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Introduction.

The braid groups Bn were introduced by E. Artin eighty years ago [1], although
their significance to mathematics was possibly realized a century earlier by Gauss, as
evidenced by sketches of braids in his notebooks. The braid groups provide a very
attractive blending of geometry and algebra, and have applications in a wide variety
of areas of mathematics, physics, and recently in polymer chemistry and molecular
biology.

Despite their ripe old age, and an enormous amount of attention paid to them by
mathematicians and physicists, these groups still provide us with big surprises. The
subject was given a major boost when V. Jones discovered, in the mid 1980’s, new
representations of the braid groups, which led to the famous Jones polynomial of
knot theory. In this minicourse, I will touch on that discovery, and more recent ones,
regarding this wonderful family of groups, and raise a few questions about them which
are still open. Along the way, I will also discuss some properties of these groups which
deserve to be better known. Among my personal favorites is the orderability of braid
groups, which implies that they have some special algebraic properties. That will be
the subject of my last lecture.

Due to time restrictions, I will not be able to discuss many interesting aspects of
braid theory, such as the conjugacy problem as solved by Garside, dynamics of braids,
applications to cryptography and connections with homotopy groups of spheres. Some
of these issues will be considered in lectures by others in this summer school. Also
because of time limitation, many proofs will be omitted in my presentation. Some
proofs will be left as exercises for the students, often with hints or references.

The emphasis of my presentation is that there are many ways of looking at braids,
and each point of view provides new information about these groups. Though much
of the motivation for studying braids comes from knot theory, my emphasis will be
on the algebraic aspects of braid groups.

Prerequisites

Students will be assumed to have background in basic topology and group theory. No
other specialized expertise is necessary.
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Suggested reading

• Joan Birman and Tara Brendle, Braids, A Survey, in Handbook of Knot Theory (ed.
W. Menasco and M. Thistlethwaite), Elsevier, 2005.

Available electronically at:

http://www.math.columbia.edu/ jb/Handbook-21.pdf

• Joan Birman, Braids, links and mapping class groups, Annals of Mathematics Stud-
ies, Princeton University Press, 1974.

This classic is still a useful reference.

• Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics
5, second edition, 2003.

This contains a very readable chapter on braid groups.

• Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Why are braids
orderable? Soc. Math. France series Panoramas et Syntheses 14(2002).

Available electronically at:

http://perso.univ-rennes1.fr/bertold.wiest/bouquin.pdf

• Vaughan F. R. Jones, Subfactors and Knots, CBMS Regional Conference series in
Mathematics, Amer. Math. Soc., 1991.

This gem focusses on the connection between operator algebras and knot theory, via
the braid groups.

• Kunio Murasugi and Bohdan Kurpita, A study of braids, Mathematics and its
applications, Springer, 2006.

This rather expensive book does not seem to be available online.

Also see research papers and other books in the bibliography at the end of the notes.
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1 Braids as strings, dances or symbols:

One of the interesting things about the braid groups Bn is they can be defined in
so many ways, each providing a unique insight. I will briefly describe some of these
definitions, punctuated by facts about Bn which are revealed from the various points
of view. You can check the excellent references [1], [2], [6], [9], [12], [17] for more
information.

Definition 1: Braids as strings in 3-D. This is the usual and visually appealing
picture. An n-braid is a collection of n strings in (x, y, t)-space, which are disjoint
and monotone in (say) the t direction.

We require that the endpoints of the strings are at fixed points, say the points (k, 0, 0)
and (k, 0, 1), k = 1, . . . , n. We also regard two braids to be equivalent (informally,
we will say they are equal) if one can be deformed to the other through the family of
braids, with endpoints fixed throughout the deformation.

Although most authors draw braids vertically, I prefer to view them horizontally with
the t-axis running from left to right. My reason is that we do algebra (as in writing)
from left to right, and the multiplication of braids is accomplished by concatenation
(which is made more explicit in the second definition below), which we take to be in
the same order as the product. In the vertical point of view, some authors view the
product αβ of two braids α and β with α above β, while others would put β on top
of α. The horizontal convention eliminates this ambiguity.

There is, of course, a strong connection between braids and knots. A braid β defines
a knot or link β̂, its closure, by connecting the endpoints in a standard way, without
introducing further interaction between the strings.

Figure 1: The closure of a braid.

Equivalent braids give rise to equivalent links, but different braids may give rise to
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the same knot or link. We will discuss how to deal with this ambiguity later. Bn will
denote the group formed by n-braids with concatenation as the product, which we
will soon verify has the properties of a group, namely an associative multiplication,
with identity element and inverses.

Definition 2: Braids as particle dances. If we take t as a time variable, then a
braid can be considered to be the time history of particles moving in the (x, y) plane,
or if you prefer, the complex plane, with the usual notation x + y

√
−1.

This gives the view of a braid as a dance of noncolliding particles in C, beginning
and ending at the integer points {1, . . . , n}. We think of the particles moving in
trajectories

β(t) = (β1(t), . . . βn(t)), βi(t) ∈ C,

where t runs from 0 to 1, and βj(t) 6= βk(t) when j 6= k. A braid is then such a
time history, or dance, of noncolliding particles in the plane which end at the spots
they began, but possibly permuted. Equivalence of braids roughly reflects the fact
that choreography does not specify precise positions of the dancers, but rather their
relative positions. However, notice that if particle j and j + 1 interchange places,
rotating clockwise, and then do the same move, but counterclockwise, then their
dance is equivalent to just standing still!

