Gj(x, β) = Auj − λjuj + µju
©2
j ◦ uj + β

m∑

i6=j

δiju
©2
i ◦ uj , j = 1, . . . , m.

(17)
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Standard Continuation Method for the DNLSE

The solution curve C of (16):

C =
{
y(s) = (x(s)⊤, β(s))⊤| G(y(s)) = 0, s ∈ R

}
. (18)

Assume s is a parametrization via arc length is available on C.

By differentiating with s we have

DG(y(s))ẏ(s) ≡ [Gx,Gβ]ẏ(s) = 0,

where ẏ(s) = (ẋ(s)⊤, β̇(s))⊤ is a tangent vector to C at y(s).

ẏi

yi

C
yi+1

yi+1,1

x

β
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Solution Set of DNLSE for n = 1

We consider 2-coupled NLSE with n = 1

{
φ

′′

1 − λ1φ1 + µ1φ3
1 + β12φ2

2φ1 = 0,

φ
′′

2 − λ2φ2 + µ2φ3
2 + β12φ2

1φ2 = 0.

By differentiating with x we have

[
L1 2β12φ1φ2

2β12φ1φ2 L2

] [
φ

′

1

φ
′

2

]
= 0, (19)

where L1 = d2

dx2 − λ1 + 3µ1φ
2
1 + β12φ

2
2 and

L2 = d2

dx2 − λ2 + 3µ2φ
2
2 + β12φ

2
1. From (19) we see that the

matrix
[

L1 2β12φ1φ2

2β12φ1φ2 L2

]
is singular. It easily seen that the

solution set of (1) is one dimensional.
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1-D
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Numerical Difficulty

ẏi

yi

C

yi+1

yi+1,1

x

β
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Numerical Difficulty

ẏi

ax

yi

C

yi+1

yi+1,1

x

β
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Solution Set of DNLSE for n = 2

We consider the m-coupled DNLSE with domain

[−d, d]× [−d, d]. The numerical null space of Gx(x(s), β(s)) is

spanned by

K0 = span{ax,ay}, (20)

where ax = Dxx(s), ay = Dyx(s) and

Dx = diag{Dx, . . . , Dx},Dy = diag{Dy, . . . , Dy} ∈ R
Nm×Nm,

Dx, Dy ∈ R
N×N are discretization matrices of the differential

operators ∂
∂x

, ∂
∂y

, resp..

Let xr be translation by x-axis or y-axis from x with

‖G(xr, β)‖ < ε. Then these solutions are called “ε-solutions”.
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A Comparison

NLSE

Unbounded domain

Solutions are translation invariant

DNLSE

Computational bounded domain

No translation invariant solutions

The ε-solutions (with small residual) exist
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Numerical Challenges Due to the ε-solutions

1. Cannot compute a unique prediction direction

2. Newton’s correction becomes inaccurate and inefficient

(the Jacobian matrix Gx is nearly singular)

3. Detections of bifurcation points are difficult

4. Cannot follow the desired solution curve efficiently

(Computed solutions may be random or trapped in the

multi-dimensional ε-solution set)
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Main Idea

ẏi

yi

C

yi+1

yi+1,1

x

β
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Main Idea

ax

C

yi+1

yi+1,1

x

β
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Solution Curve





G(x, β) = 0,

a⊤
xx = 0,

a⊤
y x = 0,

ẋ⊤
i x+ β̇iβ = 0.
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Prediction

Let yi = (x⊤
i , pi)

⊤ ∈ RM+1 be an approx. point for C. Suppose
yi+1,1 = yi + hiẏi is used to predict a new yi+1,1, where ẏi is the
tangent vector by solving




Gx Gβ

a⊤
x 0

a⊤
y 0

c⊤i ci


 ẏi =




0

0

0

1


 , (21)

with some constant vector [c⊤i , ci]
⊤ ∈ RM+1.
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Correction






G(y) = 0

(a⊤
x , 0)y = a⊤

x xi+1,1

(a⊤
y , 0)y = a⊤

y xi+1,1

ẏ⊤
i y = ẏ⊤

i yi+1,1

Newton’s method is chosen as a corrector,




Gx(yi+1,l) Gβ(yi+1,l)

a⊤
x 0

a⊤
y 0

ẋ⊤
i β̇i


 δl =




−G(yi+1,l)

ρx,l

ρy,l

ρl


 , l = 1, 2, . . . , (22)

with ρl = ẏ⊤
i (yi+1,l − yi+1,1), ρx,l = a⊤

x (xi+1,l − xi+1,1) and

ρy,l = a⊤
y (xi+1,l − xi+1,1), is solved by yi+1,l+1 = yi+1,l + δl. If

{yi+1,l} converges until l = l∞, we accept yi+1 = yi+1,l∞ as an

approx to C.
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Some 3-component NLSE Results I

Let

Σ =




1 |βδ12| |βδ13|

|βδ12| 1 |βδ23|

|βδ13| |βδ23| 1




and βij = δijβ, Lin and Wei (2005) show that

Case 1 (all interactions are repulsive). If δ12 < 0, δ13 < 0 and

δ23 < 0, then the ground state solution does not exist.

