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1 DEFINITION OF CATEGORIES AND FUNCTORS. SOME CONSTRUCTIONS. 21 De�nition of Categories and Fun
tors. Some Constru
tions.De�nition 1.1. A 
ategory C 
onsists of a 
lass of obje
ts, denoted by Ob(C), su
h that for ea
hpair A;B of obje
ts in Ob(C), there is a set (possibly empty), denoted by Mor(A;B), 
alled the setof morphisms from A to B. An morphism f 2 Mor(A;B) is written as f : A ! B. The followingproperties are also satis�ed.1. The sets of morphisms are pairwise disjoint, namely, if either A 6= X or B 6= Y for obje
tsA;X;B; Y 2 Ob(C), then Mor(A;B) \Mor(X;Y ) = ;.2. For all obje
ts C 2 Ob(C), there is a morphism in Mor(C;C) 
alled the identity morphism onC, whi
h is denoted by idC .3. For all morphisms � : A! B and � : B ! C, we 
an asso
iate a unique morphism � Æ� : A! C.The morphism � Æ � is 
alled the 
omposite of � and �.4. If � : A! B, � : B ! C and 
 : C ! D are morphisms, then asso
iativity holds:(
 Æ �) Æ � = 
 Æ (� Æ �):5. For all morphisms � : A! B and � : B ! C, we have idB Æ� = � and � Æ idB = �.If � : A ! B, it is 
ustomary to say that the domain of � is A, and the 
odomain of � in B; ea
hmorphism has a unique domain and 
odomain sin
e all the sets Mor(A;B) are pairwise disjoint. In a
ategory C, a morphism � : A! B is known as an isomorphism if in C there is a morphism � : B ! Asu
h that � Æ � = idA and � Æ � = idB (in whi
h 
ase � : B ! A is also an isomorphism). If there is anisomorphism � : A! B, then we say that the obje
ts A;B are isomorphi
.The identity morphism is always unique for any obje
t C be
ause if idC and id0C are two identitymorphisms on C, then by De�nition 1.1(5), we have idC Æ id0C = id0C sin
e idC is identity, and alsoidC Æ id0C = idC sin
e id0C is identity.Lemma 1.2. Let C be a 
ategory.1. For all obje
ts C 2 Ob(C), the identity morphism idC : C ! C is an isomorphism.2. The 
omposite of two isomorphisms is an isomorphism.3. If � : A ! B is an isomorphism, then there is one and only one morphism � : B ! A in the
ategory C su
h that � Æ � = idA and � Æ � = idB.Examples 1.3.1. Let Set denote the 
lass of all sets. For every A;B 2 Set, let Mor(A;B) be the set of all fun
tionsfrom A to B. Then Set is easily seen to be a 
ategory, in whi
h the 
omposition of morphismsis the same as the 
omposition of fun
tions. This requires a small te
hni
al proviso: fun
tionswith di�erent 
odomains must be distinguished even if their a
tions on a 
ommon domain areidenti
al; a fun
tion f : A! B must be distinguished from the fun
tion f : A! C in whi
h C is astri
t subset of B that 
ontains Im(f). In the 
ategory Set, the identity morphism on a set is theusual identity fun
tion, and a morphism f in Set is an isomorphism if and only if f is a bije
tivefun
tion.2. Let Grp denote the 
ategory whose obje
ts are all groups, and for any groups G;H , Mor(G;H) isthe set of group homomorphisms from G to H (respe
ting the same te
hni
al proviso as in Example1). A morphism � in Grp is an isomorphism if and only if � is bije
tive as a fun
tion. The 
ategoryAb of abelian groups is similarly de�ned.3. A parti
ular multipli
ative group G 
an also be made into a 
ategory. Let the 
ategory have onlyone obje
t, G itself, and let Mor(G;G) be the set of elements of G; 
omposition of morphisms a; bis simply the produ
t ab given by the binary operation in G. The group identity 1G is the identitymorphism on G. Every morphim is an isomorphism sin
e every element of G has a unique inverse.



1 DEFINITION OF CATEGORIES AND FUNCTORS. SOME CONSTRUCTIONS. 34. Let C be a 
ategory, Mor(C) be the 
lass of all morphisms of C, and for any pair of morphismsf : A ! B and g : C ! D of C, de�ne Mor(f; g) to be the set of all ordered pairs (�; �), where� : A! C and � : B ! D are morphisms of C su
h that the following diagram 
ommutes.A f����! B�??y ??y�C ����!g DThen the 
lass Mor(C) together with the sets Mor(f; g) is a 
ategory under this de�nition.5. If C is a 
ategory, the 
ategory CZ is the 
ategory whose obje
ts 
onsists of in�nite sequen
esf(Cn)gn2Z of obje
ts in C and whose morphisms are 
olle
tions ffn : Cn ! Dngn2Z of morphismsof C indexed by Z. We 
all CZ the 
ategory of C-obje
ts graded by Z.De�nition 1.4. Let C be a 
atgeory. The opposite 
ategory Cop is de�ned to be the 
ategory whoseobje
ts are the obje
ts of C, namely, the 
lass Ob(C), and in whi
h the following properties hold.1. For any pair of obje
ts A;B 2 Ob(C), there is a bije
tive 
orresponden
e between the set ofmorphisms Mor(A;B) in C and the set of morphisms Mor(B;A) in Cop, su
h that for all morphisms� : A! B in the 
ategory C, we have a unique morphism �op : B ! A in Cop.2. For all obje
ts C, (idC)op = idC .3. For all morphisms � : A! B and � : B ! C in C, we have (� Æ �)op = �op Æ �op in Cop.In other words, the opposite 
ategory Cop is 
onstru
ted from C by reversing the dire
tion of the mor-phisms and 
ompositions.Example 1.5. Setop is the 
ategory of sets and mappings, but with mappings written on the right,namely, if f : S ! T is a fun
tion and x 2 S, then the image of x under f is written as xf . Compositionof mappings is done from left to right, so that if g : T ! U is another mapping, then f Æ g : S ! U isthe mapping the sends x to (xf)g = x(f Æ g).Metatheorem 1.6. A theorem whi
h applies to all 
ategories remain true if all the morphisms and
ompositions mentioned in the theorem have their dire
tions reversed.De�nitions and results that are obtained from ea
h other by reversing the dire
tions of the morphismsand 
ompositions are said to be dual of ea
h other. A de�nition or result is said to be self-dual if itremains un
hanged when the dire
tion of morphisms and 
ompositions are reversed. For example, the
on
ept of an isomorphism is a self-dual 
on
ept.De�nition 1.7. Let C be a 
ategory and fAigi2I be a family of obje
ts in C indexed by a nonempty setI . Suppose that there is an obje
t P 2 Ob(C) and a family of morphisms f�i : P ! Aigi2I su
h thatfor any obje
t C 2 Ob(C) and any family of morphisms f'i : C ! Aigi2I , there is a unique morphism' : C ! P su
h that �i Æ ' = 'i for all i 2 I . -���	���R9 ! 'AiC P'i �iThen we say that fP; f�igi2Ig is a produ
t in the 
ategory C. Casually, we may say that P is a produ
tof fAigi2I and denote it by Qi2I Ai.Dualizing De�nition 1.7 yields the following.



1 DEFINITION OF CATEGORIES AND FUNCTORS. SOME CONSTRUCTIONS. 4De�nition 1.8. Let C be a 
ategory and fAigi2I be a family of obje
ts in C indexed by a nonemptyset I . Suppose that there is an obje
t S 2 Ob(C) and a family of morphisms f�i : Ai ! Sgi2I su
h thatfor any obje
t C 2 Ob(C) and any family of morphisms f'i : Ai ! Cgi2I , there is a unique morphism' : S ! C su
h that ' Æ �i = 'i for all i 2 I . -�������I 9 ! 'AiS C�i 'iThen we say that fS; f�igi2Ig is a 
oprodu
t or sum in the 
ategory C. Casually, we may say that Sis a 
oprodu
t of fAigi2I and denote it by `i2I Ai.Theorem 1.9. Let C be a 
ategory and fAigi2I be a family of obje
ts in C indexed by a nonempty setI. Suppose that fP; f�igi2Ig and fQ; f�0igi2Ig are produ
ts of fAigi2I in the 
ategory C. Then P andQ are isomorphi
.Similarly, dualizing Theorem 1.9 yields the following result.Theorem 1.10. Let C be a 
ategory and fAigi2I be a family of obje
ts in C indexed by a nonempty setI. Suppose that fS; f�igi2Ig and fT; f�0igi2Ig are 
oprodu
ts of fAigi2I in the 
ategory C. Then S andT are isomorphi
.De�nition 1.11. Let C;D be 
ategories. A 
ovariant fun
tor F : C ! D is a fun
tion F that mapsobje
ts in C to obje
ts in D, and morphisms in C to morphisms in D, su
h that the following are satis�ed:Fun
1: F (idX) = idF (X) for any obje
t X 2 C;Fun
2: If �; � are morphisms in C for whi
h the 
omposite � Æ � is well-de�ned, then the 
ompositeF (�) Æ F (�) is well-de�ned in D, and F (� Æ �) = F (�) Æ F (�).A 
ontravariant fun
tor F : C ! D is a fun
tion F that maps obje
ts in C to obje
ts in D, andmorphisms in C to morphisms in D su
h that (1) above is satis�ed, and in pla
e of (2), we have:Fun
2': If �; � are morphisms in C for whi
h the 
omposite � Æ � is well-de�ned, then the 
ompositeF (�) Æ F (�) is well-de�ned in D, and F (� Æ �) = F (�) Æ F (�).Examples 1.12.1. For any 
ategory C, there is a 
ovariant fun
tor C ! C that sends every obje
t and morphism toitself. This is known as the identity fun
tor on C and is denoted by IdC .2. If D is a sub
ategory of C (a sub
lass of the 
lass of obje
ts and morphisms of C that forms
ategory), there is a 
ovariant fun
tor D ! C known as the in
lusion fun
tor de�ned in the obviousway.3. If C is a 
ategory, there is a 
ontravariant fun
tor C ! Cop that sends every obje
t X 2 C to Xopand every morphism f in C to fop. This is known as the opposite fun
tor on C.4. There is a 
ovariant fun
tor Grp ! Ab that sends every group G to the quotient group G=G0,where G0 is the 
ommutator subgroup of G; G0 is the normal subgroup of G generated by all theelements of the form xyx�1y�1, where x; y 2 G.5. Let C be a 
ategory and let an obje
t A 2 C be �xed. There is a 
ovariant fun
torMor(A;�) : C ! Setthat sends ea
h obje
t X 2 C to the morphism set Mor(A;X) and ea
h morphism f : X ! Y in Cto the set fun
tion Mor(A; f) : Mor(A;X)! Mor(A; Y ) de�ned by Mor(A; f) : � 7! f Æ �.



1 DEFINITION OF CATEGORIES AND FUNCTORS. SOME CONSTRUCTIONS. 56. Let C be a 
ategory and let an obje
t A 2 C be �xed. There is a 
ontravariant fun
torMor(�; A) : C ! Setthat sends ea
h obje
t X 2 C to the morphism set Mor(X;A) and ea
h morphism f : Y ! X in Cto the set fun
tion Mor(f;A) : Mor(X;A)! Mor(Y;A) de�ned by Mor(f;A) : � 7! � Æ f .The 
omposite of two fun
tors is again a fun
tor.De�nition 1.13. Let F;G : C ! D be 
ovariant fun
tors. A natural transformation from F to G isa 
olle
tion � = f�X : F (X)! G(X)gX2C of morphisms in D indexed by the obje
ts of C su
h that forall morphisms f : X ! Y in C, we have the following 
ommutative diagram:F (X) �X����! G(X)F (f)??y ??yG(f)F (Y ) ����!�Y G(Y )If F;G : C ! D are 
ontravariant fun
tors, a natural transformation from F to G is a 
olle
tion� = f�X : F (X) ! G(X)gX2C of morphisms in D indexed by the obje
ts of C su
h that for allmorphisms f : Y ! X in C, we have same diagram as above.If �X is an isomorphism for all obje
ts X 2 C, we 
all � a natural isomorphism.The 
omposite of two natural transformations is again a natural transformation.De�nition 1.14. A 
on
rete 
ategory is a 
ategory C with a fun
tor � : C ! Set.The 
ategory of groups, equipped with the fun
tion that assigns to ea
h group its underlying set in theusual sense, is a 
on
rete 
ategory. Similarly, the 
ategories of abelian groups and of partially-orderedsets, with the obvious underlying sets, are 
on
rete 
ategories. Sin
e in the great majority of examplesof 
on
rete 
ategories, the fun
tor � assigns to an obje
t its underlying set in the usual sense (su
h as inexamples above), we shall denote both the obje
t and its underlying set by the same symbol and leaveout any expli
it referen
e to the fun
tor �.De�nition 1.15. Let F be an obje
t in a 
on
rete 
ategory C, X be a nonempty set, and � : X ! F bea fun
tion of sets. We say that F , or more exa
tly (F; �), is free on X if for any obje
t C 2 Ob(C) andany set fun
tion f : X ! C, there exists a unique morphism  : F ! C in the 
ategory C su
h that Æ � = f as fun
tions of sets. -�������I 9 !  XF C� fIn the 
on
rete 
ategory C, an obje
t that is free on some set is 
alled a free obje
t.Lemma 1.16. In a 
on
rete 
ategory C that 
ontains obje
ts whi
h are sets with more than one element,if (F; �) is a free on a set X, then the set fun
tion � : X ! F is inje
tive.Proof. Suppose that �(x1) = �(x2) with x1 6= x2. Choose an obje
t C whi
h is set 
ontaining at leasttwo distin
t elements, say 
1 and 
2. Let f : X ! C be any set fun
tion su
h that f(x1) = 
1 andf(x2) = 
2. Sin
e F is free on X , we have a unique morphism  : F ! C in the 
ategory C su
h that Æ � = f as fun
tions of sets. From the fa
t that  (�(x1)) =  (�(x2)), we dedu
e that f(x1) = f(x2),when
e 
1 = 
2, whi
h 
ontradi
ts our earlier assumptions.Theorem 1.17. If C is a 
on
rete 
ategory in whi
h (F1; �1) is free on X1 and (F2; �2) free on X2 withjX1j = jX2j, then F1 and F2 are isomorphi
.