The product of braids can be regarded as one dance following the other, both at
double speed. Formally, if α and β are braids, we define their product αβ (in the
notation of this definition) to be the braid which is α(2t) for 0 ≤ t ≤ 1/2 and β(2t−1)
for 1/2 ≤ t ≤ 1.

Exercise 1.1 Verify that the product is associative, up to equivalence. The identity
braid is to stand still, and each dance has an inverse; doing the dance in reverse. More
formally, if β is a braid, as defined in this section, define β̄(t) = β(1 − t). Write a
formula for the product γ = ββ̄ and verify that there is a continuous deformation
from γ to the identity braid. [Hint: let s be the deformation parameter, and consider
the dance which is to perform b up till time s/2, then stand still until time 1 − s/2,
then do the dance β̄ in the remaining time.]

A braid β defines a permutation i → βi(1) which is a well-defined element of the
permutation group Σn. This is a homomorphism Bn → Σn with kernel, by definition,
the subgroup Pn < Bn of pure braids. Pn is sometimes called the colored braid group,
as the particles can be regarded as having identities, or colors. Pn is of course normal
in Bn, of index n!, and there is an exact sequence

1 → Pn → Bn → Σn → 1.

Exercise 1.2 Show that any braid is eqiuvalent to a piecewise-linear braid. Moreover,
one may assume that under the projection p : R3 → R2 given by p(x, y, t) = (y, t),
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there are only a finite number of singularities of p restricted to the (image of the)
given braid. One may assume these are all double points, where a pair of strings
intersect transversely, and at different t-values.

Figure 2: Equivalent braids.

Exercise 1.3 Viewing the projection in the (y, t) - plane, with the t-axis as hori-
zontal, for any fixed value of t at which a crossing does not occur, label the strings
1, 2, . . . , n counting from the bottom to the top in the y direction. Let σi for i =
1, . . . , n − 1 denote the braid with all strings horizontal, except that the string i + 1
crosses over the i string, resulting in the permutation i ↔ i + 1 in the labels of the
strings. (Think of it as a right-hand screw motion of these two strings. Argue that any
braid is equivalent to a product of these “generators” of the braid group. [In Figure
1, for example, the braid could be written either as σ−1

2 σ−1
1 σ3σ2σ

−1
1 or σ−1

2 σ3σ
−1
1 σ2σ

−1
1

(or indeed many other ways).]

Finally, note that the inverse of σi is the braid with all strings horizontal, except that
the string i crosses over the i+1 string. The first sketch in Figure 2 shows that these
are indeed inverse to each other.

Definition 3: The algebraic braid group. Bn can be regarded algebraically as
the group presented with generators σ1, . . . , σn−1, where σi is the braid described in
the previous exercise. These generators are subject to the relations (as suggested in
Figure 2:

σiσj = σjσi, |i− j| > 1,

σiσjσi = σjσiσj, |i− j| = 1.

It was proved by Artin that these are a complete set of relations to abstractly define
Bn. This means that any relation among the σj can be deduced from the above
relations.
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Exercise 1.4 Verify that, in Bn, all the generators σj are conjugate to each other.
Show the total degree deg(β) which is the sum of the exponents which appear in an
expression of β in the σj, is well-defined, i.e. independent of the expression. Verify
that the abelianization of Bn, for n ≥ 2, is the infinite cyclic group Z, and deg : Bn →
Z is equivalent to the abelianization homomorphism. Thus the commutator subgroup
of Bn consists of all words of total degree zero.

Exercise 1.5 In B3, consider the special element ∆ = ∆3 = σ1σ2σ1, which consists
of a clockwise “half-twist” of the three strings. Verify that ∆σ1 = σ2∆ and ∆σ2 =
σ1∆. Conclude that ∆2 commutes with both generators of B3 and therefore is in the
centre of B3. (It actually generates the centre, but we will not prove this.)

Show that in B3 there are two braids α and β such that α 6= β but α3 = β3. What
about squares?

Exercise 1.6 For n ≥ 3, define ∆ = ∆n = (σ1σ2 · · ·σn−1)
n. Draw this braid and

convince yourself that it is a half-twist and that ∆σj∆
−1 = σn−j for all j ∈ {1, . . . , n−

1}. Conclude that ∆2 is central in Bn.

We can take a whole countable set of generators σ1, σ2, . . . subject to the above
relations, which defines the infinite braid group B∞. If we consider the (non-normal)
subgroup generated by σ1, . . . , σn−1, these algebraically define Bn. Notice that this
convention gives “natural” inclusions Bn ⊂ Bn+1 and Pn ⊂ Pn+1.

Exercise 1.7 Does B∞ have a nontrivial centre?

Going the other way, if one forgets the last string of an n + 1-braid the result is an
n-braid. But strictly speaking, this is only a well defined homomorphism for pure
braids, (or at best for the subgroup of braids in which the string beginning at the
point n + 1 also ends there). Later, we will have a use for this forgetful map

f : Pn+1 → Pn

It is easy to see that f is a left inverse of the inclusion, or in other words a retraction
in the category of groups.

