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1 DEFINITION OF CATEGORIES AND FUNCTORS. SOME CONSTRUCTIONS. 21 De�nition of Categories and Funtors. Some Construtions.De�nition 1.1. A ategory C onsists of a lass of objets, denoted by Ob(C), suh that for eahpair A;B of objets in Ob(C), there is a set (possibly empty), denoted by Mor(A;B), alled the setof morphisms from A to B. An morphism f 2 Mor(A;B) is written as f : A ! B. The followingproperties are also satis�ed.1. The sets of morphisms are pairwise disjoint, namely, if either A 6= X or B 6= Y for objetsA;X;B; Y 2 Ob(C), then Mor(A;B) \Mor(X;Y ) = ;.2. For all objets C 2 Ob(C), there is a morphism in Mor(C;C) alled the identity morphism onC, whih is denoted by idC .3. For all morphisms � : A! B and � : B ! C, we an assoiate a unique morphism � Æ� : A! C.The morphism � Æ � is alled the omposite of � and �.4. If � : A! B, � : B ! C and  : C ! D are morphisms, then assoiativity holds:( Æ �) Æ � =  Æ (� Æ �):5. For all morphisms � : A! B and � : B ! C, we have idB Æ� = � and � Æ idB = �.If � : A ! B, it is ustomary to say that the domain of � is A, and the odomain of � in B; eahmorphism has a unique domain and odomain sine all the sets Mor(A;B) are pairwise disjoint. In aategory C, a morphism � : A! B is known as an isomorphism if in C there is a morphism � : B ! Asuh that � Æ � = idA and � Æ � = idB (in whih ase � : B ! A is also an isomorphism). If there is anisomorphism � : A! B, then we say that the objets A;B are isomorphi.The identity morphism is always unique for any objet C beause if idC and id0C are two identitymorphisms on C, then by De�nition 1.1(5), we have idC Æ id0C = id0C sine idC is identity, and alsoidC Æ id0C = idC sine id0C is identity.Lemma 1.2. Let C be a ategory.1. For all objets C 2 Ob(C), the identity morphism idC : C ! C is an isomorphism.2. The omposite of two isomorphisms is an isomorphism.3. If � : A ! B is an isomorphism, then there is one and only one morphism � : B ! A in theategory C suh that � Æ � = idA and � Æ � = idB.Examples 1.3.1. Let Set denote the lass of all sets. For every A;B 2 Set, let Mor(A;B) be the set of all funtionsfrom A to B. Then Set is easily seen to be a ategory, in whih the omposition of morphismsis the same as the omposition of funtions. This requires a small tehnial proviso: funtionswith di�erent odomains must be distinguished even if their ations on a ommon domain areidential; a funtion f : A! B must be distinguished from the funtion f : A! C in whih C is astrit subset of B that ontains Im(f). In the ategory Set, the identity morphism on a set is theusual identity funtion, and a morphism f in Set is an isomorphism if and only if f is a bijetivefuntion.2. Let Grp denote the ategory whose objets are all groups, and for any groups G;H , Mor(G;H) isthe set of group homomorphisms from G to H (respeting the same tehnial proviso as in Example1). A morphism � in Grp is an isomorphism if and only if � is bijetive as a funtion. The ategoryAb of abelian groups is similarly de�ned.3. A partiular multipliative group G an also be made into a ategory. Let the ategory have onlyone objet, G itself, and let Mor(G;G) be the set of elements of G; omposition of morphisms a; bis simply the produt ab given by the binary operation in G. The group identity 1G is the identitymorphism on G. Every morphim is an isomorphism sine every element of G has a unique inverse.



1 DEFINITION OF CATEGORIES AND FUNCTORS. SOME CONSTRUCTIONS. 34. Let C be a ategory, Mor(C) be the lass of all morphisms of C, and for any pair of morphismsf : A ! B and g : C ! D of C, de�ne Mor(f; g) to be the set of all ordered pairs (�; �), where� : A! C and � : B ! D are morphisms of C suh that the following diagram ommutes.A f����! B�??y ??y�C ����!g DThen the lass Mor(C) together with the sets Mor(f; g) is a ategory under this de�nition.5. If C is a ategory, the ategory CZ is the ategory whose objets onsists of in�nite sequenesf(Cn)gn2Z of objets in C and whose morphisms are olletions ffn : Cn ! Dngn2Z of morphismsof C indexed by Z. We all CZ the ategory of C-objets graded by Z.De�nition 1.4. Let C be a atgeory. The opposite ategory Cop is de�ned to be the ategory whoseobjets are the objets of C, namely, the lass Ob(C), and in whih the following properties hold.1. For any pair of objets A;B 2 Ob(C), there is a bijetive orrespondene between the set ofmorphisms Mor(A;B) in C and the set of morphisms Mor(B;A) in Cop, suh that for all morphisms� : A! B in the ategory C, we have a unique morphism �op : B ! A in Cop.2. For all objets C, (idC)op = idC .3. For all morphisms � : A! B and � : B ! C in C, we have (� Æ �)op = �op Æ �op in Cop.In other words, the opposite ategory Cop is onstruted from C by reversing the diretion of the mor-phisms and ompositions.Example 1.5. Setop is the ategory of sets and mappings, but with mappings written on the right,namely, if f : S ! T is a funtion and x 2 S, then the image of x under f is written as xf . Compositionof mappings is done from left to right, so that if g : T ! U is another mapping, then f Æ g : S ! U isthe mapping the sends x to (xf)g = x(f Æ g).Metatheorem 1.6. A theorem whih applies to all ategories remain true if all the morphisms andompositions mentioned in the theorem have their diretions reversed.De�nitions and results that are obtained from eah other by reversing the diretions of the morphismsand ompositions are said to be dual of eah other. A de�nition or result is said to be self-dual if itremains unhanged when the diretion of morphisms and ompositions are reversed. For example, theonept of an isomorphism is a self-dual onept.De�nition 1.7. Let C be a ategory and fAigi2I be a family of objets in C indexed by a nonempty setI . Suppose that there is an objet P 2 Ob(C) and a family of morphisms f�i : P ! Aigi2I suh thatfor any objet C 2 Ob(C) and any family of morphisms f'i : C ! Aigi2I , there is a unique morphism' : C ! P suh that �i Æ ' = 'i for all i 2 I . -���	���R9 ! 'AiC P'i �iThen we say that fP; f�igi2Ig is a produt in the ategory C. Casually, we may say that P is a produtof fAigi2I and denote it by Qi2I Ai.Dualizing De�nition 1.7 yields the following.



1 DEFINITION OF CATEGORIES AND FUNCTORS. SOME CONSTRUCTIONS. 4De�nition 1.8. Let C be a ategory and fAigi2I be a family of objets in C indexed by a nonemptyset I . Suppose that there is an objet S 2 Ob(C) and a family of morphisms f�i : Ai ! Sgi2I suh thatfor any objet C 2 Ob(C) and any family of morphisms f'i : Ai ! Cgi2I , there is a unique morphism' : S ! C suh that ' Æ �i = 'i for all i 2 I . -�������I 9 ! 'AiS C�i 'iThen we say that fS; f�igi2Ig is a oprodut or sum in the ategory C. Casually, we may say that Sis a oprodut of fAigi2I and denote it by `i2I Ai.Theorem 1.9. Let C be a ategory and fAigi2I be a family of objets in C indexed by a nonempty setI. Suppose that fP; f�igi2Ig and fQ; f�0igi2Ig are produts of fAigi2I in the ategory C. Then P andQ are isomorphi.Similarly, dualizing Theorem 1.9 yields the following result.Theorem 1.10. Let C be a ategory and fAigi2I be a family of objets in C indexed by a nonempty setI. Suppose that fS; f�igi2Ig and fT; f�0igi2Ig are oproduts of fAigi2I in the ategory C. Then S andT are isomorphi.De�nition 1.11. Let C;D be ategories. A ovariant funtor F : C ! D is a funtion F that mapsobjets in C to objets in D, and morphisms in C to morphisms in D, suh that the following are satis�ed:Fun1: F (idX) = idF (X) for any objet X 2 C;Fun2: If �; � are morphisms in C for whih the omposite � Æ � is well-de�ned, then the ompositeF (�) Æ F (�) is well-de�ned in D, and F (� Æ �) = F (�) Æ F (�).A ontravariant funtor F : C ! D is a funtion F that maps objets in C to objets in D, andmorphisms in C to morphisms in D suh that (1) above is satis�ed, and in plae of (2), we have:Fun2': If �; � are morphisms in C for whih the omposite � Æ � is well-de�ned, then the ompositeF (�) Æ F (�) is well-de�ned in D, and F (� Æ �) = F (�) Æ F (�).Examples 1.12.1. For any ategory C, there is a ovariant funtor C ! C that sends every objet and morphism toitself. This is known as the identity funtor on C and is denoted by IdC .2. If D is a subategory of C (a sublass of the lass of objets and morphisms of C that formsategory), there is a ovariant funtor D ! C known as the inlusion funtor de�ned in the obviousway.3. If C is a ategory, there is a ontravariant funtor C ! Cop that sends every objet X 2 C to Xopand every morphism f in C to fop. This is known as the opposite funtor on C.4. There is a ovariant funtor Grp ! Ab that sends every group G to the quotient group G=G0,where G0 is the ommutator subgroup of G; G0 is the normal subgroup of G generated by all theelements of the form xyx�1y�1, where x; y 2 G.5. Let C be a ategory and let an objet A 2 C be �xed. There is a ovariant funtorMor(A;�) : C ! Setthat sends eah objet X 2 C to the morphism set Mor(A;X) and eah morphism f : X ! Y in Cto the set funtion Mor(A; f) : Mor(A;X)! Mor(A; Y ) de�ned by Mor(A; f) : � 7! f Æ �.



1 DEFINITION OF CATEGORIES AND FUNCTORS. SOME CONSTRUCTIONS. 56. Let C be a ategory and let an objet A 2 C be �xed. There is a ontravariant funtorMor(�; A) : C ! Setthat sends eah objet X 2 C to the morphism set Mor(X;A) and eah morphism f : Y ! X in Cto the set funtion Mor(f;A) : Mor(X;A)! Mor(Y;A) de�ned by Mor(f;A) : � 7! � Æ f .The omposite of two funtors is again a funtor.De�nition 1.13. Let F;G : C ! D be ovariant funtors. A natural transformation from F to G isa olletion � = f�X : F (X)! G(X)gX2C of morphisms in D indexed by the objets of C suh that forall morphisms f : X ! Y in C, we have the following ommutative diagram:F (X) �X����! G(X)F (f)??y ??yG(f)F (Y ) ����!�Y G(Y )If F;G : C ! D are ontravariant funtors, a natural transformation from F to G is a olletion� = f�X : F (X) ! G(X)gX2C of morphisms in D indexed by the objets of C suh that for allmorphisms f : Y ! X in C, we have same diagram as above.If �X is an isomorphism for all objets X 2 C, we all � a natural isomorphism.The omposite of two natural transformations is again a natural transformation.De�nition 1.14. A onrete ategory is a ategory C with a funtor � : C ! Set.The ategory of groups, equipped with the funtion that assigns to eah group its underlying set in theusual sense, is a onrete ategory. Similarly, the ategories of abelian groups and of partially-orderedsets, with the obvious underlying sets, are onrete ategories. Sine in the great majority of examplesof onrete ategories, the funtor � assigns to an objet its underlying set in the usual sense (suh as inexamples above), we shall denote both the objet and its underlying set by the same symbol and leaveout any expliit referene to the funtor �.De�nition 1.15. Let F be an objet in a onrete ategory C, X be a nonempty set, and � : X ! F bea funtion of sets. We say that F , or more exatly (F; �), is free on X if for any objet C 2 Ob(C) andany set funtion f : X ! C, there exists a unique morphism  : F ! C in the ategory C suh that Æ � = f as funtions of sets. -�������I 9 !  XF C� fIn the onrete ategory C, an objet that is free on some set is alled a free objet.Lemma 1.16. In a onrete ategory C that ontains objets whih are sets with more than one element,if (F; �) is a free on a set X, then the set funtion � : X ! F is injetive.Proof. Suppose that �(x1) = �(x2) with x1 6= x2. Choose an objet C whih is set ontaining at leasttwo distint elements, say 1 and 2. Let f : X ! C be any set funtion suh that f(x1) = 1 andf(x2) = 2. Sine F is free on X , we have a unique morphism  : F ! C in the ategory C suh that Æ � = f as funtions of sets. From the fat that  (�(x1)) =  (�(x2)), we dedue that f(x1) = f(x2),whene 1 = 2, whih ontradits our earlier assumptions.Theorem 1.17. If C is a onrete ategory in whih (F1; �1) is free on X1 and (F2; �2) free on X2 withjX1j = jX2j, then F1 and F2 are isomorphi.