Case 2 (all interactions are attractive). If δ12 > 0, δ13 > 0, δ23 > 0

and Σ is positive definite, then the ground state solution

exists.
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Some 3-component NLSE Results II

Case 3 (two repulsive and one attractive interactions). If δ12 < 0,

δ13 < 0, δ23 > 0 and Σ is positive definite, then the

ground state solution does not exist.

Case 4 (two attractive and one repulsive interactions). If δ12 > 0,

δ13 > 0, δ23 < 0, β ≪ 1 and the ground state solution

exists, then it must be non-radially symmetric.
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The 3-component DNLSE Setting I

We assume m = 3, λ1 = λ2 = λ3 = µ1 = µ2 = µ3 = 1.

The 3-coupled DNLSE G(x, β, δ) = 0 in (11), where

δ = (δ12, δ13, δ23), can be rewritten by

Au1 − u1 + u©3
1 + βδ12u

©2
2 u1 + βδ13u

©2
3 u1 = 0, (1a)

Au2 − u2 + u©3
2 + βδ12u

©2
1 u2 + βδ23u

©2
3 u2 = 0, (1b)

Au3 − u3 + u©3
3 + βδ13u

©2
1 u3 + βδ23u

©2
2 u3 = 0. (1c)
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The 3-component DNLSE Setting

Case 1 and 2 are straightforward.

Case 3 and 4 can be combined by letting

δ12 = δ13 = −1, δ23 = 1 and β ∈ R

.

1 23

The resulting DNLSE G(x, β) = 0 in (1) can be rewritten as

Au1 − u1 + u©3
1 − βu©2

2 u1 − βu©2
3 u1 = 0, (2a)

Au2 − u2 + u©3
2 − βu©2

1 u2 + βu©2
3 u2 = 0, (2b)

Au3 − u3 + u©3
3 − βu©2

1 u3 + βu©2
2 u3 = 0, (2c)
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Primal Stalk Solution I

Theorem

The primal stalk of 3-coupled DNLSE (2) can be described by




u1 =

√
1+3β

1+β−2β2u∗,

u2 = u3 =
√

1+β
1+β−2β2u∗,

−
1

3
≤ β < 1 (3)

where u∗ is a solution of Au− u+ u©3 = 0.
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Primal Stalk Solution II

Remark
If β → 1− then

u2 = u3 =

√
1 + β

1 + 3β
u1 →∞.

If β → −1
3

+
then

u1 → 0, u2 = u3 →

√
3

2
u∗.
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Bifurcation Analysis

The solution curve C of (2):

C = {y(s) = (x⊤(s), β(s))⊤|G(y(s)) = 0 is given in (2)} (4)

Theorem

The primal stalk of C in (4) given by (3), undergoes at least N − p

bifurcation points at 0 < β = β∗
q < 1, q = 1, . . . , N − p, where p is

the number of nonnegative eigenvalues of A− I + 3[[u©2
∗ ]].
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Remark

In [2] show that the number of nonnegative eigenvalues of

{
∆φ − φ + 3ω2

∗φ = λφ,

φ ∈ H2(Rn),

is n + 1, where ω∗ is the unique solution of





∆φ − φ + φ3 = 0,

φ > 0 in R
n,

ω(x) → 0 as |x| → ∞.

In square domain (n = 2), it seem that the number of nonnegative

eigenvalues of A− I + 3[[u©2
∗ ]] is 3. In numerical test, the number of

nonnegative eigenvalues of A− I + 3[[u©2
∗ ]] (the eigenvalue bigger

than −10−3) is 3.