Artin Combing. We now have the ingredients for the combing technique, by which
Artin solved the word problem for pure braid groups, and therefore for the full braid
groups. Recall that the word problem is to decide when two words in the generators of
a given group presentation actually represent the same group element, or equivalently,
when a given word actually represents the identity in the group.

Given a word in the σj, first work out its corresponding permutation. If the permuta-
tion is nontrivial, so is the group element it represents. If trivial, the braid is a pure
braid, and we have reduced the problem to the word problem for Pn.
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Let β be a pure n-braid and f(β) the pure n−1 braid obtained by forgetting the last
string, but then by inclusion, regard f(β) in Pn. Then β and f(β) can be visualized
as the same braid, except the last string has been changed in f(b) so as to have no
interaction with the other strings. Let K be the kernel of f . Then it is easy to verify
that f(β)−1β ∈ K and the map

β → (f(β), f(β)−1β)

maps Pn bijectively onto the cartesian product Pn−1×K. However, the multiplicative
structure is that of a semidirect product, as happens whenever we have a split exact
sequence of groups, in this case

1 → K → Pn → Pn−1 → 1.

Also notice that every element of K can be represented by a braid in which the first
n − 1 strands go straight across. In this way we identify K with the fundamental
group of the complement of the points {1, . . . , n − 1} in the plane, which is a free
group: K ∼= Fn−1. This process can then be iterated on Pn−1 to obtain the Artin
normal form: Pn is an iterated semidirect product of free groups F1, F2, . . . , Fn−1.

Exercise 1.8 Draw the braid αj = σn−1σn−2 · · ·σj+1σ
2
j σ

−1
j+1 · · ·σ−1

n−2σ
−1
n−1 and verify

that α1, . . . , αn−1 represent a free basis for the group K above.

To solve the word problem in Pn– to decide whether a braid β expressed as a word
in the generators is trivial in the group – construct the unique expansion

β = β1β2 · · · βn−1

from the Artin combing, with βj ∈ Fj. The word problem in free groups being very
easy (two words represent the same group element iff they become equal when all
cancellations of xx−1 or x−1x are made) we have solved the word problem for Pn.

Theorem 1.9 There is an algorithmic solution to the word problem in Pn and Bn.

For later reference, we will call the vector

(β1, β2, · · · , βn−1)

the “Artin coordinates” of β.

Exercise 1.10 Show that the abelianization of Pn is free abelian of rank

(
n
2

)
.
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It is worth mentioning, without details, a theorem of W. Thurston. An infinite group
is called automatic if is well-modelled (in a well-defined technical sense which I won’t
elaborate here) by a finite-state automaton. The standard reference is [11].

Theorem 1.11 (Thurston) Bn is automatic.

This implies, for example, that the word problem can be solved by an algorithm which
is quadratic in the length of the input.

Exercise 1.12 What is the complexity of the Artin combing algorithm?

Exercise 1.13 Show that K is not normal in Bn, but is normalized by the subgroup
Bn−1. Moreover, the action of Bn−1 on K by conjugation is essentially the same as
the Artin presentation, given in the next section.

2 Mapping class groups and braids

Definition 4: Bn as a mapping class group. Going back to the second definition,
imagine the particles are in a sort of planar jello and pull their surroundings with
them as they dance about. Topologically speaking, the motion of the particles extends
to a continuous family of homeomorphisms of the plane (or of a disk, fixed on the
boundary). This describes an equivalence between Bn and the mapping class of Dn,
the disk D with n punctures (marked points). That is, Bn can be considered as the
group of homeomorphisms of Dn fixing ∂D and permuting the punctures, modulo
isotopy fixing ∂D ∪ {1, . . . , n}.

This definition enables us to define a broader class of braid groups, that is, surface
braid groups. Just replace the disk D in the above discussion with a connected surface
Σ, with or without boundary. And let MCG(Σ, n) be the group of (orientation
preserving) homeomorphisms of σ which take some n fixed points interior to Σ to
themselves (possibly permuting them), and fixed on ∂Σ if the boundary is nonempty,
modulo isotopy fixed on the boundary and the n given points. This is independent of
the choice of the n points, and one refers to MCG(Σ, n) as the n-string braid group
on Σ.

Definition 5: Bn as a group of automorphisms. A mapping class [h], where
h : Dn → Dn gives rise to an automorphism h∗ : Fn → Fn of free groups. Using the
interpretation of braids as mapping classes, this defines a homomorphism

Bn → Aut(Fn),

which Artin showed to be faithful, i. e. injective.
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The generator σi acts as

xi → xixi+1x
−1
i

xi+1 → xi

xj → xj, j 6= i, i + 1. (1)

Theorem 2.1 (Artin) Under the identification described above, Bn is the set of
automorphisms h ∈ Aut(Fn) of the form

h(xi) = w−1
j xjwj,

where wj are words in Fn, and satisfying h(x1 · · ·xn) = x1 · · ·xn.

This point of view gives further insight into the group-theoretic properties of braid
groups. A group G is residually finite if for every g ∈ G there is a homomorphism
h : G → F onto a finite group F such that h(g) is not the identity. In other words,
any element other than the identity can be proved nontrivial by looking at some
homomorphism of G to a finite group.

Exercise 2.2 Show that subgroups of residually finite groups are residually finite.