2 GROUP ACTIONS ON SETS 62 Group Ations on SetsDe�nition 2.1. Let X be a nonempty set and G be a group. Let � : G �X ! X be a funtion andwrite an image �(g; x) simply as gx. We all � a group ation if 1Gx = x and (gh)x = g(hx) for allg; h 2 G and x 2 X . If there is a group ation � : G �X ! X , we say that X is a G-set, and that Gats on the set X .Examples 2.2. Let G be a group.1. G an be made to at on itself. The map (g; x) 7! gx for g; x 2 G is easily seen to be a groupation. We say that G ats on G by left multipliation.2. Similarly, the map (g; x) 7! xg�1 for g; x 2 G is also a group ation. We say that G ats on G byright multipliation.3. The map (g; x) 7! gxg�1 for g; x 2 G is yet another group ation of G on itself. We say that Gats on G by onjugation.4. The group of permutations on a set X , Sym(X), ats on X in the natural manner via the map(�; x) 7! �(x), for � 2 SX and x 2 X . We say that Sym(X) ats on X anonially.Proposition 2.3. If X is a G-set with group ation � : G � X ! X, then there is a group homo-morphism  : G ! Sym(X) given by  (g) : x 7! gx = �(g; x). Conversely, if we an �nd a grouphomomorphism � : G ! Sym(X), then the map (g; x) 7! �(g)(x) is a group ation that makes X intoa G-set. These proesses are inverse to one another, so that we have a bijetive orrespondene betweenthe G-set strutures that an be de�ned on X and the group homomorphisms of G into Sym(X).If  : G ! Sym(X) is a group homomorphism of G into Sym(X), then we say that G ats on Xvia  , and the group ation we are referring to will be that whih arises from the abovementionedorrespondene, namely (g; x) 7!  (g)(x).De�nition 2.4. Let X be a G-set and x 2 X . The orbit of x in G, denoted by OG(x) or by Gx, isde�ned by OG(x) = fgx : g 2 Gg:Proposition 2.5. If X is a G-set, then the orbits of X form a partition of X.In partiular, this would mean that if G ats on X , then the relation � on X de�ned byx � x0 , gx = x0 for some g 2 Gis an equivalene relation on X , and the equivalene lasses of X under � are simply the orbits OG(x).If X is a G-set, the olletion of orbits OG(x) is denoted by X=G. Thus X=G is the olletion ofequivalene lasses of X under the relation � de�ned above.De�nition 2.6. Let X be a G-set and x 2 X . The stabilizer or isotropy group of x in G, denotedby Gx, is de�ned by Gx = fg 2 G : gx = xg:Example 2.7. Let G be a group. Consider G ating on itself by onjugation. The orbit of x 2 G is theonjugay lass ClG(x) = fgxg�1 : g 2 Ggand the stabilizer of x 2 G is the entralizerCG(x) = fg 2 G : gxg�1 = xg:Proposition 2.8. Let X be a G-set and let g 2 G, x 2 X.1. Gx is a subgroup of G.2. Ggx = gGxg�1.3. There is a bijetive orrespondene between the elements of OG(x) and the left osets of Gx in G.



3 BASIC DEFINITIONS IN TOPOLOGY 73 Basi De�nitions in TopologyDe�nition 3.1. A topology on a set X is a olletion = of subsets of X having the following properties:1. ; and X are in =.2. If fUigi2I are a olletion of sets in =, then Si2I Ui is in =.3. If fUigni=1 is a �nite olletion of sets in =, then Tni=1 Ui is in =.A set X for whih a topology = has been spei�ed is known as a topologial spae, denoted by (X;=).We often leave out mention of = is there is no onfusion. If X is a topologial spae with topology =and U 2 =, we say that U is an open set of X , and that X n U is a losed set of X , with respet tothe topology =.Examples 3.2.1. The disrete topology on a set X is the topology that onsists of all subsets of X .2. The indisrete or trivial topology on X is the topology that onsists only of ; and X .3. The �nite omplement topology on X is the olletion U of subsets of X suh that X n U iseither �nite or the whole of X .De�nition 3.3. Suppose that = and =0 are two topologies on a set X . If = � =0, we say that = isoarser than =0, and that =0 is �ner than =.De�nition 3.4. If X is a set, a basis for a topology on X is a olletion B of subsets of X , whosemembers are alled basi sets, suh that:1. ; 2 B.2. SB2B B = X .3. If C1; C2; :::; Cn is a �nite olletion of elements of B, then there is a olletion fBigi2I of elementsof B suh that [i2I Bi = n\j=1Cj :Let B be a basis for a topology on X . Let = be the olletion of all arbitrary unions of elements of B.Then (X;=) is a topologial spae.De�nition 3.5. The topology = onstruted from a basis B by taking arbitrary union of basi sets isknown as the topology generated by B, and the set B is known as a basis for =.Example 3.6. Let M be a nonempty set. Suppose there is a funtion dM :M �M ! R suh that:1. dM (x; y) � 0 for all x; y 2M , equality holding if and only if x = y;2. dM (x; y) = dM (y; x) for all x; y 2M ;3. dM (x; z) � dM (x; y) + dM (y; z) for all x; y; z 2M .Then we all (M; dM ) ametri spae. The olletion of sets of the form B�x = fy 2M : dM (x; y) < �gfor x 2M and � > 0 forms a basis for a topology onM known as the topology indued by the metri.De�nition 3.7. If X is a set, a sub-basis for a topology on X is a olletion S of subsets of X whosemembers are alled sub-basi sets suh that:1. ; 2 S.2. SS2S S = X .



3 BASIC DEFINITIONS IN TOPOLOGY 8Obviously, a sub-basis for a topology on X an be extended to a basis by olleting all the intersetionsof �nite olletions of sub-basi sets.De�nition 3.8. The topology = onstruted from a sub-basis S by �rst extending S to a basis B byolleting all the intersetions of �nite olletions of sub-basi sets, and then generating = from B, isknown as the topology generated by S, and the set S is known as a sub-basis for =.De�nition 3.9. Let X and Y be topologial spaes. A funtion f : X ! Y is said to be ontinuousif for eah open set V in Y , the set f�1(V ) is open in X .Example 3.10. In lassial metri spae theory, a funtion f : M ! N between metri spaes is saidto be ontinuous if given any �xed point x 2 M and any � > 0, there exists some Æ > 0 suh thatdN (f(x); f(y)) < � whenever dM (x; y) < Æ. A funtion between metri spaes is ontinuous in thisde�nition if and only if it is ontinuous in the sense of De�nition 3.9.De�nition 3.11. A bijetive funtion f : X ! Y between topologial spaes is said to be a homeo-morphism if both f and f�1 are ontinuous funtions. If X is homeomorphi to Y we denote it byX �= Y .De�nition 3.12. A funtion f : X ! Y between topologial spaes is said to be an open map ifwhenever U is an open set in X , f(U) is an open set in Y .In other words, an open map sends open sets to open sets. In partiular, a homeomorphism is a bijetiveontinuous open map.From now on, the word \map" is always assumed to mean \ontinuous funtion".De�nition 3.13. Let (X;=) be a topologial spae. If Y is a subset of X , the olletion=Y = fU \ Y : U 2 =gis a topology on Y known as the subspae or indued topology. We all Y a subspae of X .Example 3.14. The open sets of [0; 1℄ as a subspae of R are those of the form (a; b), where 0 � a; b � 1,or of the form [0; a) or (a; 1℄ where 0 � a � 1, in addition to the set [0; 1℄ itself.De�nition 3.15. Let fXigi2I be a olletion of topologial spaes. The box topology on Qi2I Xi isthe topology having as basis all the elements of the form Qi2I Ui, where Ui is an open set in Xi for eahi 2 I .For eah j 2 I , let �j :Qi2I Xi ! Xj be the map that sends eah element (xi)i2I , where xi 2 Xi for alli, to the element xj 2 Xj . We all �j the projetion map at oordinate j.De�nition 3.16. Let fXigi2I be a olletion of topologial spaes. For eah i 2 I , let Si denote theolletion Si = f��1i (Ui) : Ui is open in Xig;and let S = [i2I Si:Then the olletion S forms a sub-basis for a topology on Qi2I Xi known as the produt topology.The box and produt topologies are generalizations for the topology on X � Y . For the ase where Iis a �nite set, the box and produt topologies on Qi2I Xi oinide. If I is an in�nite set, then the boxtopology is in general �ner than the produt topology.The produt topology on Qi2I Xi has as basis all sets of the form Qi2I Ui, where Ui is open in Xi forall i 2 I and Ui = Xi exept for at most �nitely many i.If Qi2I Xi is given the produt topology, the anonial projetions �j : Qi2I Xi ! Xj are ontinuousfor eah j 2 I .Let � : X !Qi2I X be de�ned by � : x 7! (xi)i2I , where xi = x for all i 2 I . We all � the diagonalmap, and � is ontinuous if Qi2I X is given the produt topology.



3 BASIC DEFINITIONS IN TOPOLOGY 9Proposition 3.17. Let fXigi2I be a olletion of topologial spaes indexed by a nonempty set I, and letQi2I Xi be given the produt topology. Then for any topologial spae Y and any olletion of ontinuousmaps f'i : Y ! Xigi2I , there exists a unique ontinuous map ' : Y ! Qi2I Xi suh that �j Æ ' = 'jfor eah j 2 I, where the �j 's are the anonial projetions. Hene, Qi2I Xi with the produt topology isa produt of fXigi2I in the ategory Top of topologial spaes and ontinuous maps.-���	���R9 ! 'XjY Qi2I Xi'j �jDe�nition 3.18. Let X be a topologial spae, and let A be a subset of X .1. The losure of A in X , denoted by ClX(A) (or A if there is no ambiguity), is the intersetion ofall losed sets of X ontaining A.2. The interior of A in X , denoted by IntX(A) (or AÆ if there is no ambiguity), is the union of allopen sets of X that are ontained within A.3. The boundary of A in X , denoted by BdX(A) (or �A if there is no ambiguity), is de�ned byBdX(A) = ClX(A) \ ClX(X nA):Obviously, A is a losed set and AÆ is an open set, implying that A = ClX (A) if and only if A is losedin X , and A = IntX(A) if and only if A is open in X . Furthermore,AÆ � A � A:Example 3.19. Let A = [0; 1) � R. Then ClR(A) = [0; 1℄, IntR(A) = (0; 1), and BdR(A) = f0; 1g.De�nition 3.20. Let A be a subset of a topologial spae X . We say that x 2 X is a limit point oran aumulation point of A if for every open set U of X ontaining x, there is some y 2 A with y 6= xand y 2 U . We denote the set of limit points of A in X by LX(A) (or by A0 if there is no ambiguity).Note that elements of A are not neessarily limit points of A. A subspae is losed if and only if itontains all its limit points.Example 3.21. Let A = [0; 1) [ f2g. Then LR(A) = [0; 1℄.De�nition 3.22. Let X and Y be topologial spaes, and let p : X ! Y be a surjetive funtion. Wesay that p is a quotient map if every subset V of Y is open in Y if and only if p�1(V ) is open in X .A quotient map between topologial spaes is neessarily ontinuous.Let p : X ! A is a surjetive funtion, and let = onsist of those subsets V of A for whih p�1(V ) isopen in X . Then it is straightforward to hek that = is a topology on A. This is alled the quotienttopology on A indued by p : X ! A, and is the unique topology = on A relative to whih p is aquotient map.De�nition 3.23. Let R be an equivalene relation on a spae X . Let p : X ! X=R be the anonialsurjetion that maps eah element of X to its equivalene lass. Under the quotient topology induedon X=R by p, the spae X=R is alled a quotient spae or identi�ation spae of X .If A is a subspae of X , the spae X=A is de�ned to be the quotient spae of X obtained by identifyingA to a single point.