2 GROUP ACTIONS ON SETS 62 Group A
tions on SetsDe�nition 2.1. Let X be a nonempty set and G be a group. Let � : G �X ! X be a fun
tion andwrite an image �(g; x) simply as gx. We 
all � a group a
tion if 1Gx = x and (gh)x = g(hx) for allg; h 2 G and x 2 X . If there is a group a
tion � : G �X ! X , we say that X is a G-set, and that Ga
ts on the set X .Examples 2.2. Let G be a group.1. G 
an be made to a
t on itself. The map (g; x) 7! gx for g; x 2 G is easily seen to be a groupa
tion. We say that G a
ts on G by left multipli
ation.2. Similarly, the map (g; x) 7! xg�1 for g; x 2 G is also a group a
tion. We say that G a
ts on G byright multipli
ation.3. The map (g; x) 7! gxg�1 for g; x 2 G is yet another group a
tion of G on itself. We say that Ga
ts on G by 
onjugation.4. The group of permutations on a set X , Sym(X), a
ts on X in the natural manner via the map(�; x) 7! �(x), for � 2 SX and x 2 X . We say that Sym(X) a
ts on X 
anoni
ally.Proposition 2.3. If X is a G-set with group a
tion � : G � X ! X, then there is a group homo-morphism  : G ! Sym(X) given by  (g) : x 7! gx = �(g; x). Conversely, if we 
an �nd a grouphomomorphism � : G ! Sym(X), then the map (g; x) 7! �(g)(x) is a group a
tion that makes X intoa G-set. These pro
esses are inverse to one another, so that we have a bije
tive 
orresponden
e betweenthe G-set stru
tures that 
an be de�ned on X and the group homomorphisms of G into Sym(X).If  : G ! Sym(X) is a group homomorphism of G into Sym(X), then we say that G a
ts on Xvia  , and the group a
tion we are referring to will be that whi
h arises from the abovementioned
orresponden
e, namely (g; x) 7!  (g)(x).De�nition 2.4. Let X be a G-set and x 2 X . The orbit of x in G, denoted by OG(x) or by Gx, isde�ned by OG(x) = fgx : g 2 Gg:Proposition 2.5. If X is a G-set, then the orbits of X form a partition of X.In parti
ular, this would mean that if G a
ts on X , then the relation � on X de�ned byx � x0 , gx = x0 for some g 2 Gis an equivalen
e relation on X , and the equivalen
e 
lasses of X under � are simply the orbits OG(x).If X is a G-set, the 
olle
tion of orbits OG(x) is denoted by X=G. Thus X=G is the 
olle
tion ofequivalen
e 
lasses of X under the relation � de�ned above.De�nition 2.6. Let X be a G-set and x 2 X . The stabilizer or isotropy group of x in G, denotedby Gx, is de�ned by Gx = fg 2 G : gx = xg:Example 2.7. Let G be a group. Consider G a
ting on itself by 
onjugation. The orbit of x 2 G is the
onjuga
y 
lass ClG(x) = fgxg�1 : g 2 Ggand the stabilizer of x 2 G is the 
entralizerCG(x) = fg 2 G : gxg�1 = xg:Proposition 2.8. Let X be a G-set and let g 2 G, x 2 X.1. Gx is a subgroup of G.2. Ggx = gGxg�1.3. There is a bije
tive 
orresponden
e between the elements of OG(x) and the left 
osets of Gx in G.



3 BASIC DEFINITIONS IN TOPOLOGY 73 Basi
 De�nitions in TopologyDe�nition 3.1. A topology on a set X is a 
olle
tion = of subsets of X having the following properties:1. ; and X are in =.2. If fUigi2I are a 
olle
tion of sets in =, then Si2I Ui is in =.3. If fUigni=1 is a �nite 
olle
tion of sets in =, then Tni=1 Ui is in =.A set X for whi
h a topology = has been spe
i�ed is known as a topologi
al spa
e, denoted by (X;=).We often leave out mention of = is there is no 
onfusion. If X is a topologi
al spa
e with topology =and U 2 =, we say that U is an open set of X , and that X n U is a 
losed set of X , with respe
t tothe topology =.Examples 3.2.1. The dis
rete topology on a set X is the topology that 
onsists of all subsets of X .2. The indis
rete or trivial topology on X is the topology that 
onsists only of ; and X .3. The �nite 
omplement topology on X is the 
olle
tion U of subsets of X su
h that X n U iseither �nite or the whole of X .De�nition 3.3. Suppose that = and =0 are two topologies on a set X . If = � =0, we say that = is
oarser than =0, and that =0 is �ner than =.De�nition 3.4. If X is a set, a basis for a topology on X is a 
olle
tion B of subsets of X , whosemembers are 
alled basi
 sets, su
h that:1. ; 2 B.2. SB2B B = X .3. If C1; C2; :::; Cn is a �nite 
olle
tion of elements of B, then there is a 
olle
tion fBigi2I of elementsof B su
h that [i2I Bi = n\j=1Cj :Let B be a basis for a topology on X . Let = be the 
olle
tion of all arbitrary unions of elements of B.Then (X;=) is a topologi
al spa
e.De�nition 3.5. The topology = 
onstru
ted from a basis B by taking arbitrary union of basi
 sets isknown as the topology generated by B, and the set B is known as a basis for =.Example 3.6. Let M be a nonempty set. Suppose there is a fun
tion dM :M �M ! R su
h that:1. dM (x; y) � 0 for all x; y 2M , equality holding if and only if x = y;2. dM (x; y) = dM (y; x) for all x; y 2M ;3. dM (x; z) � dM (x; y) + dM (y; z) for all x; y; z 2M .Then we 
all (M; dM ) ametri
 spa
e. The 
olle
tion of sets of the form B�x = fy 2M : dM (x; y) < �gfor x 2M and � > 0 forms a basis for a topology onM known as the topology indu
ed by the metri
.De�nition 3.7. If X is a set, a sub-basis for a topology on X is a 
olle
tion S of subsets of X whosemembers are 
alled sub-basi
 sets su
h that:1. ; 2 S.2. SS2S S = X .



3 BASIC DEFINITIONS IN TOPOLOGY 8Obviously, a sub-basis for a topology on X 
an be extended to a basis by 
olle
ting all the interse
tionsof �nite 
olle
tions of sub-basi
 sets.De�nition 3.8. The topology = 
onstru
ted from a sub-basis S by �rst extending S to a basis B by
olle
ting all the interse
tions of �nite 
olle
tions of sub-basi
 sets, and then generating = from B, isknown as the topology generated by S, and the set S is known as a sub-basis for =.De�nition 3.9. Let X and Y be topologi
al spa
es. A fun
tion f : X ! Y is said to be 
ontinuousif for ea
h open set V in Y , the set f�1(V ) is open in X .Example 3.10. In 
lassi
al metri
 spa
e theory, a fun
tion f : M ! N between metri
 spa
es is saidto be 
ontinuous if given any �xed point x 2 M and any � > 0, there exists some Æ > 0 su
h thatdN (f(x); f(y)) < � whenever dM (x; y) < Æ. A fun
tion between metri
 spa
es is 
ontinuous in thisde�nition if and only if it is 
ontinuous in the sense of De�nition 3.9.De�nition 3.11. A bije
tive fun
tion f : X ! Y between topologi
al spa
es is said to be a homeo-morphism if both f and f�1 are 
ontinuous fun
tions. If X is homeomorphi
 to Y we denote it byX �= Y .De�nition 3.12. A fun
tion f : X ! Y between topologi
al spa
es is said to be an open map ifwhenever U is an open set in X , f(U) is an open set in Y .In other words, an open map sends open sets to open sets. In parti
ular, a homeomorphism is a bije
tive
ontinuous open map.From now on, the word \map" is always assumed to mean \
ontinuous fun
tion".De�nition 3.13. Let (X;=) be a topologi
al spa
e. If Y is a subset of X , the 
olle
tion=Y = fU \ Y : U 2 =gis a topology on Y known as the subspa
e or indu
ed topology. We 
all Y a subspa
e of X .Example 3.14. The open sets of [0; 1℄ as a subspa
e of R are those of the form (a; b), where 0 � a; b � 1,or of the form [0; a) or (a; 1℄ where 0 � a � 1, in addition to the set [0; 1℄ itself.De�nition 3.15. Let fXigi2I be a 
olle
tion of topologi
al spa
es. The box topology on Qi2I Xi isthe topology having as basis all the elements of the form Qi2I Ui, where Ui is an open set in Xi for ea
hi 2 I .For ea
h j 2 I , let �j :Qi2I Xi ! Xj be the map that sends ea
h element (xi)i2I , where xi 2 Xi for alli, to the element xj 2 Xj . We 
all �j the proje
tion map at 
oordinate j.De�nition 3.16. Let fXigi2I be a 
olle
tion of topologi
al spa
es. For ea
h i 2 I , let Si denote the
olle
tion Si = f��1i (Ui) : Ui is open in Xig;and let S = [i2I Si:Then the 
olle
tion S forms a sub-basis for a topology on Qi2I Xi known as the produ
t topology.The box and produ
t topologies are generalizations for the topology on X � Y . For the 
ase where Iis a �nite set, the box and produ
t topologies on Qi2I Xi 
oin
ide. If I is an in�nite set, then the boxtopology is in general �ner than the produ
t topology.The produ
t topology on Qi2I Xi has as basis all sets of the form Qi2I Ui, where Ui is open in Xi forall i 2 I and Ui = Xi ex
ept for at most �nitely many i.If Qi2I Xi is given the produ
t topology, the 
anoni
al proje
tions �j : Qi2I Xi ! Xj are 
ontinuousfor ea
h j 2 I .Let � : X !Qi2I X be de�ned by � : x 7! (xi)i2I , where xi = x for all i 2 I . We 
all � the diagonalmap, and � is 
ontinuous if Qi2I X is given the produ
t topology.



3 BASIC DEFINITIONS IN TOPOLOGY 9Proposition 3.17. Let fXigi2I be a 
olle
tion of topologi
al spa
es indexed by a nonempty set I, and letQi2I Xi be given the produ
t topology. Then for any topologi
al spa
e Y and any 
olle
tion of 
ontinuousmaps f'i : Y ! Xigi2I , there exists a unique 
ontinuous map ' : Y ! Qi2I Xi su
h that �j Æ ' = 'jfor ea
h j 2 I, where the �j 's are the 
anoni
al proje
tions. Hen
e, Qi2I Xi with the produ
t topology isa produ
t of fXigi2I in the 
ategory Top of topologi
al spa
es and 
ontinuous maps.-���	���R9 ! 'XjY Qi2I Xi'j �jDe�nition 3.18. Let X be a topologi
al spa
e, and let A be a subset of X .1. The 
losure of A in X , denoted by ClX(A) (or A if there is no ambiguity), is the interse
tion ofall 
losed sets of X 
ontaining A.2. The interior of A in X , denoted by IntX(A) (or AÆ if there is no ambiguity), is the union of allopen sets of X that are 
ontained within A.3. The boundary of A in X , denoted by BdX(A) (or �A if there is no ambiguity), is de�ned byBdX(A) = ClX(A) \ ClX(X nA):Obviously, A is a 
losed set and AÆ is an open set, implying that A = ClX (A) if and only if A is 
losedin X , and A = IntX(A) if and only if A is open in X . Furthermore,AÆ � A � A:Example 3.19. Let A = [0; 1) � R. Then ClR(A) = [0; 1℄, IntR(A) = (0; 1), and BdR(A) = f0; 1g.De�nition 3.20. Let A be a subset of a topologi
al spa
e X . We say that x 2 X is a limit point oran a

umulation point of A if for every open set U of X 
ontaining x, there is some y 2 A with y 6= xand y 2 U . We denote the set of limit points of A in X by LX(A) (or by A0 if there is no ambiguity).Note that elements of A are not ne
essarily limit points of A. A subspa
e is 
losed if and only if it
ontains all its limit points.Example 3.21. Let A = [0; 1) [ f2g. Then LR(A) = [0; 1℄.De�nition 3.22. Let X and Y be topologi
al spa
es, and let p : X ! Y be a surje
tive fun
tion. Wesay that p is a quotient map if every subset V of Y is open in Y if and only if p�1(V ) is open in X .A quotient map between topologi
al spa
es is ne
essarily 
ontinuous.Let p : X ! A is a surje
tive fun
tion, and let = 
onsist of those subsets V of A for whi
h p�1(V ) isopen in X . Then it is straightforward to 
he
k that = is a topology on A. This is 
alled the quotienttopology on A indu
ed by p : X ! A, and is the unique topology = on A relative to whi
h p is aquotient map.De�nition 3.23. Let R be an equivalen
e relation on a spa
e X . Let p : X ! X=R be the 
anoni
alsurje
tion that maps ea
h element of X to its equivalen
e 
lass. Under the quotient topology indu
edon X=R by p, the spa
e X=R is 
alled a quotient spa
e or identi�
ation spa
e of X .If A is a subspa
e of X , the spa
e X=A is de�ned to be the quotient spa
e of X obtained by identifyingA to a single point.



4 COMPACT, LOCALLY COMPACT, HAUSDORFF, CONNECTED SPACES 104 Compa
t, Lo
ally Compa
t, Hausdor�, Conne
ted Spa
esLet X be a subspa
e of a topologi
al spa
e Y . A 
overing of X in Y is a 
olle
tion fUigi2I of subsetsof Y su
h that X � Si2I Ui. We 
all a 
overing fUigi2I of X in Y an open 
overing in Y if every setUi is open in Y .If every Ui is a subset of X and X = Si2I Ui, we simply say that fUigi2I is a 
overing of X .De�nition 4.1. A topologi
al spa
e X is said to be 
ompa
t if given any open 
overing fUig of X ,there exists a �nite 
olle
tion U1; U2; :::; Un of sets drawn from fUig su
h that X = Snj=1 Uj . We saythat the open 
overing fUig has a �nite sub
over.Proposition 4.2. The notion of 
ompa
tness of X is independent of the spa
e that 
ontains X. Morepre
isely, X is 
ompa
t if and only if for all Y � X in whi
h X is given the subspa
e topology of Y , anyopen 
overing of X in Y admits a �nite sub
over.Proposition 4.3. The 
ontinuous image of a 
ompa
t spa
e is 
ompa
t.Proposition 4.4. A 
losed subspa
e of a 
ompa
t spa
e is 
ompa
t.Proof. Let X be a 
ompa
t topologi
al spa
e and let S be a 
losed subspa
e of X . Let fUigi2I be anopen 
over of S in X . Sin
e X = (Si2I Ui)[ (X nS) and (X nS) is open in X , it follows that there is a�nite 
olle
tion U1; U2; :::; Un of sets drawn from fUigi2I su
h that X = (Snj=1 Uj) [ (X n S). But thenthis would mean that fU1; U2; :::; Ung is a �nite sub
over of S in X .De�nition 4.5. Let x be a point in a topologi
al spa
e X . We say that U is a neighbourhood of x ifthere is some open set V of X su
h that V � U and x 2 V .De�nition 4.6. A spa
e X is said to be lo
ally 
ompa
t if every point in X has a 
ompa
t neigh-bourhood.Clearly, any 
ompa
t spa
e is lo
ally 
ompa
t.Example 4.7. Rn is lo
ally 
ompa
t but not 
ompa
t. The Heine-Borel Theorem states that any 
losedbounded subset of Rn is 
ompa
t.De�nition 4.8. A topologi
al spa
e X is said to be Hausdor� if given any distin
t points u; v 2 X ,there are disjoint open sets U; V of X su
h that u 2 U and v 2 V .Proposition 4.9. Every 
ompa
t subspa
e of a Hausdro� spa
e is 
losed.Proposition 4.10. Let X be a lo
ally 
ompa
t Hausdor� spa
e. Given a point x 2 X and a neighborhoodU of x, there is an open set V su
h that x 2 V � V � U and V is 
ompa
t.Let S0 = f0; 1g denote the topologi
al spa
e 
onsisting of two distin
t points and given the dis
retetopology.De�nition 4.11. A topologi
al spa
e X is said to be dis
onne
ted if there is a 
ontinuous surje
tivemap X ! S0. Su
h a map is termed a dis
onne
tion of X .If f : X ! S0 is a dis
onne
tion of X , then X = f�1(0) t f�1(1) des
ribes a partition of X into twodisjoint subsets, ea
h of whi
h are both open and 
losed.De�nition 4.12. A topologi
al spa
e X is said to be 
onne
ted if it is no dis
onne
tion.Proposition 4.13. The 
ontinuous image of a 
onne
ted spa
e is 
onne
ted.De�nition 4.14. A topologi
al spa
e X is said to be path-
onne
ted for any points u; v 2 X , thereis a 
ontinuous map f : [0; 1℄! X su
h that f(0) = u and f(1) = v.Proposition 4.15. The 
ontinuous image of a path-
onne
ted spa
e is path-
onne
ted.Proposition 4.16. A path-
onne
ted spa
e is 
onne
ted.Example 4.17. The subspa
e Y = f(x; y) 2 R2 : y = sin(1=x); x > 0g [ f(0; 0)g of R2 is 
onne
tedbut not path-
onne
ted.