Exercise 2.3 Show that the automorphism group of any finitely generated residually
finite group is itself residually finite. [This is a result of Baumslag. You may want to
consult [21] for a proof, and further discussion on the subject.]

Exercise 2.4 Show that finitely-generated abelian groups are residually finite. The

matrices

[
1 2
0 1

]
and

[
1 0
2 1

]
generate a free group in the modular group SL(2, Z)

which is the set of automorphisms of Z2. Thus SL(2, Z) is residually finite and so is
the rank 2 free group. Conclude that a free group of any finite or countable rank is
residually finite.

From these observations, we see that Aut(Fn) is residually finite and conclude the
following.

Theorem 2.5 Bn is residually finite.

A group G is said to be Hopfian if it is not isomorphic with any nontrivial quotient
group. In other words, if G → H is any surjective homomorphism with nontrivial
kernel, the H 6∼= G.t
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Exercise 2.6 A finitely-generated residually finite group is Hopfian.

It follows immediately that

Theorem 2.7 Bn is Hopfian.

The modular group. There is an interesting connection between the braid group
B3 and two-by-two integral matrices. Consider the matrices

S =

[
0 −1
1 0

]
T =

[
1 1
0 1

]
.

One can easily check that S2 = −I = (ST )3. These matrices generate cyclic sub-
groups of SL(2, Z), Z4 and Z6, respectively (we use the abbrviation Zn = Z/(nZ)).
It is well-known that, using the generators S and ST , there is an amalgamated free
product structure

SL(2, Z) ∼= Z4 ∗Z2 Z6.

The modular group PSL(2, Z) is the quotient of SL(2, Z) by its center {±I}. One
can also regard PSL(2, Z) as the group of Möbius transformations of the complex
plane

z 7→ az + b

cz + d
corresponding to

[
a b
c d

]
∈ SL(2, Z).

The modular group has the structure of a free product Z2 ∗ Z3, with (the cosets of)
S and ST generating the respective factors.

Exercise 2.8 Show that the braid group B3
∼= 〈σ1, σ2|σ1σ2σ1 = σ2σ1σ2〉 also has

the presentation 〈x, y|x2 = y3〉, by finding appropriate expressions of x, y in terms of
σ1, σ2, and vice-versa, so that the transformations respect the relations and are mutual
inverses.

Verify that the element x2(= y3) is central in B3 and in fact generates the center of
B3.

Show that B3 modulo its center is isomorphic with PSL(2, Z).

Definition 6: Bn as a fundamental group. In complex n-space Cn consider the
big diagonal

∆ = {(z1, . . . , zn); zi = zj, some i < j} ⊂ Cn.

Using the basepoint (1, 2, . . . , n), we see that

Pn = π1(Cn \∆).
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In other words, pure braid groups are fundamental groups of complements of a special
sort of complex hyperplane arrangement, itself a deep and complicated subject.

To get the full braid group we need to take the fundamental group of the configuration
space, of orbits of the obvious action of Σn upon Cn \∆. Thus

Bn = π1((Cn \∆)/Σn).

Notice that since the singularities have been removed, the projection

Cn \∆ −→ (Cn \∆)/Σn

is actually a covering map. As is well-known, covering maps induce injective homo-
morphisms at the π1 level, so this is another way to think of the inclusion Pn ⊂ Bn.

It was observed in [14] that Cn \∆ has trivial homotopy groups in dimension greater
than one. That is, it is an Eilenberg-Maclane space, also known as a K(Pn, 1).
Therefore its cohomology groups coincide with the group cohomology of Pn. By
covering theory, the quotient space (Cn \∆)/Σn also has trivial higher homotopy, so
it is a K(Bn, 1). Since these spaces have real dimension 2n, this view of braid groups
gives us the following observation.

Theorem 2.9 The groups Bn and Pn have finite cohomological dimension.

If a group contains an element of finite order, standard homological algebra implies
that the cohomological dimension of the group must be infinite. Thus there are no
braids of finite order.

Corollary 2.10 The braid groups are torsion-free.

Finally, we note that the space (Cn \ ∆)/Σn can be identified with the space of all
complex polynomials of degree n which are monic and have n distinct roots

p(z) = (z − r1) · · · (z − rn).

This is one way in which the braid groups play a role in classical algebraic geometry,
as fundamental groups of such spaces of polynomials.

Definition 7: Bn is the fundamental group of the space of all monic polynomials of
degree n with complex coefficients and only simple roots.
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3 Knot theory, braids and the Jones polynomial

Knots and Reidemeister moves

One often pictures a knot or link by drawing a projection onto the plane, with only
double points, and indicating which string goes under by putting a small gap in it,
as in Figure 1. If one deforms the plane by a planar isotopy, an equivalent projection
results. One can also make local changes to a knot diagram. The first two vignettes
in Figure 2 are sometimes called Reidemeister moves of type 2 and 3 (respectively).
One can remember the numbering, as type 2 involves two strands and type 3 involves
three. There is also a type 1 Reidemeister move.