4 COMPACT, LOCALLY COMPACT, HAUSDORFF, CONNECTED SPACES 104 Compat, Loally Compat, Hausdor�, Conneted SpaesLet X be a subspae of a topologial spae Y . A overing of X in Y is a olletion fUigi2I of subsetsof Y suh that X � Si2I Ui. We all a overing fUigi2I of X in Y an open overing in Y if every setUi is open in Y .If every Ui is a subset of X and X = Si2I Ui, we simply say that fUigi2I is a overing of X .De�nition 4.1. A topologial spae X is said to be ompat if given any open overing fUig of X ,there exists a �nite olletion U1; U2; :::; Un of sets drawn from fUig suh that X = Snj=1 Uj . We saythat the open overing fUig has a �nite subover.Proposition 4.2. The notion of ompatness of X is independent of the spae that ontains X. Morepreisely, X is ompat if and only if for all Y � X in whih X is given the subspae topology of Y , anyopen overing of X in Y admits a �nite subover.Proposition 4.3. The ontinuous image of a ompat spae is ompat.Proposition 4.4. A losed subspae of a ompat spae is ompat.Proof. Let X be a ompat topologial spae and let S be a losed subspae of X . Let fUigi2I be anopen over of S in X . Sine X = (Si2I Ui)[ (X nS) and (X nS) is open in X , it follows that there is a�nite olletion U1; U2; :::; Un of sets drawn from fUigi2I suh that X = (Snj=1 Uj) [ (X n S). But thenthis would mean that fU1; U2; :::; Ung is a �nite subover of S in X .De�nition 4.5. Let x be a point in a topologial spae X . We say that U is a neighbourhood of x ifthere is some open set V of X suh that V � U and x 2 V .De�nition 4.6. A spae X is said to be loally ompat if every point in X has a ompat neigh-bourhood.Clearly, any ompat spae is loally ompat.Example 4.7. Rn is loally ompat but not ompat. The Heine-Borel Theorem states that any losedbounded subset of Rn is ompat.De�nition 4.8. A topologial spae X is said to be Hausdor� if given any distint points u; v 2 X ,there are disjoint open sets U; V of X suh that u 2 U and v 2 V .Proposition 4.9. Every ompat subspae of a Hausdro� spae is losed.Proposition 4.10. Let X be a loally ompat Hausdor� spae. Given a point x 2 X and a neighborhoodU of x, there is an open set V suh that x 2 V � V � U and V is ompat.Let S0 = f0; 1g denote the topologial spae onsisting of two distint points and given the disretetopology.De�nition 4.11. A topologial spae X is said to be disonneted if there is a ontinuous surjetivemap X ! S0. Suh a map is termed a disonnetion of X .If f : X ! S0 is a disonnetion of X , then X = f�1(0) t f�1(1) desribes a partition of X into twodisjoint subsets, eah of whih are both open and losed.De�nition 4.12. A topologial spae X is said to be onneted if it is no disonnetion.Proposition 4.13. The ontinuous image of a onneted spae is onneted.De�nition 4.14. A topologial spae X is said to be path-onneted for any points u; v 2 X , thereis a ontinuous map f : [0; 1℄! X suh that f(0) = u and f(1) = v.Proposition 4.15. The ontinuous image of a path-onneted spae is path-onneted.Proposition 4.16. A path-onneted spae is onneted.Example 4.17. The subspae Y = f(x; y) 2 R2 : y = sin(1=x); x > 0g [ f(0; 0)g of R2 is onnetedbut not path-onneted.



5 SOME IMPORTANT TOPOLOGICAL CONSTRUCTIONS AND EXAMPLES 115 Some Important Topologial Construtions and ExamplesDe�nition 5.1. Given a olletion fXigi2I of topologial spaes, the disjoint union Fi2I Xi is theunion of the spaes Xi regarded as pairwise disjoint sets, with topology given by open sets of the formSi2I Ui, where Ui is open in Xi.The anonial inlusions �j : Xj ! Fi2I Xi are ontinuous for all j 2 I .Proposition 5.2. Let fXigi2I be olletion of topologial spaes. If f i : Xi ! Y gi2I is a olletionof ontinuous maps, then there is a unique ontinuous map  : Fi2I Xi ! Y suh that  Æ �j =  j forall j 2 I, where �j : Xj ! Fi2I Xi is the anonial inlusion. Hene, the disjoint union Fi2I Xi is aoprodut of fXigi2I in the ategory Top of topologial spaes.-�������I 9 !  Xj YFi2I Xi�j  jDe�nition 5.3. A pair of spaes (X;Y ) is a spae X together with a subspae Y . Given pairs (X;Y )and (A;B) of spaes, a map of pairs f : (X;Y )! (A;B) is a ontinuous map f : X ! A that satis�esf(Y ) � B. We all f a homeomorphism of pairs if f is a homeomorphism and the inverse map f�1is a map of pairs (A;B)! (X;Y ).Let (X;Y ) and (A;B) be pairs of spaes, and let f : Y ! B be a ontinuous map. De�ne an equivalenerelation � on the disjoint union X t A by identifying y with f(y) for all y 2 Y . The spae (X [ A)= �is denoted by A [f X and is referred to as an adjuntion spae.If (X;Y ) is a pair of spaes in whih Y = f�g is a singleton set, we denote it simply by (X; �) andsay that X is a pointed spae with basepoint �. A map of pairs between pointed spaes is alled apointed map. Thus a pointed map sends the basepoint of one spae to that of the other. We oftendenote (X; �) simply by X if there is no danger of onfusion.De�nition 5.4. If X;Y are pointed spaes with base points x0; y0 respetively, the wedge X _Y is theadjuntion spae Y [f X where f : fx0g ! fy0g. In other words, X _ Y is obtained from the disjointunion of X and Y by identifying the base points of X;Y .For a spae Z, de�ne the fold map 5 : Z _Z ! Z by 5 : (z; �) 7! z and 5 : (�; z) 7! z. The fold mapis ontinuous.De�nition 5.5. If X;Y are pointed spaes, the smash X ^Y is de�ned to be (X �Y )=(X _Y ), wherewe identify X _ Y as a subspae of X � Y .Examples 5.6.1. For a spae X with subspae A, the quotient spae X=A is often regarded as a pointed spae withbasepoint being the equivalene lass ontaining the elements of A.2. For all nonnegative integers n, the n-sphere is denoted by Sn and is the subspae of Rn+1 onsistingof all points of distane 1 from the origin. Sn is often regarded as a pointed spae with basepointbeing the north pole. We have Sn �= Dn=�Dn for all n � 1, where Dn = [0; 1℄n � Rn . We oftenidentify Sn�1 as the boundary of Dn, and write Sn �= Dn=Sn�1 for n � 1.3. The real projetive spae RP n (n � 0) is de�ned to be the quotient spae of Rn+1 nf0g under theequivalene relation � de�ned by x � y , x = ry for some real number r. RP n is homeomorphito the quotient spae of Sn under the equivalene relation R de�ned by xRy , x = �y.



5 SOME IMPORTANT TOPOLOGICAL CONSTRUCTIONS AND EXAMPLES 12Let X and Y be topologial spaes. Themapping spae Map(X;Y ) is the spae of all ontinuous mapsfrom X to Y under the ompat-open topology de�ned as follows:Let K be a ompat set in X and U be an open set in Y . Let WK;U = ff 2 Map(X;Y ) : f(K) � Ug.Then all the elements WK;U as K varies over the ompat sets in X and U varies over the open sets inY form a sub-basis for the ompat-open topology on Map(X;Y ). If X and Y are pointed spaes, thenthe pointed mapping spae Map�(X;Y ), also ommonly denoted as Y X , is the subspae of Map(X;Y )onsisting of all pointed maps f : X ! Y .De�nition 5.7. Let f : A ! X and g : Y ! B be ontinuous maps. Then the funtion gf :Map(X;Y ) ! Map(A;B) is de�ned by gf (�) = g Æ � Æ f . If f and g are pointed ontinuous maps,then they indue a funtion gf : Map�(X;Y )! Map�(A;B) also de�ned as above.Proposition 5.8. Let f : A ! X and g : Y ! B be ontinuous maps (or pointed ontinuous maps).Then the funtion gf : Map(X;Y )! Map(A;B) (resp. gf : Y X ! BA) is a ontinuous map.Remark 5.9. If X and Y are pointed spaes, then Map(X;Y ) and Map�(X;Y ) are also pointed spaeswith the base point being the onstant map X ! fy0g, where y0 is the base point of Y . If g : Y ! Bis a pointed ontinuous map, then for any ontinous map f : A ! X , the indued funtion gf is also apointed ontinuous map between the mapping spaes.Let Top� denote the ategory of pointed topologial sapes. Then both Map(X;�) and Map�(X;�)are ovariant funtors on Top and Top� respetively for any spae X (respetively pointed spae X),and both Map(�; X) and Map�(�; X) are ontravariant funtors on Top and Top� respetively for anyspae X (respetively pointed spae X).Proposition 5.10. Let X, Y and Z be topologial spaes.1. If Z is a subspae of Y , then Map(X;Z) is a subspae of Map(X;Y ).2. If X, Y and Z are pointed spaes with Z being a subspae of Y (sharing the same base point asY ), then Map�(X;Z) is a subspae of Map�(X;Y ).De�nition 5.11. Let X and Y be topologial spaes. The evaluation map e : Map(X;Y ) �X ! Yis de�ned by e : (f; x) 7! f(x). If X and Y are pointed spaes, the restrition of e to Map�(X;Y ) givesthe evaluation map e : Map�(X;Y ) �X ! Y , with the property that if f is the onstant pointed mapor x is the base point of X , then e(f; x) = y0, where y0 is the base point of Y .Remark 5.12. It follows from the de�nition that for pointed spaes X and Y ,e(Map�(X;Y ) _X) = fy0g;and so e indues the evaluation map e : Map�(X;Y ) ^X ! Y .Proposition 5.13. Let X and Y be pointed spaes. If X is loally ompat Hausdor�, then the evaluationmaps e : Map(X;Y )�X ! Y and e : Map�(X;Y ) ^X ! Y are ontinuous.Proposition 5.14. Let X, Y and Z be pointed spaes with X and Y Hasudor�. Then1. Map(X t Y; Z) �= Map(X;Z)�Map(Y; Z).2. Map�(X _ Y; Z) �= Map�(X;Z)�Map�(Y; Z).Proposition 5.15. Let X, Y and Z be pointed spaes with X Hausdor�. Then1. Map(X;Y � Z) �= Map(X;Y )�Map(X;Z).2. Map�(X;Y � Z) �= Map�(X;Y )�Map�(X;Z).Let X , Y and Z be topologial spaes, and let � : X �Y ! Z be a ontinuous map. For a given x 2 X ,we de�ne a funtion �x : Y ! Z by �x(y) = �(x; y). Then the funtion �x is ontinuous, and thefuntion �(�) : X ! Map(Y; Z) de�ned by �(�)(x) = �x is also ontinuous.