5 SOME IMPORTANT TOPOLOGICAL CONSTRUCTIONS AND EXAMPLES 115 Some Important Topologi
al Constru
tions and ExamplesDe�nition 5.1. Given a 
olle
tion fXigi2I of topologi
al spa
es, the disjoint union Fi2I Xi is theunion of the spa
es Xi regarded as pairwise disjoint sets, with topology given by open sets of the formSi2I Ui, where Ui is open in Xi.The 
anoni
al in
lusions �j : Xj ! Fi2I Xi are 
ontinuous for all j 2 I .Proposition 5.2. Let fXigi2I be 
olle
tion of topologi
al spa
es. If f i : Xi ! Y gi2I is a 
olle
tionof 
ontinuous maps, then there is a unique 
ontinuous map  : Fi2I Xi ! Y su
h that  Æ �j =  j forall j 2 I, where �j : Xj ! Fi2I Xi is the 
anoni
al in
lusion. Hen
e, the disjoint union Fi2I Xi is a
oprodu
t of fXigi2I in the 
ategory Top of topologi
al spa
es.-�������I 9 !  Xj YFi2I Xi�j  jDe�nition 5.3. A pair of spa
es (X;Y ) is a spa
e X together with a subspa
e Y . Given pairs (X;Y )and (A;B) of spa
es, a map of pairs f : (X;Y )! (A;B) is a 
ontinuous map f : X ! A that satis�esf(Y ) � B. We 
all f a homeomorphism of pairs if f is a homeomorphism and the inverse map f�1is a map of pairs (A;B)! (X;Y ).Let (X;Y ) and (A;B) be pairs of spa
es, and let f : Y ! B be a 
ontinuous map. De�ne an equivalen
erelation � on the disjoint union X t A by identifying y with f(y) for all y 2 Y . The spa
e (X [ A)= �is denoted by A [f X and is referred to as an adjun
tion spa
e.If (X;Y ) is a pair of spa
es in whi
h Y = f�g is a singleton set, we denote it simply by (X; �) andsay that X is a pointed spa
e with basepoint �. A map of pairs between pointed spa
es is 
alled apointed map. Thus a pointed map sends the basepoint of one spa
e to that of the other. We oftendenote (X; �) simply by X if there is no danger of 
onfusion.De�nition 5.4. If X;Y are pointed spa
es with base points x0; y0 respe
tively, the wedge X _Y is theadjun
tion spa
e Y [f X where f : fx0g ! fy0g. In other words, X _ Y is obtained from the disjointunion of X and Y by identifying the base points of X;Y .For a spa
e Z, de�ne the fold map 5 : Z _Z ! Z by 5 : (z; �) 7! z and 5 : (�; z) 7! z. The fold mapis 
ontinuous.De�nition 5.5. If X;Y are pointed spa
es, the smash X ^Y is de�ned to be (X �Y )=(X _Y ), wherewe identify X _ Y as a subspa
e of X � Y .Examples 5.6.1. For a spa
e X with subspa
e A, the quotient spa
e X=A is often regarded as a pointed spa
e withbasepoint being the equivalen
e 
lass 
ontaining the elements of A.2. For all nonnegative integers n, the n-sphere is denoted by Sn and is the subspa
e of Rn+1 
onsistingof all points of distan
e 1 from the origin. Sn is often regarded as a pointed spa
e with basepointbeing the north pole. We have Sn �= Dn=�Dn for all n � 1, where Dn = [0; 1℄n � Rn . We oftenidentify Sn�1 as the boundary of Dn, and write Sn �= Dn=Sn�1 for n � 1.3. The real proje
tive spa
e RP n (n � 0) is de�ned to be the quotient spa
e of Rn+1 nf0g under theequivalen
e relation � de�ned by x � y , x = ry for some real number r. RP n is homeomorphi
to the quotient spa
e of Sn under the equivalen
e relation R de�ned by xRy , x = �y.



5 SOME IMPORTANT TOPOLOGICAL CONSTRUCTIONS AND EXAMPLES 12Let X and Y be topologi
al spa
es. Themapping spa
e Map(X;Y ) is the spa
e of all 
ontinuous mapsfrom X to Y under the 
ompa
t-open topology de�ned as follows:Let K be a 
ompa
t set in X and U be an open set in Y . Let WK;U = ff 2 Map(X;Y ) : f(K) � Ug.Then all the elements WK;U as K varies over the 
ompa
t sets in X and U varies over the open sets inY form a sub-basis for the 
ompa
t-open topology on Map(X;Y ). If X and Y are pointed spa
es, thenthe pointed mapping spa
e Map�(X;Y ), also 
ommonly denoted as Y X , is the subspa
e of Map(X;Y )
onsisting of all pointed maps f : X ! Y .De�nition 5.7. Let f : A ! X and g : Y ! B be 
ontinuous maps. Then the fun
tion gf :Map(X;Y ) ! Map(A;B) is de�ned by gf (�) = g Æ � Æ f . If f and g are pointed 
ontinuous maps,then they indu
e a fun
tion gf : Map�(X;Y )! Map�(A;B) also de�ned as above.Proposition 5.8. Let f : A ! X and g : Y ! B be 
ontinuous maps (or pointed 
ontinuous maps).Then the fun
tion gf : Map(X;Y )! Map(A;B) (resp. gf : Y X ! BA) is a 
ontinuous map.Remark 5.9. If X and Y are pointed spa
es, then Map(X;Y ) and Map�(X;Y ) are also pointed spa
eswith the base point being the 
onstant map X ! fy0g, where y0 is the base point of Y . If g : Y ! Bis a pointed 
ontinuous map, then for any 
ontinous map f : A ! X , the indu
ed fun
tion gf is also apointed 
ontinuous map between the mapping spa
es.Let Top� denote the 
ategory of pointed topologi
al sap
es. Then both Map(X;�) and Map�(X;�)are 
ovariant fun
tors on Top and Top� respe
tively for any spa
e X (respe
tively pointed spa
e X),and both Map(�; X) and Map�(�; X) are 
ontravariant fun
tors on Top and Top� respe
tively for anyspa
e X (respe
tively pointed spa
e X).Proposition 5.10. Let X, Y and Z be topologi
al spa
es.1. If Z is a subspa
e of Y , then Map(X;Z) is a subspa
e of Map(X;Y ).2. If X, Y and Z are pointed spa
es with Z being a subspa
e of Y (sharing the same base point asY ), then Map�(X;Z) is a subspa
e of Map�(X;Y ).De�nition 5.11. Let X and Y be topologi
al spa
es. The evaluation map e : Map(X;Y ) �X ! Yis de�ned by e : (f; x) 7! f(x). If X and Y are pointed spa
es, the restri
tion of e to Map�(X;Y ) givesthe evaluation map e : Map�(X;Y ) �X ! Y , with the property that if f is the 
onstant pointed mapor x is the base point of X , then e(f; x) = y0, where y0 is the base point of Y .Remark 5.12. It follows from the de�nition that for pointed spa
es X and Y ,e(Map�(X;Y ) _X) = fy0g;and so e indu
es the evaluation map e : Map�(X;Y ) ^X ! Y .Proposition 5.13. Let X and Y be pointed spa
es. If X is lo
ally 
ompa
t Hausdor�, then the evaluationmaps e : Map(X;Y )�X ! Y and e : Map�(X;Y ) ^X ! Y are 
ontinuous.Proposition 5.14. Let X, Y and Z be pointed spa
es with X and Y Hasudor�. Then1. Map(X t Y; Z) �= Map(X;Z)�Map(Y; Z).2. Map�(X _ Y; Z) �= Map�(X;Z)�Map�(Y; Z).Proposition 5.15. Let X, Y and Z be pointed spa
es with X Hausdor�. Then1. Map(X;Y � Z) �= Map(X;Y )�Map(X;Z).2. Map�(X;Y � Z) �= Map�(X;Y )�Map�(X;Z).Let X , Y and Z be topologi
al spa
es, and let � : X �Y ! Z be a 
ontinuous map. For a given x 2 X ,we de�ne a fun
tion �x : Y ! Z by �x(y) = �(x; y). Then the fun
tion �x is 
ontinuous, and thefun
tion �(�) : X ! Map(Y; Z) de�ned by �(�)(x) = �x is also 
ontinuous.



5 SOME IMPORTANT TOPOLOGICAL CONSTRUCTIONS AND EXAMPLES 13De�nition 5.16. Let X , Y and Z be topologi
al spa
es. The asso
iation map is the fun
tion� : Map(X � Y; Z)! Map(X;Map(Y; Z))de�ned by [�(�)(x)℄(y) = �(x; y) for x 2 X , y 2 Y and � : X � Y ! Z.We 
onsider the pointed 
ase. Let X , Y and Z be pointed spa
es and let p : X � Y ! X ^ Y bethe quotient map. Then we have the 
ontinuous map (idZ)p : Map�(X ^ Y ! Z) ! Map�(X � Y; Z).Clearly � maps the image of (idZ)p into the subspa
e Map�(X;Map�(Y; Z)) of Map(X;Map(Y; Z)).Thus � indu
es the redu
ed asso
iation map � : Map�(X ^ Y; Z) ! Map�(X;Map�(Y; Z)) with[�(�)(x)℄(y) = �(x ^ y) for x 2 X , y 2 Y and � : X ^ Y ! Z. In fa
t, � is the 
ompositeZX^Y (idZ)p����! ZX�Y �jZX�Y�����! (ZY )XProposition 5.17. If X is Hausdor�, the asso
iation map � : Map(X � Y; Z) ! Map(X;Map(Y; Z))is 
ontinuous, and therefore the redu
ed asso
iation map � : Map�(X ^ Y; Z) ! Map�(X;Map�(Y; Z))is also 
ontinuous.Proposition 5.18. Let X, Y and Z be topologi
al spa
es. Then � and � are inje
tive. If Y is lo
ally
ompa
t Hausdor�, then � and � are bije
tive. If X and Y are lo
ally 
ompa
t Hausdor�, then � is ahomeomorphism. If X and Y are 
ompa
t Hausdor�, then � is a homeomorphism.Examples 5.19.1. For a pointed spa
e Y , de�ne 
(Y ) = Map�(S1; Y ). In general, for all nonnegative integersn, de�ne 
n(Y ) = Map�(Sn; Y ). 
n(Y ) is termed the n-fold loop spa
e of Y . For pointedspa
es X;Y , we have 
n(X � Y ) �= 
n(X) � 
n(Y ) and for nonnegative integers n;m, we have
n+m(X) �= 
n(
m(X)).2. For a pointed spa
e X , de�ne �(X) = S1 ^ X . In general, for all nonnegative integers n, de�ne�n(X) = Sn ^X . �n(X) is termed the n-fold suspension of X . For nonnegative integers n;m,we have �n+m(X) �= �n(�m(X)). For any pointed spa
es X;Y , we haveMap�(�n(X); Y ) �= Map�(X;
n(Y )):Both the loop 
 and suspension � are fun
tors on the 
ategory Top� of pointed topologi
al spa
es.



6 INTRODUCTION TO HOMOTOPY 146 Introdu
tion to HomotopyDe�nition 6.1. Let f; g : X ! Y be two maps. We say that f is homotopi
 to g if we 
an �nd amap F : X � I ! Y su
h that F (x; 0) = f(x) and F (x; 1) = g(x) for all x 2 X . The map F is 
alled ahomotopy from f to g. We write f ' g, or F : f ' g. A map f : X ! Y is 
alled null-homotopi
if f is homotopi
 to a 
onstant map from X to Y .De�nition 6.2. Let A be a subspa
e of X and suppose f; g : X ! Y are maps. We say that f ishomotopi
 to g relative to A if we 
an �nd a map F : X � I ! Y su
h that F is a homotopy from fto g and F (a; t) = f(a) for all a 2 A, t 2 I . We write f ' g relA or F : f ' g relA. We say that f isnull-homotopi
 relative to A if f is homotopi
 to a 
onstant map from X to Y relative to A.If f ' g relA, then we have g(a) = f(a) for all a 2 A. Hen
e the maps f and g agree on the subspa
e A.If in addition, g is a 
onstant map, then f jA is also a 
onstant map. Homotopy relative to a subspa
e Ais an equivalen
e relation on the set of maps from X to Y .The notation [X;Y ℄A will be used to denote the set of equivalen
e 
lasses of maps from X to Y underthe relation of homotopy relative to the subspa
e A of X . Given a map f : X ! Y , we use [f ℄A todenote the equivalen
e 
lass in [X;Y ℄A to whi
h f belongs. For unpointed spa
es X and Y , we 
an write[X;Y ℄; simply as [X;Y ℄, and [f ℄; simply as [f ℄.Proposition 6.3. Let A be a subspa
e of X and B be a subspa
e of Y . Let f0; f1 : X ! Y be homotopi
relative to A and g0; g1 : Y ! Z be homotopi
 relative to B. Suppose further that f0(A) = f1(A) � B.Then g0 Æ f0 ' g1 Æ f1 relA.De�nition 6.4. Let X and Y be pointed spa
es and let f; g : X ! Y be pointed maps. f is 
alledpointed homotopi
 to g if f ' g relx0, where x0 is the base point of X . We 
an simply write f ' g ifthere is no ambiguity.For pointed spa
es X and Y , the notation [X;Y ℄ is used to denote the set of equivalen
e 
lasses ofpointed maps from X to Y under the relation of pointed homotopy, that is, homotopy relative to thebase point x0 of X . For any pointed map f : X ! Y , [f ℄ denotes the equivalen
e 
lass in [X;Y ℄ towhi
h f belongs.Let TopH and TopH� respe
tively denote the 
ategory of topologi
al spa
es (respe
tively pointedspa
es) in whi
h the morphism sets are the equivalen
e 
lasses of maps (respe
tively pointed maps)under homotopy. Then for any pointed spa
e X , [X;�℄ is a 
ovariant fun
tor on TopH� and [�; X ℄ isa 
ontravariant fun
tor on TopH�. For a map f : X ! Y , we often denote [X; f ℄ simply as fX� or f�,and [f;X ℄ simply as f�X or f�. Thus f� : [�℄ 7! [f Æ �℄ for all � : Z ! X and f� : [�℄ 7! [� Æ f ℄ for all� : Y ! Z.Proposition 6.5. Let X, Y and Z be pointed spa
es.1. There is a bije
tion � : [X _ Y; Z℄ ! [X;Z℄ � [Y; Z℄ given by � : [�℄ 7! ([� Æ iX ℄; [� Æ iY ℄), whereiX : X ! X _ Y and iY : Y ! X _ Y are in
lusion maps.2. There is a bije
tion 
 : [X;Y � Z℄ ! [X;Y ℄ � [X;Z℄ given by 
 : [�℄ 7! ([pY Æ �℄; [pZ Æ �℄), wherepY : Y � Z ! Y and pZ : Y � Z ! Z are proje
tion maps.Proposition 6.6. Let X;Y; Z be pointed spa
es. If Y is lo
ally 
ompa
t Hausdor�, then the redu
edasso
iation map � : Map�(X ^ Y; Z) ! Map�(X;Map�(Y; Z)) indu
es a bije
tion �� : [X ^ Y; Z℄ ![X;Map�(Y; Z)℄.7 Homotopy Equivalen
es and Contra
tible Spa
esDe�nition 7.1. Let X and Y be topologi
al spa
es. A map f : X ! Y is 
alled a homotopyequivalen
e if there is a map g : Y ! X su
h that g Æ f ' idX and f Æ g ' idY . The map g is 
alled