Reidemeister move of type 1

Markov moves

It has already been mentioned that different braids can, upon forming the closure,
give rise to the same knot or link. You can easily convince yourself that if α and
β are n-string braids, then the closure of α−1βα is equivalent to the closure of β.
Because of the trivial strings added in forming the closure, α and its inverse can
annihilate each other! Therefore we see that conjugate braids close to the same link.
Another example of this phenomenon is to consider the n-braid β as an element of
Bn+1 by adding a trivial string at the top, and compare the original closure β̂ with
the closure of β×σn, the latter braid taken in Bn+1. If you sketch this, you can easily
convince yourself that these result in the same link. The first move (conjugation)
and the second move just described constitute the two Markov moves. They are the
key to understanding the connection between braid theory and knot theory. The
following theorem is due to J. W. Alexander (first part) and A. A. Markov. A full
proof appeared first, to my knowledge, in [6].

Theorem 3.1 Every knot or link is the closure of some braid. Two braids close to
equivalent knots or links if and only if they are related by a finite sequence of the two
Markov moves.

Exercise 3.2 If you want to learn a nice, elementary proof of the above theorem,
read the paper [24].
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Exercise 3.3 Consider the 3-braid β = σ1σ2 and identify the knot or link, simplify-
ing, if possible by using Reidemeister moves: β̂, β̂2, β̂3. For which integers k is the
closure of βk a knot?

Kauffman’s bracket and Jones’ polynomial

The original construction of the Jones polynomial involved a family of representations

Bn → A

of the braid groups into an algebra A involving a parameter t. This algebra has a
linear trace function into the ring of (Laurent) polynomials. The composite of the
representation and the trace, together with some correction terms to account for the
Markov moves, defined the original Jones polynomial.

We will present this in a sort of reverse order, as there is a very simple derivation
of the Jones polynomial discovered a few years later by L. Kauffman. From this, we
can define an algebra, called the Temperley-Lieb algebra, and reconstruct what is
essentially Jones’ representation.

Consider a planar diagram D of a link L, which has only simple transverse crossings.
Kauffman’s bracket 〈D〉 is (at first) a polynomial in three commuting variables, a, b
and d defined by the equations:

d   D

ba

D 
Equations defining Kauffman’s bracket polynomial.

Some explanation is in order. The vignettes in the brackets in the first equation stand
for complete link diagrams, which differ only near the crossing in question. Those on
the right side represent diagrams with fewer crossings. In the second equation, one
can introduce a closed curve which has no intersections with the remainder of the
diagram D, resulting in a diagram whose bracket polynomial is d times the bracket
of D.
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Exercise 3.4 Verify that the bracket polynomial is well-defined, if we decree that the
bracket of a single curve with no crossings is equal to 1.

Exercise 3.5 Show that the bracket will be invariant under the type 2 Reidemeister
move, if we have the following relations among the variables:

a2 + b2 + abd = 0 and ab = 1.

Thus we make the substitutions b = a−1 and d = −a2 − a−2 and now consider the
bracket to be a Laurent polynomial in the single variable a.

Exercise 3.6 Show that the invariance under the type 2 Reidemeister moves implies
the bracket is invariant under the type 3 move, too.

Exercise 3.7 Calculate the bracket of the two trefoil knot diagrams with 3 crossings.
Show that they are the same, except for reversal of the sign of the exponents.

Exercise 3.8 Investigate the effect of Reidemeister move 1 on the bracket of a di-
agram, and show that it changes the bracket by a factor of −a±3, the sign of the
exponent depending on the sense of the curl removed.

Because of this, one can define a polynomial invariant under all three Reidemeister
moves, by counting the number of positive minus the number of negative crossings,
and modifying the bracket polynomial by an appropriate factor. A positive crossing
corresponds to a (positive) braid generator, if both strings are oriented from left
to right. This gives, up to change of variable, the Jones polynomial of the knot.
Specifically, we define the writhe of an oriented diagram ~D for an oriented knot (or

link) ~K to be

w(D) =
∑

c

εc

where the sum is over all crossings and εc = 1 if the crossing c is positive, and −1 if
negative. Then we define

f ~K(a) = (−a3)−w( ~D)〈D〉.

This is an invariant of the oriented link ~K. If K happens to be a knot, it is independent
of the orientation, as reorienting both strands of a crossing does not change its sign.
It is related to the Jones polynomial VK(t) by a simple change of variables:

V ~K(t) = f ~K(t−1/4).

Exercise 3.9 Show that all exponents of a in 〈D〉 are divisible by 4 if D is a diagram
of a knot (or link with an odd number of components). In other cases, they are
congruent to 2 mod 4. Thus the Jones polynomial is truly a (Laurent) polynomial in
t for knots and odd component links, but a polynomial in

√
t in the other cases.
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Representations

This is a very big subject, which I will just touch upon. By a representation of
a group we will mean a homomorphism of the group into a group of matrices, or
more generally into some other group, or ring or algebra. Often, but not always,
we want the target to be finite-dimensional. We’ve already encountered the Artin
representation Bn → Aut(Fn), which is faithful. Here the target group is far from
being “finite-dimensional.”