5 SOME IMPORTANT TOPOLOGICAL CONSTRUCTIONS AND EXAMPLES 13De�nition 5.16. Let X , Y and Z be topologial spaes. The assoiation map is the funtion� : Map(X � Y; Z)! Map(X;Map(Y; Z))de�ned by [�(�)(x)℄(y) = �(x; y) for x 2 X , y 2 Y and � : X � Y ! Z.We onsider the pointed ase. Let X , Y and Z be pointed spaes and let p : X � Y ! X ^ Y bethe quotient map. Then we have the ontinuous map (idZ)p : Map�(X ^ Y ! Z) ! Map�(X � Y; Z).Clearly � maps the image of (idZ)p into the subspae Map�(X;Map�(Y; Z)) of Map(X;Map(Y; Z)).Thus � indues the redued assoiation map � : Map�(X ^ Y; Z) ! Map�(X;Map�(Y; Z)) with[�(�)(x)℄(y) = �(x ^ y) for x 2 X , y 2 Y and � : X ^ Y ! Z. In fat, � is the ompositeZX^Y (idZ)p����! ZX�Y �jZX�Y�����! (ZY )XProposition 5.17. If X is Hausdor�, the assoiation map � : Map(X � Y; Z) ! Map(X;Map(Y; Z))is ontinuous, and therefore the redued assoiation map � : Map�(X ^ Y; Z) ! Map�(X;Map�(Y; Z))is also ontinuous.Proposition 5.18. Let X, Y and Z be topologial spaes. Then � and � are injetive. If Y is loallyompat Hausdor�, then � and � are bijetive. If X and Y are loally ompat Hausdor�, then � is ahomeomorphism. If X and Y are ompat Hausdor�, then � is a homeomorphism.Examples 5.19.1. For a pointed spae Y , de�ne 
(Y ) = Map�(S1; Y ). In general, for all nonnegative integersn, de�ne 
n(Y ) = Map�(Sn; Y ). 
n(Y ) is termed the n-fold loop spae of Y . For pointedspaes X;Y , we have 
n(X � Y ) �= 
n(X) � 
n(Y ) and for nonnegative integers n;m, we have
n+m(X) �= 
n(
m(X)).2. For a pointed spae X , de�ne �(X) = S1 ^ X . In general, for all nonnegative integers n, de�ne�n(X) = Sn ^X . �n(X) is termed the n-fold suspension of X . For nonnegative integers n;m,we have �n+m(X) �= �n(�m(X)). For any pointed spaes X;Y , we haveMap�(�n(X); Y ) �= Map�(X;
n(Y )):Both the loop 
 and suspension � are funtors on the ategory Top� of pointed topologial spaes.



6 INTRODUCTION TO HOMOTOPY 146 Introdution to HomotopyDe�nition 6.1. Let f; g : X ! Y be two maps. We say that f is homotopi to g if we an �nd amap F : X � I ! Y suh that F (x; 0) = f(x) and F (x; 1) = g(x) for all x 2 X . The map F is alled ahomotopy from f to g. We write f ' g, or F : f ' g. A map f : X ! Y is alled null-homotopiif f is homotopi to a onstant map from X to Y .De�nition 6.2. Let A be a subspae of X and suppose f; g : X ! Y are maps. We say that f ishomotopi to g relative to A if we an �nd a map F : X � I ! Y suh that F is a homotopy from fto g and F (a; t) = f(a) for all a 2 A, t 2 I . We write f ' g relA or F : f ' g relA. We say that f isnull-homotopi relative to A if f is homotopi to a onstant map from X to Y relative to A.If f ' g relA, then we have g(a) = f(a) for all a 2 A. Hene the maps f and g agree on the subspae A.If in addition, g is a onstant map, then f jA is also a onstant map. Homotopy relative to a subspae Ais an equivalene relation on the set of maps from X to Y .The notation [X;Y ℄A will be used to denote the set of equivalene lasses of maps from X to Y underthe relation of homotopy relative to the subspae A of X . Given a map f : X ! Y , we use [f ℄A todenote the equivalene lass in [X;Y ℄A to whih f belongs. For unpointed spaes X and Y , we an write[X;Y ℄; simply as [X;Y ℄, and [f ℄; simply as [f ℄.Proposition 6.3. Let A be a subspae of X and B be a subspae of Y . Let f0; f1 : X ! Y be homotopirelative to A and g0; g1 : Y ! Z be homotopi relative to B. Suppose further that f0(A) = f1(A) � B.Then g0 Æ f0 ' g1 Æ f1 relA.De�nition 6.4. Let X and Y be pointed spaes and let f; g : X ! Y be pointed maps. f is alledpointed homotopi to g if f ' g relx0, where x0 is the base point of X . We an simply write f ' g ifthere is no ambiguity.For pointed spaes X and Y , the notation [X;Y ℄ is used to denote the set of equivalene lasses ofpointed maps from X to Y under the relation of pointed homotopy, that is, homotopy relative to thebase point x0 of X . For any pointed map f : X ! Y , [f ℄ denotes the equivalene lass in [X;Y ℄ towhih f belongs.Let TopH and TopH� respetively denote the ategory of topologial spaes (respetively pointedspaes) in whih the morphism sets are the equivalene lasses of maps (respetively pointed maps)under homotopy. Then for any pointed spae X , [X;�℄ is a ovariant funtor on TopH� and [�; X ℄ isa ontravariant funtor on TopH�. For a map f : X ! Y , we often denote [X; f ℄ simply as fX� or f�,and [f;X ℄ simply as f�X or f�. Thus f� : [�℄ 7! [f Æ �℄ for all � : Z ! X and f� : [�℄ 7! [� Æ f ℄ for all� : Y ! Z.Proposition 6.5. Let X, Y and Z be pointed spaes.1. There is a bijetion � : [X _ Y; Z℄ ! [X;Z℄ � [Y; Z℄ given by � : [�℄ 7! ([� Æ iX ℄; [� Æ iY ℄), whereiX : X ! X _ Y and iY : Y ! X _ Y are inlusion maps.2. There is a bijetion  : [X;Y � Z℄ ! [X;Y ℄ � [X;Z℄ given by  : [�℄ 7! ([pY Æ �℄; [pZ Æ �℄), wherepY : Y � Z ! Y and pZ : Y � Z ! Z are projetion maps.Proposition 6.6. Let X;Y; Z be pointed spaes. If Y is loally ompat Hausdor�, then the reduedassoiation map � : Map�(X ^ Y; Z) ! Map�(X;Map�(Y; Z)) indues a bijetion �� : [X ^ Y; Z℄ ![X;Map�(Y; Z)℄.7 Homotopy Equivalenes and Contratible SpaesDe�nition 7.1. Let X and Y be topologial spaes. A map f : X ! Y is alled a homotopyequivalene if there is a map g : Y ! X suh that g Æ f ' idX and f Æ g ' idY . The map g is alled



8 THE FUNDAMENTAL GROUP 15a homotopy inverse of f . A spae X is homotopy equivalent to Y if we an �nd a homotopyequivalene f : X ! Y . In this ase, we say that X has the same homotopy type as Y , and wewrite X ' Y , or X 'f Y . De�nitions remain the same if X and Y are pointed spaes and the word\homotopy" is replaed by \pointed homotopy".De�nition 7.2. A spae X is ontratible if the identity map idX : X ! X is homotopi to a onstantmap on X , namely, idX is null-homotopi.Proposition 7.3. Any two maps from any arbitrary spae to a ontratible spae, or from a ontratiblespae to any arbitrary spae, are homotopi, and in partiular, are null-homotopi.Corollary 7.4. If Y is a ontratible spae, then any two maps on Y are homotopi. In partiular, anytwo onstant maps on Y are homotopi, so the identity map idY is homotopi to any onstant map onY .Proposition 7.5. A spae X is ontratible if and only if X is homotopy equivalent to the one-pointspae.Corollary 7.6. Any two ontratible spaes have the same homotopy type. If X and Y are ontratiblespaes, then any map f : X ! Y is a homotopy equivalene.8 The Fundamental GroupDe�nition 8.1. Let X be a topologial spae and let � : I ! X and � : I ! X be two paths in X with�(1) = �(0). The produt � � � : I ! X is de�ned by(� � �)(t) = (�(2t) 0 � t � 1=2�(2t� 1) 1=2 � t � 1:Clearly the produt � � � is also a path in X .Let �; � : I ! X be two paths in X . � and � are briey said to be homotopi, denoted by � ' �, if �is homotopi to � relative to �I = f0; 1g. Note that if � ' � then �(0) = �(0) and �(1) = �(1).Lemma 8.2. Let �0; �1; �0; �1 be paths in a topologial spae X with �0(1) = �0(0) and �1(1) = �1(0).If �0 ' �1 and �0 ' �1, then �0 � �0 ' �1 � �1.Lemma 8.3. Suppose that �0; �1; �2 are paths in X with �0(1) = �1(0) and �1(1) = �2(0). Then(�0 � �1) � �2 ' �0 � (�1 � �2).For eah x 2 X , we de�ne a onstant path �x : I ! X by �x(t) = x.Lemma 8.4. Let � be a path in X with �(0) = x and �(1) = y. Then �x � � ' � ' � � �y.Given a path � in X , the inverse of �, denoted by ��1, is de�ned by ��1 : I ! X , ��1(t) = �(1 � t).Clearly the inverse of a path is itself a path.Lemma 8.5. Let � be a path in X with �(0) = x and �(1) = y. Then � � ��1 ' �x and ��1 � � ' �y.Let X be a pointed spae with base point x0. By Lemmas 8.2-8.5, the set of homotopy lasses of pathsin X having start and end points x0 is a group with identity [�x0 ℄ under the well-de�ned multipliationgiven by [�℄ � [�℄ = [� � �℄:De�nition 8.6. Let X be a pointed spae with base point x0. The nth-homotopy group �n(X; x0)is de�ned by �n(X; x0) = [Sn; X ℄for n � 0. If there is no danger of onfusion, we may omit mentioning the base point and simply write�n(X).