8 THE FUNDAMENTAL GROUP 15a homotopy inverse of f . A spa
e X is homotopy equivalent to Y if we 
an �nd a homotopyequivalen
e f : X ! Y . In this 
ase, we say that X has the same homotopy type as Y , and wewrite X ' Y , or X 'f Y . De�nitions remain the same if X and Y are pointed spa
es and the word\homotopy" is repla
ed by \pointed homotopy".De�nition 7.2. A spa
e X is 
ontra
tible if the identity map idX : X ! X is homotopi
 to a 
onstantmap on X , namely, idX is null-homotopi
.Proposition 7.3. Any two maps from any arbitrary spa
e to a 
ontra
tible spa
e, or from a 
ontra
tiblespa
e to any arbitrary spa
e, are homotopi
, and in parti
ular, are null-homotopi
.Corollary 7.4. If Y is a 
ontra
tible spa
e, then any two maps on Y are homotopi
. In parti
ular, anytwo 
onstant maps on Y are homotopi
, so the identity map idY is homotopi
 to any 
onstant map onY .Proposition 7.5. A spa
e X is 
ontra
tible if and only if X is homotopy equivalent to the one-pointspa
e.Corollary 7.6. Any two 
ontra
tible spa
es have the same homotopy type. If X and Y are 
ontra
tiblespa
es, then any map f : X ! Y is a homotopy equivalen
e.8 The Fundamental GroupDe�nition 8.1. Let X be a topologi
al spa
e and let � : I ! X and � : I ! X be two paths in X with�(1) = �(0). The produ
t � � � : I ! X is de�ned by(� � �)(t) = (�(2t) 0 � t � 1=2�(2t� 1) 1=2 � t � 1:Clearly the produ
t � � � is also a path in X .Let �; � : I ! X be two paths in X . � and � are brie
y said to be homotopi
, denoted by � ' �, if �is homotopi
 to � relative to �I = f0; 1g. Note that if � ' � then �(0) = �(0) and �(1) = �(1).Lemma 8.2. Let �0; �1; �0; �1 be paths in a topologi
al spa
e X with �0(1) = �0(0) and �1(1) = �1(0).If �0 ' �1 and �0 ' �1, then �0 � �0 ' �1 � �1.Lemma 8.3. Suppose that �0; �1; �2 are paths in X with �0(1) = �1(0) and �1(1) = �2(0). Then(�0 � �1) � �2 ' �0 � (�1 � �2).For ea
h x 2 X , we de�ne a 
onstant path �x : I ! X by �x(t) = x.Lemma 8.4. Let � be a path in X with �(0) = x and �(1) = y. Then �x � � ' � ' � � �y.Given a path � in X , the inverse of �, denoted by ��1, is de�ned by ��1 : I ! X , ��1(t) = �(1 � t).Clearly the inverse of a path is itself a path.Lemma 8.5. Let � be a path in X with �(0) = x and �(1) = y. Then � � ��1 ' �x and ��1 � � ' �y.Let X be a pointed spa
e with base point x0. By Lemmas 8.2-8.5, the set of homotopy 
lasses of pathsin X having start and end points x0 is a group with identity [�x0 ℄ under the well-de�ned multipli
ationgiven by [�℄ � [�℄ = [� � �℄:De�nition 8.6. Let X be a pointed spa
e with base point x0. The nth-homotopy group �n(X; x0)is de�ned by �n(X; x0) = [Sn; X ℄for n � 0. If there is no danger of 
onfusion, we may omit mentioning the base point and simply write�n(X).



9 THE FUNDAMENTAL GROUP OF S1 16Sin
e S1 �= I=�I, a path � : I ! X with start and end points x0 fa
tors uniquely into:S1I � -q - X9 �-where q : I ! S1 is the 
anoni
al quotient. We have just shown that �1(X; x0) = [S1; X ℄ is a group.This is known as the fundamental group of X with base point x0.Corollary 8.7. A map f : X ! Y indu
es a group homomorphism f� : �1(X; x) ! �1(Y; f(x)) givenby f� : [�℄ 7! [f Æ �℄, where we regard X as having base point x0 and Y as having base point f(x) whenwe pass to the homotopy group. If f; g : X ! Y and f ' g relx, then f� = g�. If X and Y are pointedspa
es whi
h are pointed homotopy equivalent, we have �1(X) �= �1(Y ) as groups.It is known that �n(X) is an abelian group for all n � 2.Proposition 8.8. Let x; y 2 X. If there is a path from x to y in X, then the groups �n(X; x) �= �n(X; y)as groups.By Proposition 6.5(2), we have �n(X � Y ) �= �n(X)� �n(Y ) as sets for any n � 0.De�nition 8.9. A pointed spa
e X is said to be n-
onne
ted if �m(X) = 0 for all 0 � m � n. Apointed spa
e X is said to be simply 
onne
ted if it is 1-
onne
ted.If a spa
e X is simply 
onne
ted, then for any x; y 2 X , any two paths from x to y are homotopi
.Proposition 8.10. A 
ontra
tible spa
e X is n-
onne
ted for all n � 0.9 The Fundamental Group of S1We de�ne a map e : R ! S1 � C by e(t) = exp(2 i�t). We observe that e is 
ontinuous and thatej(�1=2;1=2) is a homeomorphism from (�1=2; 1=2) onto S1 n fexp(i�)g. Letlog : S1 n fexp(i�)g ! (�1=2; 1=2)be the inverse of ej(�1=2;1=2).De�nition 9.1. A subset X � Rn is said to be starlike from a point x0 if whenever x 2 X , the
losed segment [x0; x℄ from x0 to x lies in X .Lemma 9.2. Let X � Rn be 
ompa
t and starlike from a point x0 2 X. Then given any map f : X ! S1and any t0 2 R su
h that e(t0) = f(x0), there exists a map f : X ! R su
h that f(x0) = t0 and eÆf = f .Lemma 9.3. Let X be a 
onne
ted subspa
e of Rn and let f; g : X ! R be maps su
h that e Æ f = e Æ gand f(x0) = g(x0) for some x0 2 X. Then f = g.Let � : I ! S1 be a 
losed path at 1 2 S1. Sin
e I is 
ompa
t, 
onne
ted and starlike from 0 2 I and�(0) = �(1) = 1, it follows from Lemmas 9.2-9.3 that there exists a unique lifting � : I ! R su
h that�(0) = 0 and e Æ � = �. Sin
e (e Æ �)(1) = �(1) = 1, it follows that �(1) is an integer. We de�ne thedegree of � by deg(�) = �(1):Lemma 9.4. Let �; � : I ! S1 be homotopi
 
losed paths at 1 2 S1. Then deg(�) = deg(�).It follows that there is a well-de�ned fun
tion deg : �1(S1; 1)! Z de�ned bydeg([�℄) = �(1):Theorem 9.5. The fun
tion deg : �1(S1; 1)! Z is a group isomorphism.



10 FREE GROUPS AND FREE PRODUCTS OF GROUPS WITH AMALAGAMATION 1710 Free Groups and Free Produ
ts of Groups With Amalaga-mationFor a nonempty set X , denote by X�1 a set disjoint from X with the property that there is a bije
tionX ! X�1 in whi
h we asso
iate every element x 2 X with a 
orresponding element (
alled its inverse)in X�1 that we label as x�1. It is 
onvenient to use the same notation y 7! y�1 for the inverse bije
tionX�1 ! X ; in parti
ular we have (x�1)�1 = x for all x 2 X [X�1. Hen
e we may denote the inverse ofan element x 2 X [X�1 unambiguously as x0.A word in X is a �nite produ
t x1x2:::xn, where xi 2 X[X�1; in the 
ase that n = 0, the word w is theempty word whi
h is written simply as 1, where we may regard 1 as an element disjoint from X [X�1.The produ
t of two words is de�ned by juxtaposition, namely, if w = x1x2:::xn and v = y1y2:::ym, thenwv = x1x2:::xny1y2:::ym;with the 
onvention that w1 = w = 1w for all words w. A word w in X is said to be redu
ed if no pairof elements x and x0 are adja
ent. By 
onvention, the empty word 1 is redu
ed.For a nonempty set X , we let X denote the set of all words in X . De�ne a relation ' on X by thefollowing. Two words w and v in X are said to be equivalent (written w ' v) if it is possible to passfrom w to v by a �nite sequen
e of operations of the following type:1. insertion of xx0, where x 2 X [X�1, as a blo
k of two 
onse
utive elements;2. deletion of su
h xx0, with the additional rule that when they are the only elements left, they mustbe repla
ed by the element 1.The reader will �nd it a straightforward exer
ise to 
he
k that ' is an equivalen
e relation on X. For aword w in X , we denote by [w℄ the equivalen
e 
lass 
ontaining w under '.Proposition 10.1. Every word is equivalent to a redu
ed word and every equivalen
e 
lass [w℄ of wordsin X 
ontains a unique redu
ed word. Let F(X) = X= ' be the set of all equivalen
e 
lasses of wordsin X. We 
an de�ne a binary operation on F(X) by setting [w℄[v℄ = [wv℄. Then F(X) is a group underthis operation.De�nition 10.2. The group F(X) is known as the free group on the set X .Theorem 10.3. Let X be a nonempty set, F(X) be the free group on X, and � : X ! F(X) be the
anoni
al in
lusion x 7! [x℄. The given any group G and set fun
tion f : X ! G, there exists a uniquegroup homomorphism  : F(X) ! G su
h that  Æ � = f . Hen
e, (F(X); �) is free in the 
ategory Grp ofgroups, and so this universal property determines the group F(X) uniquely up to isomorphism withrespe
t to the given set X. -�������I 9 !  XF(X) G� fDe�nition 10.4. Let X be a subset of a group G that does not 
ontain the identity 1G. We say that Gis free on X if every nonidentity element g 2 G has a unique expression of the form g = xn11 xn22 :::xnkk ,where xi 2 X , nj = Z n f0g, and xi 6= xi+1 for ea
h i. We 
all su
h an expression of g 2 G a normalform of g with respe
t to X . Thus G is free on X if and only if every nonidentity g 2 G has a uniquenormal form with respe
t to X .Proposition 10.5. Suppose that X is a subset of a group G that does not 
ontain the identity 1G. Thenthere is a group homomorphism  : F(X) ! G su
h that  is an isomorphism if and only if G is free onX.



10 FREE GROUPS AND FREE PRODUCTS OF GROUPS WITH AMALAGAMATION 18Corollary 10.6. Every group is a homomorphi
 image of a free group.Proposition 10.7. Suppose that X1 and X2 are nonempty sets for whi
h jX1j = jX2j. Then we havethe isomorphism F(X1 ) �= F(X2 ).De�nition 10.8. Let C be a 
ategory and �x an obje
t C in C. Let � = f�i : C ! Aigi2I be afamily of morphisms. A pushout for � 
onsists of an obje
t P together with a family of morphismsf�0i : Ai ! Pgi2I that make ea
h of the following squares 
ommuteC �i����! Ai�j??y ??y�0iAj ����!�0j Pand whi
h satisfy the property that whenever there is another obje
t M and a family of morphismsf'i : Ai !Mgi2I that make ea
h of the following squares (with the same morphisms �i) 
ommuteC �i����! Ai�j??y ??y'iAj ����!'j Mthen there exists a unique morphism � : P !M su
h that � Æ �0i = 'i for all i 2 I .- ?-? ����R
AAAAAAAAAUHHHHHHHHHj

C APB �i
�0j �0i�j

M9!� 'i'jTheorem 10.9. If in a 
ategory C, fP; f�0igi2Ig and fP 0; f�00i gi2Ig are pushouts for the family ofmorphisms � = f�i : C ! Aigi2I , then P and P 0 are isomorphi
.Let fGigi2I be a family of groups su
h that all their identity elements are identi�ed and there is a groupH su
h that Gi \ Gj = H whenever i 6= j. Label the 
ommon identity element of all the groups as 1(whi
h is equal to 1H). Let X = Si2I Gi, and let X be the set of all nonempty words in X . We saythat a word is redu
ed if it is either the identity 1, or none of its symbols is the identity and no twoadja
ent symbols belong to the same group.1. De�ne a relation � on X by the following rule: Two words w; v are equivalent (written w � v) ifit is possible to pass from w to v by a �nite sequen
e of operations of the following type:(a) insertion of 1;(b) deletion of 1 ex
ept when it is the only symbol left;(
) repla
ing an element g 2 Gi with a pair x1x2, where x1; x2 2 Gi;(d) deleting a pair x1x2, where x1; x2 2 Gi, and repla
ing it with g, where g = x1x2.Then � is an equivalen
e relation on X, and ea
h equivalen
e 
lass of words under � 
ontains a(not ne
essarily unique) redu
ed word that is either an element of H , or a redu
ed word of theform g�1g�2 :::g�k , where g�i 2 G�i n H and �i 6= �i+1 for ea
h i whenever k � 2. Denote theequivalen
e 
lass 
ontaining the word w as [w℄.