Another very important representation is the one defined by Jones [16] which gave
rise to his famous knot polynomial, and the subsequent revolution in knot theory.
The version I will discuss is more thoroughly described in [17]; it is based on the
Kauffman bracket, an elementary combinatorial approach to the Jones polynomial.
First we need to describe the Temperley-Lieb Algebras Tn, in their geometric form.
The elements of Tn are something like braids: we consider strings in a box, visualized
as a square in the plane, endpoints being exactly n specified points on each of the left
and right sides. The strings are not required to be monotone, or even to run across
from one side to the other. There also may be closed components. Really what we
are looking at are “tangle” diagrams. Two tangle diagrams are considered equal if
there is a planar isotopy, fixed on the boundary of the square, taking one to the other.
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A typical element in T5 and the generator e3.

Now we let A be a fixed complex number (regarded as a parameter), and formally
define Tn to be the complex vector space with basis the set of all tangles, as described
above, but modulo the following relations, which correspond to similar relations used
to define Kauffman’s bracket version of the Jones polynomial (we have promoted the
variable a to upper case).
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-1

Relations in Tn.

The first relation means that we can replace a tangle with a crossing by a linear
combination of two tangles with that crossing removed in two ways. As usual, the
pictures mean that the tangles are identical outside the part pictured. The second
relation means that we can remove any closed curve in the diagram, if it does not
have any crossings with the rest of the tangle, at the cost of multiplying the tangle
by the scalar −A2 − A−2. Using the relations, we see that any element of Tn can be
expressed as a linear combination of tangles which have no crossings and no closed
curves – that is, disjoint planar arcs connecting the 2n points of the boundary. This
gives a finite generating set, which (for generic values of A) can be shown to be a basis
for Tn as a vector space. But there is also a multiplication of Tn, a concatenation of
tangles, in exactly the same way braids are multiplied. This enables us to consider
Tn to be generated as an algebra by the elements e1, . . . , en−1. In ei all the strings go
straight across, except those at level i and i + 1 which are connected by short caps;
the generator e3 of T5 is illustrated in Figure 2. The identity of this algebra is simply
the diagram consisting of n horizontal lines (just like the identity braid). Tn can
be described abstractly as the associative algebra with the generators e1, . . . , en−1,
subject to the relations:

eiej = ejei if |i− j| > 1 eiei±1ei = ei e2
i = (−A2 − A−2)ei

It is an enjoyable exercise to verify these relations from the pictures. Now the Jones
representation J : Bn → Tn can be described simply by considering a braid diagram
as an element of the algebra. In terms of generators, this is just

J(σi) = A + A−1ei
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The Burau representation

One of the classical representations of the braid groups is the Burau representation,
which can be described as follows. Consider the definition of Bn as the mapping class
group of the punctured disk Dn (Definition 5). As already noted, the fundamental
group of Dn is a free group, with generator xi represented by a loop, based at a point
on the boundary of the disk, which goes once around the ith puncture. Consider the
subgroup of π1(Dn) consisting of all words in the xi whose exponent sum is zero.
This is a normal subgroup, and so defines a regular covering space D̄n → Dn. The
group of covering translations is infinite cyclic. Therefore, the homology H1(D̄n)
can be considered as a module over the polynomial ring Z[t, t−1], where t represents
the generator of the covering translation group. A braid β can be represented as
(an isotopy class of) a homeomorphism β : Dn → Dn fixing the basepoint. This
lifts to a homeomorphism β̄ : D̄n → D̄n, which is unique if we insist that it fix
some particular lift of the basepoint. The induced homomorphism on homology,
β̄∗ : H1(D̄n) → H1(D̄n) is a linear map of these finite-dimensional modules, and so
can be represented by a matrix with entries in Z[t, t−1]. The mapping

β → β̄∗

is the Burau representation of Bn.

Exercise 3.10 Show that, with appropriate choice of basis, the Burau representation
sends σj to the matrix

Ij−1 ⊕
[

1− t 1
1 0

]
⊕ In−j−1,

where Ik denotes the k × k identity matrix.

It has been known for many years that this representation is faithful for n ≤ 3, and
it is only within the last decade that it was found to be unfaithful for any n at all.
John Moody showed in 1993 [23] that it is unfaithful for n ≥ 9. This has since been
improved by Long and Paton [20] and very recently by Bigelow to n ≥ 5. The case
n = 4 remains open, as far as I am aware.

Linearity of the braid groups.

It has long been questioned, whether the braid groups are linear, meaning that there
is a faithful representation Bn → GL(V ) for some finite dimensional vector space V .
A candidate had been the so-called Burau representation, but as already mentioned
it has been known for several years ([23], [20]) that Burau is unfaithful, in general.
Just recently, Bachmuth [3] published an argument that the Gassner representation
(of pure braid groups) is faithful, from which it would follow that the full braid groups
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are also linear. Unfortunately, his arguments had serious gaps, which were pointed
out in the review [7].

The question was finally settled recently by Daan Krammer and Stephen Bigelow,
using equivalent representations, but different methods. They use a representation
defined very much like the Burau representation. But instead of a covering of the
punctured disk Dn, they use a covering of the configuration space of pairs of points
of Dn, upon which Bn also acts. This action induces a linear representation in the
homology of an appropriate covering, and provides just enough extra information to
give a faithful representation!

Theorem 3.11 (Krammer [19], Bigelow [5]) The braid groups are linear.

In fact, Bigelow has announced that the BMW representation (Birman, Murakami,
Wenzl) [8] is also faithful. Another open question is whether the Jones representation
J : Bn → Tn, discussed earlier, is faithful.