9 THE FUNDAMENTAL GROUP OF S1 16Sine S1 �= I=�I, a path � : I ! X with start and end points x0 fators uniquely into:S1I � -q - X9 �-where q : I ! S1 is the anonial quotient. We have just shown that �1(X; x0) = [S1; X ℄ is a group.This is known as the fundamental group of X with base point x0.Corollary 8.7. A map f : X ! Y indues a group homomorphism f� : �1(X; x) ! �1(Y; f(x)) givenby f� : [�℄ 7! [f Æ �℄, where we regard X as having base point x0 and Y as having base point f(x) whenwe pass to the homotopy group. If f; g : X ! Y and f ' g relx, then f� = g�. If X and Y are pointedspaes whih are pointed homotopy equivalent, we have �1(X) �= �1(Y ) as groups.It is known that �n(X) is an abelian group for all n � 2.Proposition 8.8. Let x; y 2 X. If there is a path from x to y in X, then the groups �n(X; x) �= �n(X; y)as groups.By Proposition 6.5(2), we have �n(X � Y ) �= �n(X)� �n(Y ) as sets for any n � 0.De�nition 8.9. A pointed spae X is said to be n-onneted if �m(X) = 0 for all 0 � m � n. Apointed spae X is said to be simply onneted if it is 1-onneted.If a spae X is simply onneted, then for any x; y 2 X , any two paths from x to y are homotopi.Proposition 8.10. A ontratible spae X is n-onneted for all n � 0.9 The Fundamental Group of S1We de�ne a map e : R ! S1 � C by e(t) = exp(2 i�t). We observe that e is ontinuous and thatej(�1=2;1=2) is a homeomorphism from (�1=2; 1=2) onto S1 n fexp(i�)g. Letlog : S1 n fexp(i�)g ! (�1=2; 1=2)be the inverse of ej(�1=2;1=2).De�nition 9.1. A subset X � Rn is said to be starlike from a point x0 if whenever x 2 X , thelosed segment [x0; x℄ from x0 to x lies in X .Lemma 9.2. Let X � Rn be ompat and starlike from a point x0 2 X. Then given any map f : X ! S1and any t0 2 R suh that e(t0) = f(x0), there exists a map f : X ! R suh that f(x0) = t0 and eÆf = f .Lemma 9.3. Let X be a onneted subspae of Rn and let f; g : X ! R be maps suh that e Æ f = e Æ gand f(x0) = g(x0) for some x0 2 X. Then f = g.Let � : I ! S1 be a losed path at 1 2 S1. Sine I is ompat, onneted and starlike from 0 2 I and�(0) = �(1) = 1, it follows from Lemmas 9.2-9.3 that there exists a unique lifting � : I ! R suh that�(0) = 0 and e Æ � = �. Sine (e Æ �)(1) = �(1) = 1, it follows that �(1) is an integer. We de�ne thedegree of � by deg(�) = �(1):Lemma 9.4. Let �; � : I ! S1 be homotopi losed paths at 1 2 S1. Then deg(�) = deg(�).It follows that there is a well-de�ned funtion deg : �1(S1; 1)! Z de�ned bydeg([�℄) = �(1):Theorem 9.5. The funtion deg : �1(S1; 1)! Z is a group isomorphism.



10 FREE GROUPS AND FREE PRODUCTS OF GROUPS WITH AMALAGAMATION 1710 Free Groups and Free Produts of Groups With Amalaga-mationFor a nonempty set X , denote by X�1 a set disjoint from X with the property that there is a bijetionX ! X�1 in whih we assoiate every element x 2 X with a orresponding element (alled its inverse)in X�1 that we label as x�1. It is onvenient to use the same notation y 7! y�1 for the inverse bijetionX�1 ! X ; in partiular we have (x�1)�1 = x for all x 2 X [X�1. Hene we may denote the inverse ofan element x 2 X [X�1 unambiguously as x0.A word in X is a �nite produt x1x2:::xn, where xi 2 X[X�1; in the ase that n = 0, the word w is theempty word whih is written simply as 1, where we may regard 1 as an element disjoint from X [X�1.The produt of two words is de�ned by juxtaposition, namely, if w = x1x2:::xn and v = y1y2:::ym, thenwv = x1x2:::xny1y2:::ym;with the onvention that w1 = w = 1w for all words w. A word w in X is said to be redued if no pairof elements x and x0 are adjaent. By onvention, the empty word 1 is redued.For a nonempty set X , we let X denote the set of all words in X . De�ne a relation ' on X by thefollowing. Two words w and v in X are said to be equivalent (written w ' v) if it is possible to passfrom w to v by a �nite sequene of operations of the following type:1. insertion of xx0, where x 2 X [X�1, as a blok of two onseutive elements;2. deletion of suh xx0, with the additional rule that when they are the only elements left, they mustbe replaed by the element 1.The reader will �nd it a straightforward exerise to hek that ' is an equivalene relation on X. For aword w in X , we denote by [w℄ the equivalene lass ontaining w under '.Proposition 10.1. Every word is equivalent to a redued word and every equivalene lass [w℄ of wordsin X ontains a unique redued word. Let F(X) = X= ' be the set of all equivalene lasses of wordsin X. We an de�ne a binary operation on F(X) by setting [w℄[v℄ = [wv℄. Then F(X) is a group underthis operation.De�nition 10.2. The group F(X) is known as the free group on the set X .Theorem 10.3. Let X be a nonempty set, F(X) be the free group on X, and � : X ! F(X) be theanonial inlusion x 7! [x℄. The given any group G and set funtion f : X ! G, there exists a uniquegroup homomorphism  : F(X) ! G suh that  Æ � = f . Hene, (F(X); �) is free in the ategory Grp ofgroups, and so this universal property determines the group F(X) uniquely up to isomorphism withrespet to the given set X. -�������I 9 !  XF(X) G� fDe�nition 10.4. Let X be a subset of a group G that does not ontain the identity 1G. We say that Gis free on X if every nonidentity element g 2 G has a unique expression of the form g = xn11 xn22 :::xnkk ,where xi 2 X , nj = Z n f0g, and xi 6= xi+1 for eah i. We all suh an expression of g 2 G a normalform of g with respet to X . Thus G is free on X if and only if every nonidentity g 2 G has a uniquenormal form with respet to X .Proposition 10.5. Suppose that X is a subset of a group G that does not ontain the identity 1G. Thenthere is a group homomorphism  : F(X) ! G suh that  is an isomorphism if and only if G is free onX.



10 FREE GROUPS AND FREE PRODUCTS OF GROUPS WITH AMALAGAMATION 18Corollary 10.6. Every group is a homomorphi image of a free group.Proposition 10.7. Suppose that X1 and X2 are nonempty sets for whih jX1j = jX2j. Then we havethe isomorphism F(X1 ) �= F(X2 ).De�nition 10.8. Let C be a ategory and �x an objet C in C. Let � = f�i : C ! Aigi2I be afamily of morphisms. A pushout for � onsists of an objet P together with a family of morphismsf�0i : Ai ! Pgi2I that make eah of the following squares ommuteC �i����! Ai�j??y ??y�0iAj ����!�0j Pand whih satisfy the property that whenever there is another objet M and a family of morphismsf'i : Ai !Mgi2I that make eah of the following squares (with the same morphisms �i) ommuteC �i����! Ai�j??y ??y'iAj ����!'j Mthen there exists a unique morphism � : P !M suh that � Æ �0i = 'i for all i 2 I .- ?-? ����R
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C APB �i
�0j �0i�j

M9!� 'i'jTheorem 10.9. If in a ategory C, fP; f�0igi2Ig and fP 0; f�00i gi2Ig are pushouts for the family ofmorphisms � = f�i : C ! Aigi2I , then P and P 0 are isomorphi.Let fGigi2I be a family of groups suh that all their identity elements are identi�ed and there is a groupH suh that Gi \ Gj = H whenever i 6= j. Label the ommon identity element of all the groups as 1(whih is equal to 1H). Let X = Si2I Gi, and let X be the set of all nonempty words in X . We saythat a word is redued if it is either the identity 1, or none of its symbols is the identity and no twoadjaent symbols belong to the same group.1. De�ne a relation � on X by the following rule: Two words w; v are equivalent (written w � v) ifit is possible to pass from w to v by a �nite sequene of operations of the following type:(a) insertion of 1;(b) deletion of 1 exept when it is the only symbol left;() replaing an element g 2 Gi with a pair x1x2, where x1; x2 2 Gi;(d) deleting a pair x1x2, where x1; x2 2 Gi, and replaing it with g, where g = x1x2.Then � is an equivalene relation on X, and eah equivalene lass of words under � ontains a(not neessarily unique) redued word that is either an element of H , or a redued word of theform g�1g�2 :::g�k , where g�i 2 G�i n H and �i 6= �i+1 for eah i whenever k � 2. Denote theequivalene lass ontaining the word w as [w℄.



11 THE SEIFERT-VAN KAMPEN THEOREM 192. Similar to the onstrution of free produts, there exists a group whose elements onsist of theequivalene lasses of X under � in whih the group operation is given by [w℄[v℄ = [wv℄ | we termthis the free produt amalgamating H of the groups fGigi2I , and denote it by `Hi2I Gi.3. The inlusion funtions �i : g 7! [g℄ are group monomorphisms from Gi into `Hi2I Gi for eah i, andthe group `Hi2I Gi together with the inlusion maps �i forms a pushout for the family of anonialinlusions f�i : H ! Gigi2I in the ategory Grp of groups.Examples 10.10.1. If K is the trivial group, G`�K = G.2. If f : H ! G is a group homomorphism and K is the trivial group, G`H K is the quotient groupof G by the normal subgroup generated by f(H).3. Z`�Z is the free group generated by two elements, ie, F(x1 ; x2). In general, the n-fold freeprodut of Z is a free group of rank n.4. Z=m �̀Z=n is the quotient group of F(x1 ; x2) by the relations xm1 = xn2 = 1.11 The Seifert-Van Kampen TheoremTheorem 11.1. Let X be a topologial spae. Suppose X = U1[U2 with U1; U2 open, U1\U2 nonemptyand path-onneted. Let x0 2 U1 \ U2 be the base point of X. Then�1(X; x0) = �1(U1; x0) a�1(U1\U2;x0)�1(U2; x0):Examples 11.2.1. Suppose X = U [ V with U; V open in X and simply onneted, and U \ V is nonempty andpath-onneted. Then X is simply onneted.2. Sn is simply onneted for n � 2. In partiular, �1(Sn) is trivial for n � 2.3. Suppose that x0 2 X and y0 2 Y are base points of X;Y respetively suh that eah base point isontained in a ontratible neighbourhood. Then �1(X _ Y ) = �1(X)`� �1(Y ).4. �1(S1 _ S1) = F(x1 ; x2). In general �1(_nS1) = F(x1 ; x2; :::; xn).5. �1(RP 1 ) = Z and �1(RP n) = Z=2 for n � 2.Lemma 11.3. Let � : F(x1 ; x2; :::; xm)! F(y1 ; y2; :::; yn) be any group homomorphism. Then there is aontinuous map f : m_S1 ! n_S1suh that � = f� : �1(Wm S1)! �1(Wn S1).Theorem 11.4. For all groups G, there is a spae X = X(G) suh that �1(X) = G. If � : G! H is agroup homomorphism, then there is a natural ontinuous map f : X(G)! X(H) suh that� = f� : �1(X(G))! �1(X(H)):



12 DEFORMATIONS, COFIBRATIONS, FIBRATIONS 2012 Deformations, Co�brations, FibrationsDe�nition 12.1. A subspae A of X is said to be a retrat of X if the inlusion i : A ,! X has a leftinverse, that is, there is a map r : X ! A suh that r Æ i = idA.A subspae A of X is said to be a weak retrat of X if the inlusion i : A ,! X has a lefthomotopy inverse, that is, there is a map r : X ! A suh that r Æ i ' idA.De�nition 12.2. Given a subspae X 0 of X , a deformation of X 0 in X is a homotopy D : X 0� I ! Xsatisfying D(x0; 0) = x0 for all x0 2 X 0, that is, D is a homotopy from the inlusion i : X 0 ,! X to someother map X 0 ! X . If D(X 0 � f1g) � A � X , then D is said to be a deformation of X 0 into A, andthe subspae X 0 is said to be deformable into A in X .A spae X is said to be deformable into its subspae A if X is deformable into A in X . Inpartiular, a spae X is ontratible if and only if X is deformable into one of its points in X .Proposition 12.3. A spae X is deformable into a subspae A if and only if the inlusion i : A ,! Xhas a right homotopy inverse, that is, there is a map h : X ! A suh that h = i Æ h ' idX .De�nition 12.4. A subspae A of X is said to be a weak deformation retrat of X if the inlusioni : A ,! X is a homotopy equivalene.Hene, a subspae A of X is a weak deformation retrat of X if and only if it is A is weak retrat of Xand X is deformable into A in X .De�nition 12.5. A subspae A of X is alled a deformation retrat of X if there exists a maph : X ! A suh that h Æ i = idA and i Æ h ' idX , where i : A ,! X is the inlusion.Hene, a subspae A of X is a deformation retrat of X if and only if it is A is retrat of X and X isdeformable into A in X .De�nition 12.6. A subspae A of X is a strong deformation retrat of X if there is a retrationr : X ! A suh that i Æ r ' idX relA, where i : A ,! X is the inlusion.De�nition 12.7. Let (X;A) be a pair of spaes, and let Y be any spae. The pair (X;A) is said tohave the homotopy extension property with respet to Y if for all maps g : X ! Y and all mapsG : A � I ! Y satisfying G(a; 0) = g(a) for all a 2 A, there exists a map F : X � I ! Y suh thatF (x; 0) = g(x) for all x 2 X and F (a; t) = G(a; t) for all a 2 A and t 2 [0; 1℄.X � f0g g- YX � I?\ � �9 F -A� IG6Proposition 12.8. Suppose that (X;A) has the homotopy extension property with respet to Y , andf0; f1 : A ! Y are homotopi. If f0 has an extension to X, then so does f1, and their respetiveextensions are homotopi as well.Proposition 12.9. Let (X;A) be a pair of spaes. If A is ontratible and the pair (X;A) satis�es thehomotopy extension property with respet to X, then the anonial quotient X ! X=A is a homotopyequivalene.Proposition 12.10. If (X;A) has the homotopy extension property with respet to A, then A is a weakretrat (resp. weak deformation retrat) of X if and only if A is a retrat (resp. deformation retrat) ofX.The notion of a o�bration is a generalization of the notion of having a homotopy extension property.