11 THE SEIFERT-VAN KAMPEN THEOREM 192. Similar to the 
onstru
tion of free produ
ts, there exists a group whose elements 
onsist of theequivalen
e 
lasses of X under � in whi
h the group operation is given by [w℄[v℄ = [wv℄ | we termthis the free produ
t amalgamating H of the groups fGigi2I , and denote it by `Hi2I Gi.3. The in
lusion fun
tions �i : g 7! [g℄ are group monomorphisms from Gi into `Hi2I Gi for ea
h i, andthe group `Hi2I Gi together with the in
lusion maps �i forms a pushout for the family of 
anoni
alin
lusions f�i : H ! Gigi2I in the 
ategory Grp of groups.Examples 10.10.1. If K is the trivial group, G`�K = G.2. If f : H ! G is a group homomorphism and K is the trivial group, G`H K is the quotient groupof G by the normal subgroup generated by f(H).3. Z`�Z is the free group generated by two elements, ie, F(x1 ; x2). In general, the n-fold freeprodu
t of Z is a free group of rank n.4. Z=m �̀Z=n is the quotient group of F(x1 ; x2) by the relations xm1 = xn2 = 1.11 The Seifert-Van Kampen TheoremTheorem 11.1. Let X be a topologi
al spa
e. Suppose X = U1[U2 with U1; U2 open, U1\U2 nonemptyand path-
onne
ted. Let x0 2 U1 \ U2 be the base point of X. Then�1(X; x0) = �1(U1; x0) a�1(U1\U2;x0)�1(U2; x0):Examples 11.2.1. Suppose X = U [ V with U; V open in X and simply 
onne
ted, and U \ V is nonempty andpath-
onne
ted. Then X is simply 
onne
ted.2. Sn is simply 
onne
ted for n � 2. In parti
ular, �1(Sn) is trivial for n � 2.3. Suppose that x0 2 X and y0 2 Y are base points of X;Y respe
tively su
h that ea
h base point is
ontained in a 
ontra
tible neighbourhood. Then �1(X _ Y ) = �1(X)`� �1(Y ).4. �1(S1 _ S1) = F(x1 ; x2). In general �1(_nS1) = F(x1 ; x2; :::; xn).5. �1(RP 1 ) = Z and �1(RP n) = Z=2 for n � 2.Lemma 11.3. Let � : F(x1 ; x2; :::; xm)! F(y1 ; y2; :::; yn) be any group homomorphism. Then there is a
ontinuous map f : m_S1 ! n_S1su
h that � = f� : �1(Wm S1)! �1(Wn S1).Theorem 11.4. For all groups G, there is a spa
e X = X(G) su
h that �1(X) = G. If � : G! H is agroup homomorphism, then there is a natural 
ontinuous map f : X(G)! X(H) su
h that� = f� : �1(X(G))! �1(X(H)):



12 DEFORMATIONS, COFIBRATIONS, FIBRATIONS 2012 Deformations, Co�brations, FibrationsDe�nition 12.1. A subspa
e A of X is said to be a retra
t of X if the in
lusion i : A ,! X has a leftinverse, that is, there is a map r : X ! A su
h that r Æ i = idA.A subspa
e A of X is said to be a weak retra
t of X if the in
lusion i : A ,! X has a lefthomotopy inverse, that is, there is a map r : X ! A su
h that r Æ i ' idA.De�nition 12.2. Given a subspa
e X 0 of X , a deformation of X 0 in X is a homotopy D : X 0� I ! Xsatisfying D(x0; 0) = x0 for all x0 2 X 0, that is, D is a homotopy from the in
lusion i : X 0 ,! X to someother map X 0 ! X . If D(X 0 � f1g) � A � X , then D is said to be a deformation of X 0 into A, andthe subspa
e X 0 is said to be deformable into A in X .A spa
e X is said to be deformable into its subspa
e A if X is deformable into A in X . Inparti
ular, a spa
e X is 
ontra
tible if and only if X is deformable into one of its points in X .Proposition 12.3. A spa
e X is deformable into a subspa
e A if and only if the in
lusion i : A ,! Xhas a right homotopy inverse, that is, there is a map h : X ! A su
h that h = i Æ h ' idX .De�nition 12.4. A subspa
e A of X is said to be a weak deformation retra
t of X if the in
lusioni : A ,! X is a homotopy equivalen
e.Hen
e, a subspa
e A of X is a weak deformation retra
t of X if and only if it is A is weak retra
t of Xand X is deformable into A in X .De�nition 12.5. A subspa
e A of X is 
alled a deformation retra
t of X if there exists a maph : X ! A su
h that h Æ i = idA and i Æ h ' idX , where i : A ,! X is the in
lusion.Hen
e, a subspa
e A of X is a deformation retra
t of X if and only if it is A is retra
t of X and X isdeformable into A in X .De�nition 12.6. A subspa
e A of X is a strong deformation retra
t of X if there is a retra
tionr : X ! A su
h that i Æ r ' idX relA, where i : A ,! X is the in
lusion.De�nition 12.7. Let (X;A) be a pair of spa
es, and let Y be any spa
e. The pair (X;A) is said tohave the homotopy extension property with respe
t to Y if for all maps g : X ! Y and all mapsG : A � I ! Y satisfying G(a; 0) = g(a) for all a 2 A, there exists a map F : X � I ! Y su
h thatF (x; 0) = g(x) for all x 2 X and F (a; t) = G(a; t) for all a 2 A and t 2 [0; 1℄.X � f0g g- YX � I?\ � �9 F -A� IG6Proposition 12.8. Suppose that (X;A) has the homotopy extension property with respe
t to Y , andf0; f1 : A ! Y are homotopi
. If f0 has an extension to X, then so does f1, and their respe
tiveextensions are homotopi
 as well.Proposition 12.9. Let (X;A) be a pair of spa
es. If A is 
ontra
tible and the pair (X;A) satis�es thehomotopy extension property with respe
t to X, then the 
anoni
al quotient X ! X=A is a homotopyequivalen
e.Proposition 12.10. If (X;A) has the homotopy extension property with respe
t to A, then A is a weakretra
t (resp. weak deformation retra
t) of X if and only if A is a retra
t (resp. deformation retra
t) ofX.The notion of a 
o�bration is a generalization of the notion of having a homotopy extension property.



12 DEFORMATIONS, COFIBRATIONS, FIBRATIONS 21De�nition 12.11. A map f : X 0 ! X between two spa
es is said to be a 
o�bration if for all spa
esY and all maps g : X ! Y , G : X 0 � I ! Y satisfying G(x0; 0) = g(f(x0)) for all x0 2 X 0, there existsa map F : X � I ! Y su
h that F (x; 0) = g(x) for all x 2 X and F (f(x0); t) = G(x0; t) for all x0 2 X 0and t 2 [0; 1℄. X � f0g g - Y
X � I?

\
�f � idI9 F -

X 0 � IG6Proposition 12.12. Let i : A ,! X be the in
lusion. The following are equivalent:1. i is a 
o�bration.2. (X;A) has the homotopy extension property with respe
t to any spa
e Y .3. (X � f0g) [ (A� I) is a retra
t of X � I.De�nition 12.13. A map p : E ! B is said to have the homotopy lifting property with respe
t toa spa
e X if for all maps f 0 : X ! E and F : X � I ! B satisfying F (x; 0) = p(f 0(x)) for all x 2 X ,there exists a map F 0 : X � I ! E su
h that F 0(x; 0) = f 0(x) for all x 2 X and p Æ F 0 = F .X � f0g f 0- EX � I?\ F -9 F 0 -Bp ?Proposition 12.14. If p : E ! B has the homotopy lifting property with respe
t to a spa
e X, andf0; f1 : X ! B are homotopi
, then f0 
an be lifted to E (namely, there exists F0 : X ! E su
h thatp Æ F0 = f0) if and only if f1 
an be lifted to E.De�nition 12.15. A map p : E ! B is 
alled a �bration if p has the homotopy lifting property withrespe
t to every spa
e X . In this 
ase we say that E is the total spa
e and B is the base spa
e of the�bration. For b 2 B, the set p�1(b) is 
alled the �bre over b.If p : E ! B and f : Y ! B are maps, a lifting of f is a map ~f : Y ! E su
h that p Æ ~f = f .YE p -~f� Bf ?Proposition 12.16. If p : E ! B is a �bration, any path ! in B satisfying !(0) 2 p(E) 
an be liftedto a path in E.De�nition 12.17. A map p : E ! B is said to have unique path-lifting if given paths �; �0 in E su
hthat p Æ � = p Æ �0 and �(0) = �0(0), then � = �0.Lemma 12.18. If a map p : E ! B has unique path-lifting, then it has the unique lifting propertyfor path-
onne
ted spa
es, in the sense that for any maps f; g : Y ! E where Y is path-
onne
ted,p Æ f = p Æ g, and f(y0) = g(y0) for some y0 2 Y , then f = g.



13 COVERING SPACES 22Proposition 12.19. A �bration p : E ! B has unique path lifting if and only if every �bre p�1(b) hasno non
onstant paths.Proposition 12.20. The 
omposite of two �brations is a �bration.Lemma 12.21. Let p : E ! B be a �bration. If A is any path-
onne
ted 
omponent of E, then p(A) isa path-
onne
ted 
omponent of B, and pjA : A! p(A) is a �bration.De�nition 12.22. A spa
e is said to be lo
ally path-
onne
ted if for any x 2 X and any neighbour-hood U of x, there exists a path-
onne
ted open neighbourhood V of x su
h that V � U .Remark 12.23. In Maunder [3℄ (Chapter 6, Exer
ise 23), the de�nition of lo
ally path-
onne
ted is asfollows: A spa
e X is said to be lo
ally path-
onne
ted if, for ea
h x 2 X and any neighborhood U of x,there is an open neighborhood V of x su
h that x 2 V � U and any two points in V 
an be 
onne
ted bya path in U . Thus our de�nition of lo
ally path-
onne
ted, whi
h is the de�nition given by Hat
her [1℄and Massey [2℄, is stronger than Maunder's de�nition.Proposition 12.24. Let p : E ! B be a map. If E is lo
ally path-
onne
ted, then p is a �bration ifand only if for ea
h path-
onne
ted 
omponent A of E, p(A) is a path-
onne
ted 
omponent of B, andpjA : A! p(A) is a �bration.Theorem 12.25. Let p : E ! B be a �bration with unique path-lifting. If �; �0 are paths in E su
h that�(0) = �0(0) and p Æ � ' p Æ �0 rel�I, then � ' �0 rel�I.Corollary 12.26. Let p : (E; e0)! (B; b0) be a �bration with unique path-lifting. Thenp� : �1(E; e0)! �1(B; b0)is a group monomorphism.Theorem 12.27. Let p : E ! B be a �bration with unique path-lifting. If B is path-
onne
ted, thenany two �bres are homeomorphi
.If B is path-
onne
ted and p : E ! B is a �bration with unique path-lifting, the number of sheets ofp, or the multipli
ity of p, is de�ned to be the 
ardinality of the �bre p�1(b), whi
h is independent ofthe 
hoi
e of b 2 B by Theorem 12.27.Theorem 12.28. Let p : E ! B be a �bration with unique path-lifting and suppose that E;B arepath-
onne
ted. Then the multipli
ity of p is the index of p�(�1(E; e0)) in �1(B; p(e0)).Theorem 12.29. Let p : (E; e0)! (B; b0) be a �bration with unique path-lifting. Let Y be a 
onne
ted,lo
ally path-
onne
ted spa
e. Then a map f : (Y; y0)! (B; b0) has a lifting (Y; y0)! (E; e0) if and onlyif f�(�1(Y; y0)) � p�(�1(E; e0)).13 Covering Spa
esDe�nition 13.1. A map p : ~X ! X is 
alled a 
overing proje
tion if:1. p is surje
tive;2. For all x 2 X , there exists an open neighbourhood U of x, 
alled an elementary neighbourhoodof x, su
h that p�1(U) = G�2�U�;is a topologi
al disjoint union of open sets U� 
alled sheets and p maps ea
h U� homeomorphi
allyonto U .We 
all ~X the 
overing spa
e and 
all X the base spa
e of the 
overing proje
tion p.



13 COVERING SPACES 23Examples 13.2.1. Any homeomorphism p : X ! X is a one-sheeted 
overing proje
tion.2. Let F be a spa
e endowed with the dis
rete topology, and let ~X = X � F . Then the 
oordinateproje
tion p : ~X ! X is a 
overing proje
tion.3. The 
anoni
al quotient p : Sn ! RPn is a two-sheeted 
overing proje
tion.4. The map p : S1 ! S1 given by p(z) = zn is an n-sheeted 
overing proje
tion.5. The exponential map e : R ! S1 is a 
overing proje
tion with �0-many sheets.Proposition 13.3. A 
overing proje
tion exhibits its base spa
e as a quotient of its 
overing spa
e.Lemma 13.4. A 
overing proje
tion p : ~X ! X has the unique lifting property for 
onne
ted spa
es,namely, if f; g : Y ! ~X are liftings of the same map p Æ f = p Æ g : Y ! X, Y is 
onne
ted andf(y0) = g(y0) for some y0 2 Y , then f = g.Theorem 13.5. A 
overing proje
tion is a �bration.Proposition 13.6. Let p : ( ~X; ~x0)! (X; x0) be a 
overing proje
tion.1. Every path � : (I; 0)! (X; x0) has a unique lifting ~� : (I; 0)! ( ~X; ~x0). In parti
ular, p has uniquepath-lifting (De�nition 12.17).2. Every map F : (I � I; (0; 0))! (X; x0) has a unique lifting ~F : (I � I; (0; 0))! ( ~X; ~x0).Sin
e a 
overing proje
tion p : ~X ! X is a �bration with unique path-lifting, it follows from Theo-rem 12.25 that if �; �0 are paths in ~X su
h that �(0) = �0(0) and p Æ � ' p Æ �0 rel�I , then � ' �0 rel�I .By Corollary 12.26, p� : �1( ~X; ~x0)! �1(X; x0) is a group monomorphism.De�nition 13.7. A group G is termed a topologi
al group if G is a topologi
al spa
e, and the groupmultipli
ation G�G! G, (g; h) 7! gh, and the inverse fun
tion G! G, g 7! g�1, are both 
ontinuousmaps.Let G be a group and let Y be a G-spa
e. For an element g 2 G and a subset S of Y , letgS = fgs : s 2 Sg:De�nition 13.8. Let G be a dis
rete group (a topologi
al group endowed with the dis
rete topology).Let Y be a G-spa
e. We 
all the G-a
tion on Y properly di
ontinuous if for every y 2 Y , there existsa neighbourhood Wy of y su
h that for all g1; g2 2 G,g1 6= g2 ) g1Wy \ g2Wy = ;:This is equivalent to saying that for all g 2 G,g 6= 1G ) gWy \Wy = ;:Proposition 13.9. Let X be a G-spa
e. The G-a
tion on X is properly dis
ontinuous if and only if the
anoni
al quotient p : X ! X=G is a 
overing proje
tion.De�nition 13.10. A group G is said to a
t freely on a spa
e X if gx 6= x for all x 2 X and 1G 6= g 2 G.This is equivalent to saying that g1x 6= g2x for all x 2 X and g1 6= g2 2 G.Proposition 13.11. Let X be a G-spa
e. Suppose that G is a �nite group and X is Hausdor�. Thenthe G-a
tion on X is properly dis
ontinuous if and only if G a
ts freely on X.Examples 13.12.1. Let an a
tion of Z on R be de�ned by (n; x) 7! n+ x. This a
tion is properly dis
ontinuous, andso the 
anoni
al quotient e : R ! R=Z �= S1 is a 
overing proje
tion.