[2]C.-S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem, In

Lecture Notes in Mathematics, 1340(1988) 160-174.
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Implementation

Fortran 95 codes

Hyperplane-constrained continuation method

Interfaces with the packages

Eigenvalue solver (ARPACK)

Linear system solver (GMRES by CERFACS)

Linux based workstation

Automatic bifurcation points detection

Automatic path following with user defined path following policy

Restarting from intermediate solutions

Batch runs
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Implementation

User defined PDEs

User defined program parameters

User defined initial solution

On-going work

Structure aware and efficient eigenvalue solver

Structure aware and efficient linear system solver

Parallel version (distributed memory or multi-cores)

Object version
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Simulation 1

Example

m = 3; Ω = [−5, 5]× [−5, 5]; λj = µj = 1,

The mesh size h of the grid domain Ωh is 0.2

(2 repulsive and 1 attractive) δ12 = δ13 = −1, δ23 = 1.

The solution curve

C+ =
{
(x⊤, β)⊤| G(x, β) = 0 for β ∈ R+

}
. (1)

1 23
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Figure 1. Bifurcation curves and energy curves of DNLSE.
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Simulation 2

Example

m = 3; Ω = [−5, 5]× [−5, 5]; λj = µj = 1,

The mesh size h of the grid domain Ωh is 0.2

(2 attractive and 1 repulsive) δ12 = δ13 = 1, δ23 = −1.

The solution curve

C− =
{
(x⊤, β)⊤| G(x, β) = 0 for β ∈ R−

}
. (1)

1 23
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Figure 2. Bifurcation curves and energy curves of DNLSE.
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Observations

The theoretical applicable range of β is −1
3
≤ β < 1.

Computed β’s keep approaching, but never reaching 1.

A turning point is found at β = −0.3333.

In Simulation 1, computed energy keeps raising as β increases to

1. This is consistent to the result that if β → 1− then

u2 = u3 =

√
1 + β

1 + 3β
u1 →∞.

Computed solution profiles in Simulation 2 is in line with the

result that if β → −1
3

+
then

u1 → 0, u2 = u3 →

√
3

2
u∗.
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Simulation 3

Example

m = 3; Ω = [−5, 5]× [−5, 5]; λj = µj = 1,

The mesh size h of the grid domain Ωh is 0.2

To search for the non-radially solution whose energy is less than

the radially symmetric solutions for small β, where

δ12 = δ13 = 1, δ23 = −1 (Simulation 2).

Only radially symmetric solutions are found in Simulation 2.
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Procedure

Step 1. We trace the solution curve

C1 =
{
(x⊤, β)⊤| G(x, β) = 0 with δ12 = δ13 = δ23 = 1, for 0 ≤ β ≤ 0.2

}
. (2)

Step 2. Fix β = 0.2, then trace the solution curve

C2 =
{
(x⊤, δ23)⊤|G(x, δ23)=0 with β=0.2, δ12 =δ13 = 1, for − 1≤δ23 ≤ 1

}
. (3)

Step 3. Fix δ23 = −1, then trace the solution curve

C3 =
{

(x⊤, β)⊤| G(x, β) = 0 with δ12 = δ13 = 1 and δ23 = −1, for β ∈ R

}
. (4)
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Figure 3. Bifurcation curves and energy curves of DNLSE.
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Figure 4. Bifurcation curves and energy curves of DNLSE.
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Figure 5. Energy curves of DNLSE.
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Motivation and Observations

Solutions on C1 are all ground state solutions.

Interactions are all attractive(δ12 = δ13 = δ23 = 1). Solutions

tends to gather together.

No bifurcation found.

Initial solution for β = 0 is ground state.

C2 is a “bridge” connecting C1 (three attractive) and C3 (two

attractive one repulsive).

One bifurcation occurs in C2. Primal stalk solutions lead to the

results in Simulation 2. The bifurcation branch leads to lower

energy solutions.
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Motivation and Observations

We let β decreases to zero in C3 to find the target solutions.

Another type non-radially symmetric solution is found for β

increase to 1 in C3.

The non-radially symmetric solutions are expected to be ground

state, as we start from ground state (β = 0) and follow the

lower energy path whenever bifurcation occurs.
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One Component Rotating BEC Model

−
1

2
∇2φ(x) + V (x)φ(x) + α|φ|2φ(x) + ωι∂θφ(x) = λφ(x), (5)

for x ∈ Ω ⊆ R2 with
∫

Ω

|φ(x)|2dx = 1, (6)

Ω is a smooth bounded domain

V (x) ≥ 0 is the magnetic trapping potentials

∂θ = x∂y − y∂x is the z-component of the angular momentum

ω is the angular velocity of the rotating laser beam

λ is the chemical potential
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Induced Nonlinear Algebraic Eigenvalue Problem

Au+ αuH ◦ u©2 + ωιSu = λu, (7)

u⊤u = 1. (8)