12 DEFORMATIONS, COFIBRATIONS, FIBRATIONS 21De�nition 12.11. A map f : X 0 ! X between two spaes is said to be a o�bration if for all spaesY and all maps g : X ! Y , G : X 0 � I ! Y satisfying G(x0; 0) = g(f(x0)) for all x0 2 X 0, there existsa map F : X � I ! Y suh that F (x; 0) = g(x) for all x 2 X and F (f(x0); t) = G(x0; t) for all x0 2 X 0and t 2 [0; 1℄. X � f0g g - Y
X � I?

\
�f � idI9 F -

X 0 � IG6Proposition 12.12. Let i : A ,! X be the inlusion. The following are equivalent:1. i is a o�bration.2. (X;A) has the homotopy extension property with respet to any spae Y .3. (X � f0g) [ (A� I) is a retrat of X � I.De�nition 12.13. A map p : E ! B is said to have the homotopy lifting property with respet toa spae X if for all maps f 0 : X ! E and F : X � I ! B satisfying F (x; 0) = p(f 0(x)) for all x 2 X ,there exists a map F 0 : X � I ! E suh that F 0(x; 0) = f 0(x) for all x 2 X and p Æ F 0 = F .X � f0g f 0- EX � I?\ F -9 F 0 -Bp ?Proposition 12.14. If p : E ! B has the homotopy lifting property with respet to a spae X, andf0; f1 : X ! B are homotopi, then f0 an be lifted to E (namely, there exists F0 : X ! E suh thatp Æ F0 = f0) if and only if f1 an be lifted to E.De�nition 12.15. A map p : E ! B is alled a �bration if p has the homotopy lifting property withrespet to every spae X . In this ase we say that E is the total spae and B is the base spae of the�bration. For b 2 B, the set p�1(b) is alled the �bre over b.If p : E ! B and f : Y ! B are maps, a lifting of f is a map ~f : Y ! E suh that p Æ ~f = f .YE p -~f� Bf ?Proposition 12.16. If p : E ! B is a �bration, any path ! in B satisfying !(0) 2 p(E) an be liftedto a path in E.De�nition 12.17. A map p : E ! B is said to have unique path-lifting if given paths �; �0 in E suhthat p Æ � = p Æ �0 and �(0) = �0(0), then � = �0.Lemma 12.18. If a map p : E ! B has unique path-lifting, then it has the unique lifting propertyfor path-onneted spaes, in the sense that for any maps f; g : Y ! E where Y is path-onneted,p Æ f = p Æ g, and f(y0) = g(y0) for some y0 2 Y , then f = g.



13 COVERING SPACES 22Proposition 12.19. A �bration p : E ! B has unique path lifting if and only if every �bre p�1(b) hasno nononstant paths.Proposition 12.20. The omposite of two �brations is a �bration.Lemma 12.21. Let p : E ! B be a �bration. If A is any path-onneted omponent of E, then p(A) isa path-onneted omponent of B, and pjA : A! p(A) is a �bration.De�nition 12.22. A spae is said to be loally path-onneted if for any x 2 X and any neighbour-hood U of x, there exists a path-onneted open neighbourhood V of x suh that V � U .Remark 12.23. In Maunder [3℄ (Chapter 6, Exerise 23), the de�nition of loally path-onneted is asfollows: A spae X is said to be loally path-onneted if, for eah x 2 X and any neighborhood U of x,there is an open neighborhood V of x suh that x 2 V � U and any two points in V an be onneted bya path in U . Thus our de�nition of loally path-onneted, whih is the de�nition given by Hather [1℄and Massey [2℄, is stronger than Maunder's de�nition.Proposition 12.24. Let p : E ! B be a map. If E is loally path-onneted, then p is a �bration ifand only if for eah path-onneted omponent A of E, p(A) is a path-onneted omponent of B, andpjA : A! p(A) is a �bration.Theorem 12.25. Let p : E ! B be a �bration with unique path-lifting. If �; �0 are paths in E suh that�(0) = �0(0) and p Æ � ' p Æ �0 rel�I, then � ' �0 rel�I.Corollary 12.26. Let p : (E; e0)! (B; b0) be a �bration with unique path-lifting. Thenp� : �1(E; e0)! �1(B; b0)is a group monomorphism.Theorem 12.27. Let p : E ! B be a �bration with unique path-lifting. If B is path-onneted, thenany two �bres are homeomorphi.If B is path-onneted and p : E ! B is a �bration with unique path-lifting, the number of sheets ofp, or the multipliity of p, is de�ned to be the ardinality of the �bre p�1(b), whih is independent ofthe hoie of b 2 B by Theorem 12.27.Theorem 12.28. Let p : E ! B be a �bration with unique path-lifting and suppose that E;B arepath-onneted. Then the multipliity of p is the index of p�(�1(E; e0)) in �1(B; p(e0)).Theorem 12.29. Let p : (E; e0)! (B; b0) be a �bration with unique path-lifting. Let Y be a onneted,loally path-onneted spae. Then a map f : (Y; y0)! (B; b0) has a lifting (Y; y0)! (E; e0) if and onlyif f�(�1(Y; y0)) � p�(�1(E; e0)).13 Covering SpaesDe�nition 13.1. A map p : ~X ! X is alled a overing projetion if:1. p is surjetive;2. For all x 2 X , there exists an open neighbourhood U of x, alled an elementary neighbourhoodof x, suh that p�1(U) = G�2�U�;is a topologial disjoint union of open sets U� alled sheets and p maps eah U� homeomorphiallyonto U .We all ~X the overing spae and all X the base spae of the overing projetion p.



13 COVERING SPACES 23Examples 13.2.1. Any homeomorphism p : X ! X is a one-sheeted overing projetion.2. Let F be a spae endowed with the disrete topology, and let ~X = X � F . Then the oordinateprojetion p : ~X ! X is a overing projetion.3. The anonial quotient p : Sn ! RPn is a two-sheeted overing projetion.4. The map p : S1 ! S1 given by p(z) = zn is an n-sheeted overing projetion.5. The exponential map e : R ! S1 is a overing projetion with �0-many sheets.Proposition 13.3. A overing projetion exhibits its base spae as a quotient of its overing spae.Lemma 13.4. A overing projetion p : ~X ! X has the unique lifting property for onneted spaes,namely, if f; g : Y ! ~X are liftings of the same map p Æ f = p Æ g : Y ! X, Y is onneted andf(y0) = g(y0) for some y0 2 Y , then f = g.Theorem 13.5. A overing projetion is a �bration.Proposition 13.6. Let p : ( ~X; ~x0)! (X; x0) be a overing projetion.1. Every path � : (I; 0)! (X; x0) has a unique lifting ~� : (I; 0)! ( ~X; ~x0). In partiular, p has uniquepath-lifting (De�nition 12.17).2. Every map F : (I � I; (0; 0))! (X; x0) has a unique lifting ~F : (I � I; (0; 0))! ( ~X; ~x0).Sine a overing projetion p : ~X ! X is a �bration with unique path-lifting, it follows from Theo-rem 12.25 that if �; �0 are paths in ~X suh that �(0) = �0(0) and p Æ � ' p Æ �0 rel�I , then � ' �0 rel�I .By Corollary 12.26, p� : �1( ~X; ~x0)! �1(X; x0) is a group monomorphism.De�nition 13.7. A group G is termed a topologial group if G is a topologial spae, and the groupmultipliation G�G! G, (g; h) 7! gh, and the inverse funtion G! G, g 7! g�1, are both ontinuousmaps.Let G be a group and let Y be a G-spae. For an element g 2 G and a subset S of Y , letgS = fgs : s 2 Sg:De�nition 13.8. Let G be a disrete group (a topologial group endowed with the disrete topology).Let Y be a G-spae. We all the G-ation on Y properly diontinuous if for every y 2 Y , there existsa neighbourhood Wy of y suh that for all g1; g2 2 G,g1 6= g2 ) g1Wy \ g2Wy = ;:This is equivalent to saying that for all g 2 G,g 6= 1G ) gWy \Wy = ;:Proposition 13.9. Let X be a G-spae. The G-ation on X is properly disontinuous if and only if theanonial quotient p : X ! X=G is a overing projetion.De�nition 13.10. A group G is said to at freely on a spae X if gx 6= x for all x 2 X and 1G 6= g 2 G.This is equivalent to saying that g1x 6= g2x for all x 2 X and g1 6= g2 2 G.Proposition 13.11. Let X be a G-spae. Suppose that G is a �nite group and X is Hausdor�. Thenthe G-ation on X is properly disontinuous if and only if G ats freely on X.Examples 13.12.1. Let an ation of Z on R be de�ned by (n; x) 7! n+ x. This ation is properly disontinuous, andso the anonial quotient e : R ! R=Z �= S1 is a overing projetion.