13 COVERING SPACES 242. Let G be a Hausdor� topologi
al group and let H be a �nite subgroup of G. Let G=H be the setof left 
osets of H in G endowed with the quotient topology. H a
ts on G by left multipli
ationand this a
tion is free. Hen
e the 
anoni
al quotient G! G=H is a 
overing proje
tion.Fix a 
overing proje
tion p : ( ~X; ~x0) ! (X; x0). Let a loop � : (I; 0; 1)! (X; x0; x0) be given. Supposethat ~� : (I; 0)! ( ~X; ~x0) is its unique lifting. Thenp Æ ~�(1) = �(1) = �(0) = x0;and so ~�(1) 2 p�1(x0). There is a well-de�ned fun
tion  : �1(X; x0)! p�1(x0) given by  : [�℄! ~�(1).Proposition 13.13. If ~X is path-
onne
ted, then  is surje
tive, and if ~X is simply 
onne
ted, then  is bije
tive.Suppose now that ~X is a G-spa
e and that the quotient p : ~X ! ~X=G is a 
overing proje
tion. Let[ ~x0℄ 2 ~X=G denote the orbit of ~x0 under the G-a
tion. Sin
e the G-a
tion is properly dis
ontinuous, we
an identify p�1([ ~x0℄) with G by the 
orresponden
e g ~x0 $ g.Theorem 13.14. If ~X is path-
onne
ted, then the fun
tion  : �1( ~X=G; [ ~x0℄)! p�1(x0) = G is a groupepimorphism with kernel p�(�1( ~X; ~x0)). In parti
ular, if ~X is simply 
onne
ted, then �1( ~X=G; [ ~x0℄) �= G.Examples 13.15.1. Sin
e Sn is simply 
onne
ted for all n � 2 and there is a properly dis
ontinuous Z2-a
tion on Sngiven by (n; x) 7! nx, where n = �1, so �1(RP n) = �1(Sn=Z2) �= Z2 for all n � 2.2. Sin
e R is 
ontra
tible and there is a properly dis
ontinuous Z-a
tion on R given by (n; x) 7! n+x,so we have �1(S1) = �1(R=Z) �= Z. In this example,  as de�ned above is simply the degree mapdeg : �1(S1)! Z de�ned in Se
tion 9.Let p : ( ~X; ~x0) ! (X; x0) be a 
overing. Suppose that (Y; y0) is simply 
onne
ted and lo
ally path-
onne
ted. Sin
e p is a �bration with unique path-lifting, so by Theorem 12.29 and Lemma 13.4, everymap f : (Y; y0)! (X; x0) admits a unique lifting ~f : (Y; y0)! ( ~X; ~x0).Corollary 13.16. Let p : ( ~X; ~x0)! (X; x0) be a 
overing. Then for all n � 1 and all mapsf : (Y; y0)! (X; x0)with Y simply 
onne
ted and lo
ally path-
onne
ted, there exists some ~f : (Y; y0) ! ( ~X; ~x0) su
h thatp� Æ ~f� = f� : �n(Y; y0)! �n(X; x0).Example 13.17. Sin
e Sn is always lo
ally path-
onne
ted, and is simply 
onne
ted for all n � 2, soall pointed maps f : Sn ! S1 admit a unique lifting ~f : Sn ! R. Sin
e R is 
ontra
tible, so �n(S1) = 0for all n � 2.Corollary 13.18. For all n � 2 and any 
overing proje
tion p : ( ~X; ~x0)! (X; x0), the mapp� : �n( ~X; ~x0)! �n(X; x0)is a group isomorphism.Example 13.19. �m(Sn) �= �m(RP n) for all m � 2 and n � 1. In parti
ular, �m(RP 1 ) = �m(S1) = 0for all m � 2.De�nition 13.20. Let p1 : ~X1 ! X and p2 : ~X2 ! X be 
overing proje
tions. A homomorphism of( ~X1; p1) to ( ~X2; p2) is a 
ontinuous map ' : ~X1 ! ~X2 su
h that p2 Æ ' = p1.-���	���R'X~X1 ~X2p1 p2



14 BARRATT-PUPPE EXACT SEQUENCES 25Fix a spa
e X . The 
lass of all 
overing proje
tions with base spa
e X and their homomorphisms forma 
ategory. Two 
overing proje
tions with the same base spa
e X are 
alled isomorphi
 if they areisomorphi
 obje
ts in this 
ategory.Theorem 13.21. Two 
overing proje
tions ( ~X1; p1) and ( ~X2; p2) with the same base spa
e X and where~X1, ~X2 are path-
onne
ted and lo
ally path-
onne
ted are isomorphi
 if and only if for any points ~x1 2 ~X1and ~x2 2 ~X2 su
h that p1(~x1) = p2(~x2) = x0 2 X, the subgroups (p1)�(�1( ~X1; ~x1)) and (p2)�(�2( ~X2; ~x2))of �1(X; x0) are 
onjugate.Lemma 13.22. Let ( ~X1; p1) and ( ~X2; p2) be 
overing proje
tions with the same base spa
e X where~X1, ~X2 are path-
onne
ted and lo
ally path-
onne
ted. Let ' : ( ~X1; p1)! ( ~X2; p2) be a homomorphism.Then ' : ~X1 ! ~X2 is a 
overing proje
tion.De�nition 13.23. A 
overing proje
tion p : ~X ! X is termed universal if X is path-
onne
ted and~X is simply 
onne
ted.Let p : ~X ! X be a 
overing proje
tion, with ~X simply 
onne
ted and lo
ally path-
onne
ted. If ( ~X 0; p0)is any other 
overing spa
e of X , then there exists a homomorphism ' of ( ~X; p) onto ( ~X 0; p0), and byLemma 13.22, ' : ~X ! ~X 0 is a 
overing proje
tion. In other words, ~X 
an serve as a 
overing spa
e ofany 
overing spa
e of X .De�nition 13.24. A spa
e X is 
alled semi-lo
ally simply 
onne
ted if for ea
h point x 2 X , thereexists a neighborhood U of x su
h that i� : �1(U; x) ! �1(X; x) is the trivial group homomorphism,where i : U ,! X is the in
lusion map. is trivial.Theorem 13.25. Let X be path-
onne
ted, lo
ally path-
onne
ted, and semi-lo
ally simply 
onne
ted.Then there is a universal 
overing ~X of X.Corollary 13.26. Let X be path-
onne
ted, lo
ally path-
onne
ted, and semi-lo
ally simply 
onne
ted.Then for all subgroups H of �1(X; x0), there exists a 
overing proje
tion pH : ~XH ! X su
h that(pH)�(�1( ~XH ; ~x0)) = H for a suitably 
hosen base point ~x0 2 ~XH .14 Barratt-Puppe Exa
t Sequen
esLet S; T be pointed sets with base points s0; t0 respe
tively. Let f : S ! T be a pointed fun
tion. SetKer(f) = f�1(t0). A sequen
e of pointed sets::: �! Sn+1 fn+1�! Sn fn�! Sn�1 �! :::is set to be exa
t if ea
h fun
tion fn is pointed and Ker(fn) = Im(fn+1) for all n.For a pointed spa
e (X; x0), the redu
ed 
one is de�ned by C(X) = (X � I)=((fx0g� I)[ (X �f1g)).We identify X as a subspa
e of C(X) via the 
orresponden
e x$ (x; 0).Let f : (X; x0) ! (Y; y0) be a pointed map. The redu
ed mapping 
one is the adjun
tion spa
eY [f C(X) = (C(X) t Y )=((x; 0) � f(x) : x 2 X) and is denoted by Cf .Let (Y; y0) be a pointed spa
e. The path spa
e P (Y ) is de�ned to be the spa
e of all paths � in Ysatisfying �(0) = y0 under the 
ompa
t-open topology. Let f : (X; x0)! (Y; y0) be a pointed map. Themapping path spa
e Pf is de�ned byPf = f(x; �) 2 X � P (Y ) : f(x) = �(1)g:Theorem 14.1 (Barratt-Puppe). Let f : (X; x0)! (Y; y0) be a pointed map. Let j : Y ! Cf be the
anoni
al in
lusion, p : Pf ! X be the 
anoni
al quotient, and let Z be any pointed spa
e. Then thereare long exa
t sequen
es::: �! [�(Cf ); Z℄ (�j)��! [�(Y ); Z℄ (�f)��! [�(X); Z℄ �! [Cf ; Z℄ j��! [Y; Z℄ f��! [X;Z℄and ::: �! [Z;
(Pf )℄ (�p)��! [Z;
(X)℄ (
f)��! [Z;
(Y )℄ �! [Z; Pf ℄ p��! [Z;X ℄ f��! [Z; Y ℄:



15 CW-COMPLEXES 2615 CW-ComplexesDe�nition 15.1. Let X0 be a dis
rete spa
e whose points are 
alled 0-
ells. Indu
tively form Xn fromXn�1 by atta
hing n-
ells as follows: Let Xn be the adjun
tion spa
eXn = Xn�1 ['� : �2�n� G�2�nDn�� =  � G�2�nDn��GXn�1! =(s � '�(s) : s 2 Sn�1� ; � 2 �n);where fDn�g�2�n is a 
olle
tion of dis
s and f'� : Sn�1� ! Xn�1g�2�n is a 
olle
tion of maps for ea
hn, where we 
anoni
ally identify Sn�1� = �(Dn�) for ea
h � 2 �n. Thus as a set, Xn is the disjoint unionof Xn�1 and F�2�n en�, where ea
h en� is an open dis
 
alled an n-
ell. Let X = SnXn be given theweak topology: a subset A of X is 
losed if and only if A \Xn is 
losed in Xn for all n � 0. We 
all Xa CW-
omplex.In the spe
ial 
ase where the 
ells being atta
hed have a maximum �nite dimension, we 
all X a �nite-dimensional CW-
omplex.Examples 15.2.1. Sn has the stru
ture of a CW-
omplex with just two 
ells e0 and en. The n-
ell en is atta
hed viathe 
onstant map Sn�1 ! e0.2. RP n has the 
ell stru
ture e0 t e1 t ::: t en.An alternative des
ription of CW-
omplexes is as follows: A CW-
omplex is a Hausdor� spa
eX togetherwith an indexing set �n for all n � 0 and 
hara
teristi
 maps �n� : Dn ! X for all � 2 �n, su
h thatthe following properties are satis�ed, where en = (Dn)Æ for all n � 1:1. X = S�n�(en), the union being taken over all n � 0 and � 2 �n (set e0 = D0 = f�g).2. �n�(en) \ �m� (em) = ; unless n = m and � = �.3. �n�jen is inje
tive for all n � 0 and � 2 �n.4. Let Xn = Snm=0 �m� (em), where the union is taken over all � 2 �m for 0 � m � n. Then�n�(Sn�1) � Xn�1 for ea
h n � 1 and � 2 �n.5. A subset K of X is 
losed in X if and only if (�n�)�1(K) is 
losed in Dn for ea
h n � 0 and � 2 �n.6. For ea
h n � 0 and � 2 �n, �n�(Dn) is 
ontained in the union of a �nite number of sets of the form�m� (em).It is known that the above de�nition is equivalent to De�nition 15.1. Condition 6 is known as 
losure-�niteness, whi
h is equivalent to saying that the 
losure of ea
h 
ell (De�nition 15.1) is 
ontained inthe union of a �nite number of 
ells.De�nition 15.3. A sub
omplex of a CW-
omplex X is a 
losed subspa
e A of X that is a union of
ells of X .Proposition 15.4. A wedge of CW-
omplexes is again a CW-
omplex.For a CW-
omplex X , let the skeleton skn(X) be the subspa
e of X 
onsisting of the 
ells up todimension n.Proposition 15.5. For ea
h n � 1, the in
lusion skn�1(X) ,! skn(X) is a 
o�bration andskn(X)= skn�1(X) �= _�2�n Sn;a wedge of n-spheres.



16 HOMOLOGY 2716 HomologyTwo maps of pairs f; g : (X;A)! (Y;B) are said to be homotopi
, written f ' g, if there is a homotopyF : X � I ! Y su
h that F (x; 0) = f(x), F (x; 1) = g(x), and F (a; t) 2 B for all x 2 X , a 2 A, andt 2 [0; 1℄. A spe
ial example is when f ' g relA for f; g : X ! Y and A � X .Let G;H be groups and let f : G! H be a group homomorphism. The kernel of f , denoted Ker(f), isde�ned by Ker(f) = f�1(1H) = fx 2 G : f(x) = 1Hg:A sequen
e of groups and group homomorphisms::: �! Gn+1 fn+1�! Gn fn�! Gn�1 �! :::is set to be exa
t if Ker(fn) = Im(fn+1) for all n. A short exa
t sequen
e of groups is an exa
tsequen
e of the form 1 �! B �! E �! A �! 1:If H is an abelian group, we use additive notation, writing the identity of H as 0.An unredu
ed homology theory h� 
onsists of the following items:1. A sequen
e fhn(X;A)gn2Z of abelian groups for any pair of spa
es (X;A). The abelian grouphn(X;A) is 
alled the nth relative homology group of X modulo A, and is simply written ashn(X) if A = ;.2. A sequen
e of group homomorphisms ffn : hn(X;A) ! hn(Y;B)gn2Z 
orresponding to any mapof pairs f : (X;A)! (Y;B).3. Group homomorphisms �n(X;A) : hn(X;A) ! hn�1(A) for all n 2 Z and pair of spa
es (X;A).These are 
alled the boundary operators.The above items satisfying the following Eilenberg-Steenrod axioms:1. If f = id(X;A), then fn = idhn(X;A) for all n 2 Z.2. If f : (X;A)! (Y;B) and g : (Y;B)! (Z;C), then (g Æ f)n = gn Æ fn : hn(X;A)! hn(Z;C).Hen
e, hn is a 
ovariant fun
tor from the 
ategory of pairs of topologi
al spa
es to the 
ategoryAb of abelian groups for all n 2 Z. More expli
itly, h� is a 
ovariant fun
tor from the 
ategory ofpairs of topologi
al spa
es to the 
ategory AbZ of graded abelian groups.For brevity, we denote by f� the 
olle
tion of all group homomorphism fn for any map of pairs f .If a statement holds for all fn, we simply say that it holds for f�. We may view f� as the image off in AbZ under the fun
tor h�.3. For all map of pairs f : (X;A)! (Y;B), we have � Æ f� = (f jA)� Æ �. In parti
ular, the diagramhq(X;A) fq - hq(Y;B)hq�1(A)�q(X;A) ? (f jA)q�1- hq�1(B)�q(Y;B)?
ommutes for all q 2 Z.Hen
e, there is a natural transformation �n : hn ! hn�1 ÆR for all n 2 Z, where R is the fun
torsending (X;A) to (A; ;).