4 Ordering braid groups

This is, to me, one of the most exciting of the recent developments in braid theory.
Call a group G right orderable if its elements can be given a strict total ordering <
which is right-invariant:

∀x, y, z ∈ G, x < y ⇒ xz < yz.

Theorem 4.1 (Dehornoy[10]) Bn is right-orderable.

Interestingly, I know of three quite different proofs. The first is Dehornoy’s, the
second is one that was discovered jointly by myself and four other topologists. We
were trying to understand difficult technical aspects of Dehornoy’s argument, then
came up with quite a different way of looking at exactly the same ordering, but using
the view of Bn as the mapping class group of the punctured disk Dn. Yet a third
way is due to Thurston, using the fact that the universal cover of Dn embeds in the
hyperbolic plane. Here are further details.

Dehornoy’s approach: It is routine to verify that a group G is right-orderable if and
only if there exists a subset Π (positive cone) of G satisfying:

(1) Π · Π = Π

(2) The identity element does not belong to Π, and for every g 6= 1 in G exactly one
of g ∈ Π or g−1 ∈ Π holds.

One defines the ordering by g < h iff hg−1 ∈ Π.
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Exercise 4.2 Verify that the transitivity law holds, and that the ordering is right-
invariant. Show that the ordering defined by this rule is also left-invariant if and only
if gΠg−1 = Π for every g ∈ G; that is, Π is “normal.”

Dehornoy’s idea is to call a braid i-positive if it is expressible as a word in σj, j ≥ i in
such a manner that all the exponents of σi are positive. Then define the set Π ⊂ Bn

to be all braids which are i-positive for some i = 1, . . . , n − 1. To prove (1) above is
quite easy, but (2) requires an extremely tricky argument.

Here is the point of view advocated in [13]. Consider Bn as acting on the complex
plane, as described above. Our idea is to consider the image of the real axis β(R),
under a mapping class β ∈ Bn. Of course there are choices here, but there is a unique
“canonical form” in which (roughly speaking) R ∩ β(R) has the fewest number of
components. Now declare a braid β to be positive if (going from left to right) the
first departure of the canonical curve β(R) from R itself is into the upper half of
the complex plane. Amazingly, this simple idea works, and gives exactly the same
ordering as Dehornoy’s combinatorial definition.

Finally, Thurston’s idea for ordering Bn again uses the mapping class point of view,
but a different way at looking at ordering a group. This approach, which has the
advantage of defining infinitely many right-orderings of Bn is described by H. Short
and B. Wiest in [28]. The Dehornoy ordering (which is discrete) occurs as one of
these right-orderings – others constructed in this way are order-dense. A group G
acts on a set X (on the right) if the mapping x → xg satisfies: x(gh) = (xg)h and
x1 = x. An action is effective if the only element of G which acts as the identity is
the identity 1 ∈ G. The following is a useful criterion for right-orderability:

Lemma 4.3 If the group G acts effectively on R by order-preserving homeomor-
phisms, then G is right-orderable.

By way of a proof, consider a well-ordering of the real numbers. Define, for g and
h ∈ G,

g < h ⇔ xg < xh at the first x ∈ R such that xg 6= xh.

It is routine to verify that this defines a right-invariant strict total ordering of G. (By
the way, we could have used any ordered set in place of R.) For those wishing to
avoid the axiom of choice (well-ordering R) we could have just used an ordering of
the rational numbers.

The universal cover D̃n of Dn can be embedded in the hyperbolic plane H2 in such a
way that the covering translations are isometries. This gives a hyperbolic structure
on Dn. It also gives a beautiful tiling of H2, illustrated in Figure 4 for the case n = 2.
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infty

S^1

basecomp

gamma_alpha

tildegamma_alpha

The universal cover of a twice-punctured disk, with a lifted geodesic. (Courtesy of
H. Short and B. Wiest [28]

Choose a basepoint ∗ ∈ ∂D and a specific lift ∗̃ ∈ H2. Now a braid is represented by a
homeomorphism of Dn, which fixes ∗. This homeomorphism lifts to a homeomorphism
of D̃n, unique if we specify that it fixes ∗̃. In turn, this homeomorphism extends to
a homeomorphism of the boundary of D̃n But in fact, this homeomorphism fixes the
interval of ∂D̃n containing ∗̃, and if we identify the complement of this interval with
the real line R, a braid defines a homeomorphism of R. This defines an action of Bn

upon R by order-preserving homeomorphisms, and hence a right-invariant ordering
of Bn.
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Two-sided invariance? Any right-invariant ordering of a group can be converted
to a left-invariant ordering, by comparing inverses of elements, but that ordering is
in general different from the given one. We will say that a group G with strict total
ordering < is fully-ordered, or bi-ordered, if

x < y ⇒ xz < yz and zx < zy,∀x, y, z ∈ G.

There are groups which are right-orderable but not bi-orderable – in fact the braid
groups!

Proposition 4.4 (N. Smythe) For n > 2 the braid group Bn cannot be bi-ordered.

The reason for this is that there exists a nontrivial element which is conjugate to its
inverse: take x = σ1σ

−1
2 and y = σ1σ2σ1 and note that yxy−1 = x−1. In a bi-ordered

group, if 1 < x then 1 < yxy−1 = x−1, contradicting the other conclusion x−1 < 1. If
x < 1 a similar contradiction arises.