13 COVERING SPACES 242. Let G be a Hausdor� topologial group and let H be a �nite subgroup of G. Let G=H be the setof left osets of H in G endowed with the quotient topology. H ats on G by left multipliationand this ation is free. Hene the anonial quotient G! G=H is a overing projetion.Fix a overing projetion p : ( ~X; ~x0) ! (X; x0). Let a loop � : (I; 0; 1)! (X; x0; x0) be given. Supposethat ~� : (I; 0)! ( ~X; ~x0) is its unique lifting. Thenp Æ ~�(1) = �(1) = �(0) = x0;and so ~�(1) 2 p�1(x0). There is a well-de�ned funtion  : �1(X; x0)! p�1(x0) given by  : [�℄! ~�(1).Proposition 13.13. If ~X is path-onneted, then  is surjetive, and if ~X is simply onneted, then  is bijetive.Suppose now that ~X is a G-spae and that the quotient p : ~X ! ~X=G is a overing projetion. Let[ ~x0℄ 2 ~X=G denote the orbit of ~x0 under the G-ation. Sine the G-ation is properly disontinuous, wean identify p�1([ ~x0℄) with G by the orrespondene g ~x0 $ g.Theorem 13.14. If ~X is path-onneted, then the funtion  : �1( ~X=G; [ ~x0℄)! p�1(x0) = G is a groupepimorphism with kernel p�(�1( ~X; ~x0)). In partiular, if ~X is simply onneted, then �1( ~X=G; [ ~x0℄) �= G.Examples 13.15.1. Sine Sn is simply onneted for all n � 2 and there is a properly disontinuous Z2-ation on Sngiven by (n; x) 7! nx, where n = �1, so �1(RP n) = �1(Sn=Z2) �= Z2 for all n � 2.2. Sine R is ontratible and there is a properly disontinuous Z-ation on R given by (n; x) 7! n+x,so we have �1(S1) = �1(R=Z) �= Z. In this example,  as de�ned above is simply the degree mapdeg : �1(S1)! Z de�ned in Setion 9.Let p : ( ~X; ~x0) ! (X; x0) be a overing. Suppose that (Y; y0) is simply onneted and loally path-onneted. Sine p is a �bration with unique path-lifting, so by Theorem 12.29 and Lemma 13.4, everymap f : (Y; y0)! (X; x0) admits a unique lifting ~f : (Y; y0)! ( ~X; ~x0).Corollary 13.16. Let p : ( ~X; ~x0)! (X; x0) be a overing. Then for all n � 1 and all mapsf : (Y; y0)! (X; x0)with Y simply onneted and loally path-onneted, there exists some ~f : (Y; y0) ! ( ~X; ~x0) suh thatp� Æ ~f� = f� : �n(Y; y0)! �n(X; x0).Example 13.17. Sine Sn is always loally path-onneted, and is simply onneted for all n � 2, soall pointed maps f : Sn ! S1 admit a unique lifting ~f : Sn ! R. Sine R is ontratible, so �n(S1) = 0for all n � 2.Corollary 13.18. For all n � 2 and any overing projetion p : ( ~X; ~x0)! (X; x0), the mapp� : �n( ~X; ~x0)! �n(X; x0)is a group isomorphism.Example 13.19. �m(Sn) �= �m(RP n) for all m � 2 and n � 1. In partiular, �m(RP 1 ) = �m(S1) = 0for all m � 2.De�nition 13.20. Let p1 : ~X1 ! X and p2 : ~X2 ! X be overing projetions. A homomorphism of( ~X1; p1) to ( ~X2; p2) is a ontinuous map ' : ~X1 ! ~X2 suh that p2 Æ ' = p1.-���	���R'X~X1 ~X2p1 p2



14 BARRATT-PUPPE EXACT SEQUENCES 25Fix a spae X . The lass of all overing projetions with base spae X and their homomorphisms forma ategory. Two overing projetions with the same base spae X are alled isomorphi if they areisomorphi objets in this ategory.Theorem 13.21. Two overing projetions ( ~X1; p1) and ( ~X2; p2) with the same base spae X and where~X1, ~X2 are path-onneted and loally path-onneted are isomorphi if and only if for any points ~x1 2 ~X1and ~x2 2 ~X2 suh that p1(~x1) = p2(~x2) = x0 2 X, the subgroups (p1)�(�1( ~X1; ~x1)) and (p2)�(�2( ~X2; ~x2))of �1(X; x0) are onjugate.Lemma 13.22. Let ( ~X1; p1) and ( ~X2; p2) be overing projetions with the same base spae X where~X1, ~X2 are path-onneted and loally path-onneted. Let ' : ( ~X1; p1)! ( ~X2; p2) be a homomorphism.Then ' : ~X1 ! ~X2 is a overing projetion.De�nition 13.23. A overing projetion p : ~X ! X is termed universal if X is path-onneted and~X is simply onneted.Let p : ~X ! X be a overing projetion, with ~X simply onneted and loally path-onneted. If ( ~X 0; p0)is any other overing spae of X , then there exists a homomorphism ' of ( ~X; p) onto ( ~X 0; p0), and byLemma 13.22, ' : ~X ! ~X 0 is a overing projetion. In other words, ~X an serve as a overing spae ofany overing spae of X .De�nition 13.24. A spae X is alled semi-loally simply onneted if for eah point x 2 X , thereexists a neighborhood U of x suh that i� : �1(U; x) ! �1(X; x) is the trivial group homomorphism,where i : U ,! X is the inlusion map. is trivial.Theorem 13.25. Let X be path-onneted, loally path-onneted, and semi-loally simply onneted.Then there is a universal overing ~X of X.Corollary 13.26. Let X be path-onneted, loally path-onneted, and semi-loally simply onneted.Then for all subgroups H of �1(X; x0), there exists a overing projetion pH : ~XH ! X suh that(pH)�(�1( ~XH ; ~x0)) = H for a suitably hosen base point ~x0 2 ~XH .14 Barratt-Puppe Exat SequenesLet S; T be pointed sets with base points s0; t0 respetively. Let f : S ! T be a pointed funtion. SetKer(f) = f�1(t0). A sequene of pointed sets::: �! Sn+1 fn+1�! Sn fn�! Sn�1 �! :::is set to be exat if eah funtion fn is pointed and Ker(fn) = Im(fn+1) for all n.For a pointed spae (X; x0), the redued one is de�ned by C(X) = (X � I)=((fx0g� I)[ (X �f1g)).We identify X as a subspae of C(X) via the orrespondene x$ (x; 0).Let f : (X; x0) ! (Y; y0) be a pointed map. The redued mapping one is the adjuntion spaeY [f C(X) = (C(X) t Y )=((x; 0) � f(x) : x 2 X) and is denoted by Cf .Let (Y; y0) be a pointed spae. The path spae P (Y ) is de�ned to be the spae of all paths � in Ysatisfying �(0) = y0 under the ompat-open topology. Let f : (X; x0)! (Y; y0) be a pointed map. Themapping path spae Pf is de�ned byPf = f(x; �) 2 X � P (Y ) : f(x) = �(1)g:Theorem 14.1 (Barratt-Puppe). Let f : (X; x0)! (Y; y0) be a pointed map. Let j : Y ! Cf be theanonial inlusion, p : Pf ! X be the anonial quotient, and let Z be any pointed spae. Then thereare long exat sequenes::: �! [�(Cf ); Z℄ (�j)��! [�(Y ); Z℄ (�f)��! [�(X); Z℄ �! [Cf ; Z℄ j��! [Y; Z℄ f��! [X;Z℄and ::: �! [Z;
(Pf )℄ (�p)��! [Z;
(X)℄ (
f)��! [Z;
(Y )℄ �! [Z; Pf ℄ p��! [Z;X ℄ f��! [Z; Y ℄:



15 CW-COMPLEXES 2615 CW-ComplexesDe�nition 15.1. Let X0 be a disrete spae whose points are alled 0-ells. Indutively form Xn fromXn�1 by attahing n-ells as follows: Let Xn be the adjuntion spaeXn = Xn�1 ['� : �2�n� G�2�nDn�� =  � G�2�nDn��GXn�1! =(s � '�(s) : s 2 Sn�1� ; � 2 �n);where fDn�g�2�n is a olletion of diss and f'� : Sn�1� ! Xn�1g�2�n is a olletion of maps for eahn, where we anonially identify Sn�1� = �(Dn�) for eah � 2 �n. Thus as a set, Xn is the disjoint unionof Xn�1 and F�2�n en�, where eah en� is an open dis alled an n-ell. Let X = SnXn be given theweak topology: a subset A of X is losed if and only if A \Xn is losed in Xn for all n � 0. We all Xa CW-omplex.In the speial ase where the ells being attahed have a maximum �nite dimension, we all X a �nite-dimensional CW-omplex.Examples 15.2.1. Sn has the struture of a CW-omplex with just two ells e0 and en. The n-ell en is attahed viathe onstant map Sn�1 ! e0.2. RP n has the ell struture e0 t e1 t ::: t en.An alternative desription of CW-omplexes is as follows: A CW-omplex is a Hausdor� spaeX togetherwith an indexing set �n for all n � 0 and harateristi maps �n� : Dn ! X for all � 2 �n, suh thatthe following properties are satis�ed, where en = (Dn)Æ for all n � 1:1. X = S�n�(en), the union being taken over all n � 0 and � 2 �n (set e0 = D0 = f�g).2. �n�(en) \ �m� (em) = ; unless n = m and � = �.3. �n�jen is injetive for all n � 0 and � 2 �n.4. Let Xn = Snm=0 �m� (em), where the union is taken over all � 2 �m for 0 � m � n. Then�n�(Sn�1) � Xn�1 for eah n � 1 and � 2 �n.5. A subset K of X is losed in X if and only if (�n�)�1(K) is losed in Dn for eah n � 0 and � 2 �n.6. For eah n � 0 and � 2 �n, �n�(Dn) is ontained in the union of a �nite number of sets of the form�m� (em).It is known that the above de�nition is equivalent to De�nition 15.1. Condition 6 is known as losure-�niteness, whih is equivalent to saying that the losure of eah ell (De�nition 15.1) is ontained inthe union of a �nite number of ells.De�nition 15.3. A subomplex of a CW-omplex X is a losed subspae A of X that is a union ofells of X .Proposition 15.4. A wedge of CW-omplexes is again a CW-omplex.For a CW-omplex X , let the skeleton skn(X) be the subspae of X onsisting of the ells up todimension n.Proposition 15.5. For eah n � 1, the inlusion skn�1(X) ,! skn(X) is a o�bration andskn(X)= skn�1(X) �= _�2�n Sn;a wedge of n-spheres.



16 HOMOLOGY 2716 HomologyTwo maps of pairs f; g : (X;A)! (Y;B) are said to be homotopi, written f ' g, if there is a homotopyF : X � I ! Y suh that F (x; 0) = f(x), F (x; 1) = g(x), and F (a; t) 2 B for all x 2 X , a 2 A, andt 2 [0; 1℄. A speial example is when f ' g relA for f; g : X ! Y and A � X .Let G;H be groups and let f : G! H be a group homomorphism. The kernel of f , denoted Ker(f), isde�ned by Ker(f) = f�1(1H) = fx 2 G : f(x) = 1Hg:A sequene of groups and group homomorphisms::: �! Gn+1 fn+1�! Gn fn�! Gn�1 �! :::is set to be exat if Ker(fn) = Im(fn+1) for all n. A short exat sequene of groups is an exatsequene of the form 1 �! B �! E �! A �! 1:If H is an abelian group, we use additive notation, writing the identity of H as 0.An unredued homology theory h� onsists of the following items:1. A sequene fhn(X;A)gn2Z of abelian groups for any pair of spaes (X;A). The abelian grouphn(X;A) is alled the nth relative homology group of X modulo A, and is simply written ashn(X) if A = ;.2. A sequene of group homomorphisms ffn : hn(X;A) ! hn(Y;B)gn2Z orresponding to any mapof pairs f : (X;A)! (Y;B).3. Group homomorphisms �n(X;A) : hn(X;A) ! hn�1(A) for all n 2 Z and pair of spaes (X;A).These are alled the boundary operators.The above items satisfying the following Eilenberg-Steenrod axioms:1. If f = id(X;A), then fn = idhn(X;A) for all n 2 Z.2. If f : (X;A)! (Y;B) and g : (Y;B)! (Z;C), then (g Æ f)n = gn Æ fn : hn(X;A)! hn(Z;C).Hene, hn is a ovariant funtor from the ategory of pairs of topologial spaes to the ategoryAb of abelian groups for all n 2 Z. More expliitly, h� is a ovariant funtor from the ategory ofpairs of topologial spaes to the ategory AbZ of graded abelian groups.For brevity, we denote by f� the olletion of all group homomorphism fn for any map of pairs f .If a statement holds for all fn, we simply say that it holds for f�. We may view f� as the image off in AbZ under the funtor h�.3. For all map of pairs f : (X;A)! (Y;B), we have � Æ f� = (f jA)� Æ �. In partiular, the diagramhq(X;A) fq - hq(Y;B)hq�1(A)�q(X;A) ? (f jA)q�1- hq�1(B)�q(Y;B)?ommutes for all q 2 Z.Hene, there is a natural transformation �n : hn ! hn�1 ÆR for all n 2 Z, where R is the funtorsending (X;A) to (A; ;).