16 HOMOLOGY 284. (Exa
tness) For any pair of spa
es (X;A), there is a long exa
t sequen
e of abelian groups::: �! hn+1(X;A) �n+1�! hn(A) in�! hn(X) jn�! hn(X;A) �n�! hn�1(A) �! :::where i : (A; ;)! (X; ;) and j : (X; ;)! (X;A) are the in
lusion maps.5. (Homotopy) If f ' g : (X;A)! (Y;B), then f� = g� : h�(X;A)! h�(Y;B).6. (Ex
ision) If U is an open subset of X , and U � AÆ, then the in
lusion j : (X nU;A nU)! (X;A)indu
es an isomorphism j� : h�(X n U;A n U) �=�! h�(X;A). This is equivalent to saying thatfor all subspa
es X1; X2 of X su
h that X1 is 
losed and X = (X1)Æ [ (X2)Æ, the in
lusioni : (X1; X1 \X2)! (X;X2) indu
es an isomorphism i� : h�(X1; X1 \X2) �=�! h�(X;X2).An ordinary homology theory is a homology theory h� that satis�es an addition axiom:7. (Dimension Axiom) Let P be a one-point spa
e. Then hq(P ) = 0 for all q 6= 0.In this 
ase, h�(X;A) is 
alled the homology of (X;A) with 
oeÆ
ients in G = h0(P ), and wedenote h�(X;A) more pre
isely by H�(X;A;G).We write H�(X;A) for the integral homology H�(X;A;Z).Proposition 16.1. If A is a weak deformation retra
t of X, then h�(X;A) = 0. In parti
ular,h�(X;X) = 0.Lemma 16.2. Suppose that the in
lusion i : A ,! X is a 
o�bration. Then the redu
ed mapping 
oneCi is homotopy equivalent to the quotient spa
e X=A.Corollary 16.3. Suppose that the in
lusion i : A ,! X is a 
o�bration. Then there is an exa
t sequen
eof groups: �1(A) i��! �1(X) �! �1(X=A) �! 1:Theorem 16.4. Let (X;A) be a pair of spa
es su
h that the in
lusion i : A ,! X is a 
o�bration. Thenthe quotient map p : (X;A)! (X=A; �) indu
es an isomorphism p� : h�(X;A) �=�! h�(X=A; �).Given a homology theory h�, the redu
ed homology �h� is de�ned as follows: For a pointed spa
e Xwith base point x0, �h�(X) = h�(X; x0):In general, we have �h�(X) = Ker(�� : h�(X) ! h�(P )) and h�(X) = �h�(X) � h�(P ), where P is theone-point spa
e and � : X ! P is the 
onstant proje
tion.Corollary 16.5. Let (X;A) be a pair of spa
es su
h that the in
lusion i : A ,! X is a 
o�bration. Thenthere is a long exa
t sequen
e::: �! �hn+1(X=A) �n+1�! �hn(A) in�! �hn(X) pn�! �hn(X=A) �n�! �hn�1(A) �! :::where p : X ! X=A is the 
anoni
al quotient.Theorem 16.6. Let X be a pointed spa
e. Then there is a natural isomorphism�n : �hn(X)! �hn+1(�(X))for ea
h n 2 Z.Theorem 16.7 (Mayer-Vietoris). Let X = AÆ [BÆ where A;B are subspa
es of X. Then there is along exa
t sequen
e::: �n+1�! hn(A \B) �n�! hn(A)� hn(B) �n�! hn(X) �n�! hn�1(A \B) :::where �n = �(i1)n(i2)n�, i1 : A \ B ! A and i2 : A \ B ! B are the in
lusions, �n = (j1)n � (j2)n,j1 : A! X and j2 : B ! X are the in
lusions.



17 COHOMOLOGY 29Proposition 16.8. If iX : X ! X t Y and iY : Y ! X t Y are the in
lusions, then((iX )�; (iY )�) : h�(X)� h�(Y )! h�(X t Y )is an isomorphism.Proposition 16.9. For all n � 0, �Hi(Sn) = (G = H0(P ) i = n;0 i 6= n:Corollary 16.10. For all n, the sphere Sn�1 is not a weak retra
t of the dis
 Dn.Any pointed map f : Sn ! Sn indu
es a group homomorphism f� : Hn(Sn) ! Hn(Sn). For all n � 1,we have f� : Z! Z. It follows that there is a unique integer deg(f) su
h that f�(�) = deg(f)� for all� 2 Hn(Sn) whi
h depends only on the homotopy 
lass of f .Proposition 16.11. For ordinary homology over Z, we have the following for pointed mapsf; g : Sn ! Sn :1. deg(idSn) = 1.2. If f is not surje
tive, then deg(f) = 0.3. f ' g if and only if deg(f) = deg(g).4. deg(g Æ f) = deg(g) deg(f).5. If f is a re
e
tion �xing points in a subspa
e Sn�1, then deg(f) = �1.6. The antipodal map x 7! �x has degree (�1)n+1.7. If f has no �xed points, then deg(f) = (�1)n+1.Corollary 16.12. If n is even, then Z=2Z is the only nontrivial group that 
an a
t freely on Sn.17 CohomologyAn unredu
ed 
ohomology theory h� 
onsists of the following items:1. A sequen
e fhn(X;A)gn2Z of abelian groups for any pair of spa
es (X;A). The abelian grouphn(X;A) is 
alled the nth relative 
ohomology group of X modulo A, and is simply writtenas hn(X) if A = ;.2. A sequen
e of group homomorphisms ffn : hn(Y;B) ! hn(X;A)gn2Z 
orresponding to any mapof pairs f : (X;A)! (Y;B).3. Group homomorphisms Æn(X;A) : hn(A) ! hn+1(X;A) for all n 2 Z and pair of spa
es (X;A).These are 
alled the boundary operators.The above items satisfying the following Eilenberg-Steenrod axioms:1. If f = id(X;A), then fn = idhn(X;A) for all n 2 Z.2. If f : (X;A)! (Y;B) and g : (Y;B)! (Z;C), then (g Æ f)n = fn Æ gn : hn(Z;C)! hn(X;A).Hen
e, hn is a 
ontravariant fun
tor from the 
ategory of pairs of topologi
al spa
es to the 
ategoryAb of abelian groups for all n 2 Z. More expli
itly, h� is a 
ontravariant fun
tor from the 
ategoryof pairs of topologi
al spa
es to the 
ategory AbZ of graded abelian groups.For brevity, we denote by f� the 
olle
tion of all group homomorphism fn for any map of pairs f .If a statement holds for all fn, we simply say that it holds for f�. We may view f� as the imageof f in AbZ under the fun
tor h�.



17 COHOMOLOGY 303. For all map of pairs f : (X;A)! (Y;B), we have f� Æ Æ = Æ Æ (f jA)�. In parti
ular, the diagramhq�1(B) (f jA)q�1- hq�1(A)hq(Y;B)Æq�1(Y;B) ? fq - hq(X;A)Æq�1(X;A)?
ommutes for all q 2 Z.Hen
e, there is a natural transformation Æn�1 : hn�1 ÆR! hn for all n 2 Z, where R is the fun
torsending (X;A) to (A; ;).4. (Exa
tness) For any pair of spa
es (X;A), there is a long exa
t sequen
e of abelian groups::: �! hn�1(A) Æn�1�! hn(X;A) jn�! hn(X) in�! hn(A) Æn�! hn+1(X;A) �! :::where i : (A; ;)! (X; ;) and j : (X; ;)! (X;A) are the in
lusion maps.5. (Homotopy) If f ' g : (X;A)! (Y;B), then f� = g� : h�(Y;B)! h�(X;A).6. (Ex
ision) If U is an open subset of X , and U � AÆ, then the in
lusion j : (X nU;A nU)! (X;A)indu
es an isomorphism j� : h�(X;A) �=�! h�(X n U;A n U). This is equivalent to saying thatfor all subspa
es X1; X2 of X su
h that X1 is 
losed and X = (X1)Æ [ (X2)Æ, the in
lusioni : (X1; X1 \X2)! (X;X2) indu
es an isomorphism i� : h�(X;X2) �=�! h�(X1; X1 \X2).An ordinary 
ohomology theory is a 
ohomology theory h� that satis�es an addition axiom:7. (Dimension Axiom) Let P be a one-point spa
e. Then hq(P ) = 0 for all q 6= 0.In this 
ase, h�(X;A) is 
alled the 
ohomology of (X;A) with 
oeÆ
ients in G = h0(P ), andwe denote h�(X;A) more pre
isely by H�(X;A;G).We write H�(X;A) for the integral 
ohomology H�(X;A;Z).
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isesExer
ises 18.1.1. Let C be a 
ategory, Mor(C) be the 
lass of all morphisms of C, and for any pair of morphisms f : A! Band g : C ! D of C, de�ne Mor(f; g) to be the set of all ordered pairs (�; �), where � : A ! C and� : B ! D are morphisms of C su
h that the following diagram 
ommutes.A f�����! B�??y ??y�C �����!g DShow that the 
lass Mor(C) together with the sets Mor(f; g) is a 
ategory under this de�nition.2. Des
ribe how a nonempty 
lass A 
an be made into a 
ategory in whi
h the only morphisms are identitymorphisms.3. A pointed set is a pair (S; x), where S is a set and x 2 S. A morphism of pointed sets (S; x)! (T; y) isa set fun
tion f : S ! T su
h that f(x) = y. Show that the pointed sets form a 
ategory, whi
h we denoteby Set0.4. Let fAigi2I be a family of sets. Let S be the set of all ordered pairs (a; i), where a 2 Ai and i 2 I. Forea
h i 2 I, de�ne a fun
tion �i : Ai ! S by �i(a) = (a; i). Show that fS; f�igi2Ig is a 
oprodu
t offAigi2I in the 
ategory Set of sets.5. Show that every family fAigi2I of pointed sets (Exer
ise 3) has a produ
t and 
oprodu
t in the 
ategorySet0 of pointed sets.6. An obje
t I in a 
ategory C is said to be initial if for any obje
t C, there exists pre
isely one morphismI ! C in C. An obje
t T is said to be terminal if for any obje
t C, there exists pre
isely one morphismC ! T in C.(a) Show that any two initial (respe
tively terminal) obje
ts in a 
ategory are isomorphi
.(b) Show that the trivial group f1g is both initial and terminal in the 
ategory Grp of groups.7. Let X be a topologi
al spa
e. Prove the following:(a) ; and X are 
losed sets.(b) Finite unions of 
losed sets are 
losed.(
) Arbitrary interse
tions of 
losed sets are 
losed.8. Let < be a 
olle
tion of subsets of X su
h that ;; X 2 <, < is 
losed under �nite unions, and < is 
losedunder arbitrary interse
tions. Show that = = fX n C : C 2 <g is a topology on X.9. Let B be a basis for a topology on X. Let = be the 
olle
tion of all arbitrary unions of elements of B.Show that (X;=) is a topologi
al spa
e.10. Let B and B0 be bases for topologies = and =0 respe
tively. Show that = � =0 if and only if for every �nite
olle
tion C1; C2; :::; Cn of basis elements of B, there is a 
olle
tion fB0igi2I of basis elements in B0 su
hthat [i2IB0i = n\j=1Cj :11. Let X be a topologi
al spa
e. Suppose that B is a 
olle
tion of open sets of X su
h that for any open setU of X, there is a 
olle
tion fBigi2I of elements of B su
h that[i2IBi = U:Show that B is a basis for the topology on X.



18 EXERCISES 3212. Let X and Y be topologi
al spa
es, and let x 2 X. A fun
tion f : X ! Y is said to be 
ontinuous atx if whenever V is an open set in Y 
ontaining f(x), there is an open set U in X su
h that x 2 U andU � f�1(V ). Show that a fun
tion f : X ! Y is 
ontinuous if and only if f is 
ontinuous at every x 2 X.13. Let X and Y be topologi
al spa
es, and let f : X ! Y be a fun
tion. Suppose that B is a basis for thetopology on Y , and S is a sub-basis for the topology on Y su
h that the basis B is the natural extension ofS obtained by taking interse
tions of all �nite 
olle
tions of sub-basi
 sets of S. Show that the followingare equivalent:(a) f is 
ontinuous.(b) For every basi
 set B 2 B, the set f�1(B) is open in X.(
) For every sub-basi
 set S 2 S, the set f�1(S) is open in X.14. Let B be a basis for the topology on X and Y be a subset of X. Show that the 
olle
tionBY = fB \ Y : B 2 Bgis a basis for the subspa
e topology on Y . Let S be a sub-basis for the topology on X and Y be a subsetof X. Show that the 
olle
tion SY = fS \ Y : S 2 Sgis a sub-basis for the subspa
e topology on Y .15. Let Y be a subspa
e of X and U be a subset of Y . If U is open in Y and Y is open in X, show that U isopen in X.16. Let Y be a subspa
e of X and A be a subset of Y . Prove that the subspa
e topology on A relative to Yis the same as the subspa
e topology on A relative to X.17. Let Y be a subspa
e of X. Prove that a subset A of Y is 
losed in Y if and only if A = B \ Y for some
losed set B of X.18. Let Y be a subspa
e of X and U be a subset of Y . If U is 
losed in Y and Y is 
losed in X, show that Uis 
losed in X.19. If U is open in X and A is 
losed in X, show that U nA is open in X and A nU is 
losed in X. Hen
e, anopen set 
omplement out a 
losed set remains open, and a 
losed set 
omplement out an open set remains
losed.20. Let X;Y; Z be topologi
al spa
es. Prove the following:(a) (Constant fun
tion) If f : X ! Y maps all of X onto a single point y0 2 Y , then f is 
ontinuous.(b) (In
lusion) If A is a subspa
e of X, then the in
lusion fun
tion � : A ! X given by �(a) = a for alla 2 A is 
ontinuous. Furthermore, the subspa
e topology on A is the 
oarsest topology on A thatmakes the in
lusion map 
ontinuous.(
) (Composites) If f : X ! Y and g : Y ! Z are 
ontinuous, then g Æ f : X ! Z is also 
ontinuous.(d) (Domain restri
tion) If f : X ! Y is 
ontinuous and A is a subspa
e of X, then the fun
tionf jA : A! Y is 
ontinuous.(e) (Codomain restri
tion or expansion) Let f : X ! Y be 
ontinuous. If Z is a subspa
e of Y 
ontainingf(X), then the fun
tion g : X ! Z, g(x) = f(x) 8 x 2 X, obtained by restri
ting the 
odomain of f , is
ontinuous. If Z is a spa
e having Y as a subspa
e, then the fun
tion h : X ! Z, h(x) = f(x) 8 x 2 X,obtained by expanding the 
odomain of f , is 
ontinuous.21. Let X;Y; Z be topologi
al spa
es. Prove the following:(a) (In
lusion) If A is an open subspa
e of X, then the in
lusion fun
tion � : A! X given by �(a) = afor all a 2 A is an open map.(b) (Composites) If f : X ! Y and g : Y ! Z are open maps, then g Æ f : X ! Z is also an open map.(
) (Domain restri
tion) If f : X ! Y is an open map and A is an open subspa
e of X, then thefun
tion f jA : A! Y is an open map.