A: standard central finite difference discretization of

−1
2
∇2 + V (x)

S: discretization matrix corresponding to ∂θ

u©2 = u ◦ u, and ◦ denotes the Hadamard product

Dirichlet boundary condition
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Corresponding Energy Functional

Energy functional

E(φ) =

∫

Ω

(
1

2
|∇φ|2 +

1

2
Vj|φ|

2 +
α

4
|φ|4 +

ωι

2
φ∗∂θφ

)
, (9)

where φ∗ denotes the complex conjugate of φ

Finite dimensional case

E(u) =

(
1

2
uHAu+

α

4
u©2 Hu©2

)
+

ωι

2
uH

Su. (10)
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NAEP rewritten

The new form

Au1 + α([[u©2
1 ]] + [[u©2

2 ]])u1 − ωSu2 = λu1, (11)

Au2 + α([[u©2
1 ]] + [[u©2

2 ]])u2 + ωSu1 = λu2, (12)

with

u⊤
1 u1 + u⊤

2 u2 = 1, (13)

where u = u1 + ιu2 ∈ CN and u1,u2 ∈ RN
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The Parameter Dependent Polynomial System

Let ω = ω0 + ν0p (ω0, ν0 are given and p is the continuation

parameter), ũ = (u⊤
1 ,u⊤

2 )⊤ ∈ R2N , and z = (ũ⊤, λ)⊤ ∈ R2N+1.

G(z, p) = 0, (14)

where G ≡ (G1,G2, g) : R2N+1 × R→ R2N+1 is given by

G1(z, p) = Au1 + α([[u©2
1 ]] + [[u©2

2 ]])u1 − ωSu2 − λu1, (15a)

G2(z, p) = Au2 + α([[u©2
1 ]] + [[u©2

2 ]])u2 + ωSu1 − λu2, (15b)

g(z, p) =
1

2
(u⊤

1 u1 + u⊤
2 u2 − 1). (15c)
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Transformation Invariant Solutions

Define ũ(θ) : [0, 2π]→ R2N by

ũ(θ) =

[
cos θu1 + sin θu2

− sin θu1 + cos θu2

]
. (16)

Solution set C is a two dimensional manifold on R2N+2

G(ũ(θ), λ, p) = 0 for all θ ∈ [0, 2π]

Same energy: E(ũ(0)) = E(ũ(θ))

Same shape: |ũ(0)|2 = |ũ(θ)|2
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Hyperplane-Constrained Continuation Method

Consider the quotient solution set

C/θ = {y(s) = (z(s)⊤, p(s))⊤| G(y(s)) = 0, s ∈ R}. (17)

Compute the tangent vector of ũ(θ) at θ = 0,

∂ũ

∂θ
(0) = (u⊤

2 ,−u⊤
1 )⊤. (18)

Prediction vector ẏi = (ż⊤i , ṗ⊤i )⊤ satisfies DG(y(s))ẏ(s) = 0

and is orthogonal to
(

∂ũ
∂θ

(0)⊤, 0
)⊤

In correction, add an additional hyperplane constraint, with

normal vector
(

∂ũ
∂θ

(0)⊤, 0
)⊤
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Visualization of the Idea

Predict Vector

Tangent vector

Transformation invariant solution

The "pipeline−like" soultion set

Computed solution curve
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An Analysis of Bifurcation

Theorem

Suppose 0 < α <∞ and p = ω in (8). Then the solution curve of

ground states undergoes at least n (= N − dim N (S)) bifurcation

points at finite value ω = ω∗
i , i = 1, . . . n. That is, the Jacobian

matrix G̃z(z, ω) is singular on Cθ at ω∗
i .
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An Experimental Result

Madison, Chevy, Wohlleben, and Dalibard, PRL (84)5,

pp. 806–809, 2000
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Preliminary Computational Results
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Initial Solutions

Let ω = 0

Solve the linear eigenvalue problem Au = λu for α = 0

Take the ith smallest eigenvalue and the corresponding

eigenfunction as initial of continuation method

Follow the solution curve by increasing α = 0 to α = 100.
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Conclusions

m-coupled DNLSE

Nonlinear optics for Kerr-like photorefractive media

A hyperplane-constrained continuation method for ε-solutions

Analysis and numerical experiments for 3-coupled DNLSE

Bifurcation diagrams and non-radially symmetric ground states

Single component DNLSE

Single component rotating Bose-Einstein condensate

A hyperplane-constrained continuation method for

transformation invariant solutions

Bistability of solution curves
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Thank you.
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