Exercise 4.5 Show that in a bi-ordered group g < h and g′ < h′ imply gg′ < hh′.
Conclude that if gn = hn for some n 6= 0, then g = h. That is, roots are unique. Use
this to give an alternative proof that Bn is not bi-orderable if n ≥ 3.

Theorem 4.6 The pure braid groups Pn can be bi-ordered.

This theorem was first noticed by J. Zhu, and the argument appears in [26], based on
the result of Falk and Randall [15] that the pure braid groups are “residually torsion-
free nilpotent.” Later, in joint work with Djun Kim, we discovered a really natural,
and I think beautiful, way to define a bi-invariant ordering of Pn. We’ve already done
half the work, by discussing Artin combing. Now we need to discuss ordering of free
groups.

Bi-ordering free groups

Lemma 4.7 For each n ≥ 1, the free group Fn has a bi-invariant ordering < with
the further property that it is invariant under any automorphism φ : Fn → Fn which
induces the identity upon abelianization: φab = id : Zn → Zn.

The construction depends on the Magnus expansion of free groups into rings of
formal power series. Let F be a free group with free generators x1, . . . , xn. Let
Z[[X1, . . . , Xn]] denote the ring of formal power series in the non-commuting variables
X1, . . . , Xn. Each term in a formal power series has a well-defined (total) degree, and
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we use O(d) to denote terms of degree ≥ d. The subset {1 + O(1)} is actually a
multiplicative subgroup of Z[[X1, . . . , Xn]]. Moreover, there is an embedding

µ : F → Z[[X1, . . . , Xn]]

defined by

µ(xi) = 1 + Xi

µ(x−1
i ) = 1−Xi + X2

i −X3
i + · · ·

(2)

There is a very nice proof that µ is injective in [21], as well as discussion of some if
its properties. One such property is that commutators have zero linear terms. For
example (dropping the µ)

[x1, x2] = x1x2x
−1
1 x−1

2

= (1 + X1)(1 + X2)(1−X1 + X2
1 − · · · )(1−X2 + X2

2 − · · · )
= 1 + X1X2 −X2X1 + O(3). (3)

Now there is a fairly obvious ordering of Z[[X1, . . . , Xn]]. Write a power series in as-
cending degree, and within each degree list the monomials lexicographically according
to subscripts). Given two series, order them according to the coefficient of the first
term (when written in the standard form just described) at which they differ. Thus,
for example, 1 and [x1, x2] first differ at the X1X2 term, and we see that 1 < [x1, x2].
It is not difficult to verify that this ordering, restricted to the group {1 + O(1)} is
invariant under both left- and right-multiplication.

Exercise 4.8 Write x1, x2x1x
−1
2 and x−1

2 x1x2 in increasing order, according to the
ordering just described.

Now we define an ordering of Pn. If α and β are pure braids, compare their Artin
coordinates (as described earlier)

(α1, α2, . . . , αn−1) and (β1, β2, . . . , βn−1)

lexicographically, using within each Fk the Magnus ordering described above. This all
needs choices of conventions, for example, for generators of the free groups, described
in detail in [18]. The crucial fact is that the action associated with the semidirect
product, by automorphisms ϕ, has the property mentioned (Added in proof: these
results appear in [19] and [5]). in Lemma 4.5. We recall the definition of a positive
braid according to Garside: a braid is Garside-positive if it can be expressed as a
word in the standard generators σi with only positive exponents.
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Theorem 4.9 (Kim-Rolfsen) Pn has a bi-ordering with the property that Garside-
positive pure braids are greater than the identity, and the set of all Garside-positive
pure braids is well-ordered by the ordering.

Algebraic consequences: The orderability of the braid groups has implications
beyond what we already knew – e. g. that they are torsion-free. In the theory of
representations of a group G, it is important to understand the group algebra CG and
the group ring ZG. These rings also play a role in the theory of Vassiliev invariants.
A basic property of a ring would be whether it has (nontrivial) zero divisors.

Exercise 4.10 If R is a ring without zero divisors, and G is a right-orderable group,
then the group ring RG has no zero divisors. Moreover, the only units of RG are the
monomials rg, g ∈ G, r a unit of R.

Proposition 4.11 (Malcev, Neumann) If G has a bi-invariant ordering, then its
group ring ZG embeds in a division algebra, that is, an extension in which all nonzero
elements have inverses.

These results give us new information about the group rings of the braid groups.

Theorem 4.12 ZBn has no zero divisors. Moreover, ZPn embeds in a division alge-
bra.

A proof of the theorem of Malcev and Neumann [22] can be found in [25].

Exercise 4.13 Which subgroups of Aut(Fn) are right-orderable?

Of course, Aut(Fn) itself is not right-orderable, because it has elements of finite order,
e.g. permuting the generators.

A final note regarding orderings: As we’ve seen, the methods we’ve used for ordering
Bn and Pn are quite different. One might hope there could be compatible orderings:
a bi-ordering of Pn which extends to a right-invariant ordering of Bn. But, in recent
work with Akbar Rhemtulla, we showed this is hopeless!

Theorem 4.14 (Rhemtulla, Rolfsen). For n ≥ 5, there is no right-invariant
ordering of Bn, which, upon restriction to Pn, is also left-invariant.

24



References
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