18 EXERCISES 33(d) (Codomain restri
tion or expansion) Let f : X ! Y be an open map. If Z is a subspa
e of Y
ontaining f(X), then the fun
tion g : X ! Z, g(x) = f(x) 8 x 2 X, obtained by restri
ting the
odomain of f , is an open map. If Z is a spa
e having Y as a subspa
e, then the fun
tion h : X ! Z,h(x) = f(x) 8 x 2 X, obtained by expanding the 
odomain of f , is an open map.22. Let X and Y be topologi
al spa
es, and let fUigi2I be a 
olle
tion of open sets in X su
h that X = Si2I Ui.Prove that a fun
tion f : X ! Y is 
ontinuous if and only if every f jUi : Ui ! Y is 
ontinuous. Supposethat C1; C2; :::; Cn is a �nite 
olle
tion of 
losed sets in X su
h that X = Snj=1 Cj . Show that a fun
tionf : X ! Y is 
ontinuous if and only if every f jCj : Cj ! Y is 
ontinuous.23. Let X = Si2I Ui, where ea
h Ui is an open set in X. For ea
h i 2 I, let fi : Ui ! Y be a fun
tion su
hthat fj(x) = fk(x) for all x 2 Ti2I Ui and j; k 2 I. De�ne a fun
tion h : X ! Y by h(x) = fi(x) forx 2 Ui. Show that h is 
ontinuous if and only if ea
h fi is 
ontinuous.24. Let X = Sni=1 Ci, where C1; C2; :::; Cn is a �nite 
olle
tion of 
losed sets in X. For ea
h i = 1; 2; :::; n, letfi : Ci ! Y be a fun
tion su
h that fj(x) = fk(x) for all x 2 Tni=1 Ci and 1 � j; k � n. De�ne a fun
tionh : X ! Y by h(x) = fi(x) for x 2 Ci. Show that h is 
ontinuous if and only if ea
h fi is 
ontinuous.25. If A is 
losed in X and B is 
losed in Y , prove that A � B is 
losed in X � Y . More generally, if Ci is
losed in Xi for ea
h i 2 I, show that Qi2I Ci is 
losed in Qi2I Xi in both the box and produ
t topologies.26. Let Bi be a basis for the topology on ea
h spa
e Xi. Prove that the 
olle
tionD = (Yi2I Bi : Bi 2 Bi for all i 2 I)forms a basis for the box topology on Qi2I Xi, and the 
olle
tionD0 = (Yi2I Bi : Bi 2 Bi for �nitely many i 2 I; Bj = Xj for all other j 2 I)forms a basis for the produ
t topology on Qi2I Xi.27. Let Ai be a subspa
e of Xi for ea
h i 2 I. Show that the box (respe
tively produ
t) topology onQi2I Ai isthe same as the topology thatQi2I Ai inherits as a subspa
e ofQi2I Xi endowed with the box (respe
tivelyprodu
t) topology.28. Let Xi be a topologi
al spa
e for ea
h i 2 I. Let k 2 I be �xed and for ea
h i 2 I, i 6= k, let bi 2 Xi begiven. De�ne the 
anoni
al in
lusion map �fbigi2I;i6=k : Xk !Qi2I Xi by�fbigi2I;i6=k : x 7! (yi)i2I ;where yk = x and yi = bi for all i 6= k. Let Qi2I Xi be endowed with either the box or produ
t topology.(a) Show that �fbigi2I;i6=k are 
ontinuous open maps for all 
hoi
es of k 2 I and fbigi2I;i6=k with bi 2 Xifor all i 6= k.(b) Show that the proje
tion maps �Xk :Qi2I Xi ! Xk are 
ontinuous open maps.(
) Prove that the produ
t topology is the 
oarsest topology onQi2I Xi relative to whi
h every proje
tionmap �Xk is 
ontinuous, in the sense that any topology on Qi2I Xi that makes every �Xk 
ontinuousmust 
ontain the produ
t topology as a subset.29. Let fi : Ai ! Xi fun
tions between topologi
al spa
es for ea
h i 2 I. De�ne the fun
tion Qi2I fi :Qi2I Ai !Qi2I Xi by Yi2I fi : (ai)i2I 7! (fi(ai))i2I :Show that Qi2I fi is a 
ontinuous fun
tion with respe
t to the usual box (respe
tively produ
t) topologieson Qi2I Ai and Qi2I Xi if and only if fi is 
ontinuous for all i 2 I.30. De�ne the diagnoal in
lusion map �X : X ! Qi2I Xi by �X(x) = (xi)i2I , where xi = x for all i 2 I.Prove that �X is 
ontinuous if Qi2I Xi is endowed with the produ
t topology.



18 EXERCISES 3431. Let fi : A! Xi be a fun
tion for ea
h i 2 I. De�ne the fun
tion f : A!Qi2I Xi byf(a) = (fi(a))i2I :Let Qi2I Xi be endowed with the produ
t topology. Show that f is 
ontinuous if and only if every fi is.32. Let A be a subset of a topologi
al spa
e X. Prove the following:(a) ClX(A) = X n IntX(X n A).(b) IntX(A) = X n ClX(X n A).(
) IntX(A) and BdX(A) are disjoint, and ClX(A) = IntX(A) [ BdX(A).(d) BdX(A) = ; if and only if A is both open and 
losed.33. Let Y be a subspa
e of X and A be a subset of Y . Show the following:(a) ClY (A) = ClX(A) \ Y .(b) IntY (A) = IntX(A) \ Y .34. Let X and Y be topologi
al spa
es, and let f : X ! Y be a fun
tion. Show that the following areequivalent:(a) f is 
ontinuous.(b) For every subset A of X, we have f(ClX(A)) � ClY (f(A)).(
) For every 
losed set B in Y , the set f�1(B) is 
losed in X.35. Let f : X ! Y be a bije
tive fun
tion between topologi
al spa
es. Show that the following are equivalent:(a) f is a homeomorphism.(b) A subset V of Y is open in Y if and only if f�1(V ) is open in X.(
) A subset V of Y is 
losed in Y if and only if f�1(V ) is 
losed in X.(d) For any subset A of X, f(ClX(A)) = ClY (f(A)).36. Let X be a topologi
al spa
e with basis B, and let A be a subset of X. Show that the following areequivalent for an element x 2 X:(a) x 2 A.(b) Every open set of X that 
ontains x interse
ts A nontrivially.(
) Every basis set in B that 
ontains x interse
ts A nontrivially.37. Let A be a subset of a topologi
al spa
e X. Prove that A = A[A0. Dedu
e that a subspa
e A is 
losed ifand only if A 
ontains all its limit points.38. Let fAigi2I be a family of subsets of X, and let A1; A2; :::; An be a �nite 
olle
tion within this family.Show that the following hold:(a) Si2I A0i � (Si2I Ai)0.(b) Ti2I A0i � (Ti2I Ai)0.(
) Snj=1Aj = Snj=1Aj .(d) Si2I Ai � Si2I Ai.(e) Ti2I Ai � Ti2I Ai.39. Let fAigi2I be a family of subsets of X, and let A1; A2; :::; An be a �nite 
olle
tion within this family.Show that the following hold:(a) Tnj=1AÆj = (Tnj=1Aj)Æ.(b) Ti2I AÆi � (Ti2I Ai)Æ.(
) Si2I AÆi � (Si2I Ai)Æ.



18 EXERCISES 3540. Let Ai be a subset of Xi for ea
h i 2 I. Show thatClQi2I Xi�Yi2I Ai� =Yi2I ClXi(Ai);if Qi2I Xi is endowed with the box topology or produ
t topology.41. Let X be a topologi
al spa
e, A be a set, and p : X ! A be a surje
tive fun
tion. Show that the quotienttopology on A indu
ed by p is the �nest topology on A relative to whi
h p is 
ontinuous, in the sense thatif =0 is any topology on A that makes p 
ontinuous, then =0 is 
ontained within the quotient topology asa subset.42. Suppose that A has the quotient topology with respe
t to the surje
tive mapping p : X ! A. Prove thata set C is A is 
losed if and only if p�1(C) is 
losed in X.43. Let X be a topologi
al spa
e and let f : X ! Y be a surje
tive fun
tion. Suppose that Y is given thequotient topology with respe
t to f . Show that a fun
tion g : Y ! Z from Y to a topologi
al spa
e Z is
ontinuous if and only if the 
omposite g Æ f is 
ontinuous.44. Show that the 
omposite of two quotient maps is again a quotient map.45. Let X and Y be topologi
al spa
es. Prove that X and Y are 
ompa
t if and only if X�Y is 
ompa
t withrespe
t to the produ
t topology.46. Show that [0; 1℄n is a 
ompa
t subset of Rn for all positive integers n.47. (Heine-Borel) Show that a subset of Rn is 
ompa
t if and only if it is 
losed and bounded.48. Let X and Y be topologi
al spa
es. Show the following:(a) If X is Hausdor�, then any subspa
e of X is Hausdor�.(b) X and Y are Hausdor� if and only if X � Y is Hausdor� with the produ
t topology.49. Let f : X ! Y be a 
ontinuous map. Suppose that X is 
ompa
t and Y is Hausdor�. Show that f is a
losed map. Hen
e dedu
e that a bije
tive 
ontinuous map from a 
ompa
t spa
e to a Hausdor� spa
e isa homeomorphism.50. Let f : X ! Y be a quotient map. Suppose that X is Hausdor�. Show that if f is a 
losed map andf�1(y) is 
ompa
t for any y 2 Y , then Y is Hausdor�.51. Let X;Y be topologi
al spa
es. Prove the following:(a) If p : X ! Y is a quotient map and Z is a lo
ally 
ompa
t Hausdor� spa
e, then p� idZ : X � Z !Y � Z is a quotient map.(b) If A is a 
ompa
t subspa
e of X and p : X ! X=A is the 
anoni
al quotient map, then for any spa
eZ, p� idZ : X � Z ! (X=A)� Z is a quotient map.52. Show that if p : A! B and q : C ! D are quotient maps and A;D are lo
ally 
ompa
t Hausdor� spa
es,then p� q : A�B ! C �D is a quotient map.53. Suppose that X is a G-spa
e. Prove that the 
anoni
al proje
tion X ! X=G is an open map.54. Let X be a 
ompa
t Hausdor� spa
e. Prove the following:(a) If G is a �nite group and X is a G-spa
e, then X=G is a 
ompa
t Hausdor� spa
e.(b) If A is 
losed subspa
e of X, then X=A is 
ompa
t Hausdor�.55. Show that if U is a 
onne
ted subspa
e of X and U � V � U , then V is 
onne
ted.56. Suppose X = Si2I Ai, where ea
h Ai is 
onne
ted, and Ti2I Ai 6= ;. Show that X is 
onne
ted.57. Show that every quotient of a 
onne
ted (resp. path-
onne
ted) spa
e is 
onne
ted (resp. path-
onne
ted).58. Show that every �nite produ
t of a family of 
onne
ted (resp. path-
onne
ted) spa
es is 
onne
ted (resp.path-
onne
ted).



18 EXERCISES 3659. For a spa
e Z, de�ne the fold map 5 : Z _ Z ! Z by 5 : (z; �) 7! z and 5 : (�; z) 7! z. Show that thefold map is 
ontinuous.60. Let X and Y be pointed spa
es with base points x0 and y0 respe
tively. Show that X_Y is homeomorphi
to the subspa
e (X � fy0g) [ (fx0g � Y ) of X � Y .61. Show that (X _ Y ) _ Z �= X _ (Y _ Z) for any pointed spa
es X; Y; Z.62. Show that (X ^ Y ) ^ Z �= X ^ (Y ^ Z) for any pointed spa
es X; Y; Z.63. Given three pointed spa
es X;Y; Z, show that (X _ Y ) ^ Z is homeomorphi
 to (X ^ Z) _ (Y ^ Z).64. Show that Sn ^ Sm �= Sn+m for any nonnegative integers n;m.65. Show that for pointed spa
es X;Y , we have 
n(X � Y ) �= 
n(X) � 
n(Y ) and for nonnegative integersn;m, we have 
n+m(X) �= 
n(
m(X)).66. Show that for nonnegative integers n;m, we have �n+m(X) �= �n(�m(X)), and for any pointed spa
esX;Y , we have Map�(�n(X); Y ) �= Map�(X;
n(Y )):67. Show that for a pointed spa
e X with base point x0, �(X) �= (X�I)=((X�f0g)[ (X �f1g)[ (fx0g�I)),where I = [0; 1℄.68. Let p0 be any point of Sn and let f : Sn ! Y . Show that the following are equivalent:(a) f is null-homotopi
.(b) f has a 
ontinuous extension to Dn+1, where we identify Sn as the boundary of Dn+1 in the naturalway.(
) f is null-homotopi
 relative to p0.Dedu
e that any 
ontinuous map from Sn to a 
ontra
tible spa
e has a 
ontinuous extension over Dn+1.69. Show that �n(X � Y ) �= �n(X)� �n(Y ) as sets for any n � 0.70. Show that �n(X) �= �0(
n(X)) �= �1(
n�1(X)) as sets for all n � 1.71. Let X be a pointed spa
e with base point x0. Show that �0(X) = [S0; X℄ and the equivalen
e 
lasses of Xunder path-
onne
tedness are equivalent as sets. In parti
ular any n-
onne
ted spa
e X is path-
onne
tedif and only if �0(X) is the one-point set.72. Show that a subspa
e A of X is a weak retra
t of X if and only if i� : [X;A℄ ! [A;A℄ is a surje
tivefun
tion, where i : A ,! X is the in
lusion map.73. Show that if (X;A) has the homotopy extension property with respe
t to A, then A is a weak retra
t (resp.weak deformation retra
t) of X if and only if A is a retra
t (resp. deformation retra
t) of X.74. Show that if (X � I; ((X �f0g)[ (X �f1g)[ (A� I))) has the homotopy extension property with respe
tto X and A is 
losed in X, then A is a deformation retra
t of X if and only if A is a strong deformationretra
t of X.75. If A is 
ontra
tible and the pair (X;A) satis�es the homotopy extension property with respe
t to X, showthan the 
anoni
al quotient X ! X=A is a homotopy equivalen
e.76. Let A � B � X be subspa
es. Suppose that the in
lusions A ,! B and B ,! X are 
o�brations. Showthat the in
lusion A ,! X is a 
o�bration.77. Show that the natural in
lusion Sn ,! Dn+1 is a 
o�bration.78. Let (X;A) be a pair of spa
es. Suppose that the in
lusion i : A ,! X is a 
o�bration. Show thatp = (idZ)i : Map(X;Z)!Map(A;Z) is a �bration for any spa
e Z.79. Let X be a pointed spa
e with base point x0. We say that the base point x0 is nondegenerate if thein
lusion fx0g ,! X is a 
o�bration. Let X be a pointed spa
e with nondegenerate basepoint x0. Provethat the evaluation map Map(X;Y )! Y de�ned by f 7! f(x0) is a �bration.



18 EXERCISES 3780. If p : E ! B is a �bration, show that pidZ : Map(Z;E)! Map(Z;B) is a �bration for any lo
ally 
ompa
tspa
e Z.81. Let p : ~X ! X and q : ~Y ! Y be 
overing proje
tions. Show that p� q : ~X � ~Y ! X � Y is a 
overingproje
tion.82. Let p : ~X ! X be a 
overing proje
tion, and let B � X. Let ~B = p�1(B) � ~X, and let p0 = pj ~B : ~B ! Bbe the 
overing proje
tion of B indu
ed by p. Suppose that ~X;X;B are all path-
onne
ted, and that themap �1(B)! �1(X) indu
ed by the in
lusion B ,! X is surje
tive. Show that ~B is also path-
onne
ted.83. Let X be path-
onne
ted and let Y be simply 
onne
ted. Suppose that there exist small 
ontra
tible openneighbourhoods of the base points x0; y0 of X; Y respe
tively, and that p : ( ~X; ~x0)! (X; x0) is a universal
overing proje
tion. Let Z = f(~x; y) 2 ~X � Y : (p(~x); y) 2 X _ Y gand let p0 = (p � idY )jZ : Z ! X _ Y . Show that p0 : Z = X̂ _ Y ! X _ Y is a universal 
overingproje
tion.84. (Borsuk-Ulam) Show that there does not exist any nonzero 
ontinuous map f : S2 ! S1 su
h hat f(�x) =�f(x) for all x 2 S2. Dedu
e that no subspa
e of R2 is homeomorphi
 to S2.85. Show that the map f : Sm+n = Sn^Sm ! Sm^Sn = Sn+m given by f : x^y 7! y^x has degree (�1)mn.
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