16 HOMOLOGY 284. (Exatness) For any pair of spaes (X;A), there is a long exat sequene of abelian groups::: �! hn+1(X;A) �n+1�! hn(A) in�! hn(X) jn�! hn(X;A) �n�! hn�1(A) �! :::where i : (A; ;)! (X; ;) and j : (X; ;)! (X;A) are the inlusion maps.5. (Homotopy) If f ' g : (X;A)! (Y;B), then f� = g� : h�(X;A)! h�(Y;B).6. (Exision) If U is an open subset of X , and U � AÆ, then the inlusion j : (X nU;A nU)! (X;A)indues an isomorphism j� : h�(X n U;A n U) �=�! h�(X;A). This is equivalent to saying thatfor all subspaes X1; X2 of X suh that X1 is losed and X = (X1)Æ [ (X2)Æ, the inlusioni : (X1; X1 \X2)! (X;X2) indues an isomorphism i� : h�(X1; X1 \X2) �=�! h�(X;X2).An ordinary homology theory is a homology theory h� that satis�es an addition axiom:7. (Dimension Axiom) Let P be a one-point spae. Then hq(P ) = 0 for all q 6= 0.In this ase, h�(X;A) is alled the homology of (X;A) with oeÆients in G = h0(P ), and wedenote h�(X;A) more preisely by H�(X;A;G).We write H�(X;A) for the integral homology H�(X;A;Z).Proposition 16.1. If A is a weak deformation retrat of X, then h�(X;A) = 0. In partiular,h�(X;X) = 0.Lemma 16.2. Suppose that the inlusion i : A ,! X is a o�bration. Then the redued mapping oneCi is homotopy equivalent to the quotient spae X=A.Corollary 16.3. Suppose that the inlusion i : A ,! X is a o�bration. Then there is an exat sequeneof groups: �1(A) i��! �1(X) �! �1(X=A) �! 1:Theorem 16.4. Let (X;A) be a pair of spaes suh that the inlusion i : A ,! X is a o�bration. Thenthe quotient map p : (X;A)! (X=A; �) indues an isomorphism p� : h�(X;A) �=�! h�(X=A; �).Given a homology theory h�, the redued homology �h� is de�ned as follows: For a pointed spae Xwith base point x0, �h�(X) = h�(X; x0):In general, we have �h�(X) = Ker(�� : h�(X) ! h�(P )) and h�(X) = �h�(X) � h�(P ), where P is theone-point spae and � : X ! P is the onstant projetion.Corollary 16.5. Let (X;A) be a pair of spaes suh that the inlusion i : A ,! X is a o�bration. Thenthere is a long exat sequene::: �! �hn+1(X=A) �n+1�! �hn(A) in�! �hn(X) pn�! �hn(X=A) �n�! �hn�1(A) �! :::where p : X ! X=A is the anonial quotient.Theorem 16.6. Let X be a pointed spae. Then there is a natural isomorphism�n : �hn(X)! �hn+1(�(X))for eah n 2 Z.Theorem 16.7 (Mayer-Vietoris). Let X = AÆ [BÆ where A;B are subspaes of X. Then there is along exat sequene::: �n+1�! hn(A \B) �n�! hn(A)� hn(B) �n�! hn(X) �n�! hn�1(A \B) :::where �n = �(i1)n(i2)n�, i1 : A \ B ! A and i2 : A \ B ! B are the inlusions, �n = (j1)n � (j2)n,j1 : A! X and j2 : B ! X are the inlusions.



17 COHOMOLOGY 29Proposition 16.8. If iX : X ! X t Y and iY : Y ! X t Y are the inlusions, then((iX )�; (iY )�) : h�(X)� h�(Y )! h�(X t Y )is an isomorphism.Proposition 16.9. For all n � 0, �Hi(Sn) = (G = H0(P ) i = n;0 i 6= n:Corollary 16.10. For all n, the sphere Sn�1 is not a weak retrat of the dis Dn.Any pointed map f : Sn ! Sn indues a group homomorphism f� : Hn(Sn) ! Hn(Sn). For all n � 1,we have f� : Z! Z. It follows that there is a unique integer deg(f) suh that f�(�) = deg(f)� for all� 2 Hn(Sn) whih depends only on the homotopy lass of f .Proposition 16.11. For ordinary homology over Z, we have the following for pointed mapsf; g : Sn ! Sn :1. deg(idSn) = 1.2. If f is not surjetive, then deg(f) = 0.3. f ' g if and only if deg(f) = deg(g).4. deg(g Æ f) = deg(g) deg(f).5. If f is a reetion �xing points in a subspae Sn�1, then deg(f) = �1.6. The antipodal map x 7! �x has degree (�1)n+1.7. If f has no �xed points, then deg(f) = (�1)n+1.Corollary 16.12. If n is even, then Z=2Z is the only nontrivial group that an at freely on Sn.17 CohomologyAn unredued ohomology theory h� onsists of the following items:1. A sequene fhn(X;A)gn2Z of abelian groups for any pair of spaes (X;A). The abelian grouphn(X;A) is alled the nth relative ohomology group of X modulo A, and is simply writtenas hn(X) if A = ;.2. A sequene of group homomorphisms ffn : hn(Y;B) ! hn(X;A)gn2Z orresponding to any mapof pairs f : (X;A)! (Y;B).3. Group homomorphisms Æn(X;A) : hn(A) ! hn+1(X;A) for all n 2 Z and pair of spaes (X;A).These are alled the boundary operators.The above items satisfying the following Eilenberg-Steenrod axioms:1. If f = id(X;A), then fn = idhn(X;A) for all n 2 Z.2. If f : (X;A)! (Y;B) and g : (Y;B)! (Z;C), then (g Æ f)n = fn Æ gn : hn(Z;C)! hn(X;A).Hene, hn is a ontravariant funtor from the ategory of pairs of topologial spaes to the ategoryAb of abelian groups for all n 2 Z. More expliitly, h� is a ontravariant funtor from the ategoryof pairs of topologial spaes to the ategory AbZ of graded abelian groups.For brevity, we denote by f� the olletion of all group homomorphism fn for any map of pairs f .If a statement holds for all fn, we simply say that it holds for f�. We may view f� as the imageof f in AbZ under the funtor h�.



17 COHOMOLOGY 303. For all map of pairs f : (X;A)! (Y;B), we have f� Æ Æ = Æ Æ (f jA)�. In partiular, the diagramhq�1(B) (f jA)q�1- hq�1(A)hq(Y;B)Æq�1(Y;B) ? fq - hq(X;A)Æq�1(X;A)?ommutes for all q 2 Z.Hene, there is a natural transformation Æn�1 : hn�1 ÆR! hn for all n 2 Z, where R is the funtorsending (X;A) to (A; ;).4. (Exatness) For any pair of spaes (X;A), there is a long exat sequene of abelian groups::: �! hn�1(A) Æn�1�! hn(X;A) jn�! hn(X) in�! hn(A) Æn�! hn+1(X;A) �! :::where i : (A; ;)! (X; ;) and j : (X; ;)! (X;A) are the inlusion maps.5. (Homotopy) If f ' g : (X;A)! (Y;B), then f� = g� : h�(Y;B)! h�(X;A).6. (Exision) If U is an open subset of X , and U � AÆ, then the inlusion j : (X nU;A nU)! (X;A)indues an isomorphism j� : h�(X;A) �=�! h�(X n U;A n U). This is equivalent to saying thatfor all subspaes X1; X2 of X suh that X1 is losed and X = (X1)Æ [ (X2)Æ, the inlusioni : (X1; X1 \X2)! (X;X2) indues an isomorphism i� : h�(X;X2) �=�! h�(X1; X1 \X2).An ordinary ohomology theory is a ohomology theory h� that satis�es an addition axiom:7. (Dimension Axiom) Let P be a one-point spae. Then hq(P ) = 0 for all q 6= 0.In this ase, h�(X;A) is alled the ohomology of (X;A) with oeÆients in G = h0(P ), andwe denote h�(X;A) more preisely by H�(X;A;G).We write H�(X;A) for the integral ohomology H�(X;A;Z).



18 EXERCISES 3118 ExerisesExerises 18.1.1. Let C be a ategory, Mor(C) be the lass of all morphisms of C, and for any pair of morphisms f : A! Band g : C ! D of C, de�ne Mor(f; g) to be the set of all ordered pairs (�; �), where � : A ! C and� : B ! D are morphisms of C suh that the following diagram ommutes.A f�����! B�??y ??y�C �����!g DShow that the lass Mor(C) together with the sets Mor(f; g) is a ategory under this de�nition.2. Desribe how a nonempty lass A an be made into a ategory in whih the only morphisms are identitymorphisms.3. A pointed set is a pair (S; x), where S is a set and x 2 S. A morphism of pointed sets (S; x)! (T; y) isa set funtion f : S ! T suh that f(x) = y. Show that the pointed sets form a ategory, whih we denoteby Set0.4. Let fAigi2I be a family of sets. Let S be the set of all ordered pairs (a; i), where a 2 Ai and i 2 I. Foreah i 2 I, de�ne a funtion �i : Ai ! S by �i(a) = (a; i). Show that fS; f�igi2Ig is a oprodut offAigi2I in the ategory Set of sets.5. Show that every family fAigi2I of pointed sets (Exerise 3) has a produt and oprodut in the ategorySet0 of pointed sets.6. An objet I in a ategory C is said to be initial if for any objet C, there exists preisely one morphismI ! C in C. An objet T is said to be terminal if for any objet C, there exists preisely one morphismC ! T in C.(a) Show that any two initial (respetively terminal) objets in a ategory are isomorphi.(b) Show that the trivial group f1g is both initial and terminal in the ategory Grp of groups.7. Let X be a topologial spae. Prove the following:(a) ; and X are losed sets.(b) Finite unions of losed sets are losed.() Arbitrary intersetions of losed sets are losed.8. Let < be a olletion of subsets of X suh that ;; X 2 <, < is losed under �nite unions, and < is losedunder arbitrary intersetions. Show that = = fX n C : C 2 <g is a topology on X.9. Let B be a basis for a topology on X. Let = be the olletion of all arbitrary unions of elements of B.Show that (X;=) is a topologial spae.10. Let B and B0 be bases for topologies = and =0 respetively. Show that = � =0 if and only if for every �niteolletion C1; C2; :::; Cn of basis elements of B, there is a olletion fB0igi2I of basis elements in B0 suhthat [i2IB0i = n\j=1Cj :11. Let X be a topologial spae. Suppose that B is a olletion of open sets of X suh that for any open setU of X, there is a olletion fBigi2I of elements of B suh that[i2IBi = U:Show that B is a basis for the topology on X.



18 EXERCISES 3212. Let X and Y be topologial spaes, and let x 2 X. A funtion f : X ! Y is said to be ontinuous atx if whenever V is an open set in Y ontaining f(x), there is an open set U in X suh that x 2 U andU � f�1(V ). Show that a funtion f : X ! Y is ontinuous if and only if f is ontinuous at every x 2 X.13. Let X and Y be topologial spaes, and let f : X ! Y be a funtion. Suppose that B is a basis for thetopology on Y , and S is a sub-basis for the topology on Y suh that the basis B is the natural extension ofS obtained by taking intersetions of all �nite olletions of sub-basi sets of S. Show that the followingare equivalent:(a) f is ontinuous.(b) For every basi set B 2 B, the set f�1(B) is open in X.() For every sub-basi set S 2 S, the set f�1(S) is open in X.14. Let B be a basis for the topology on X and Y be a subset of X. Show that the olletionBY = fB \ Y : B 2 Bgis a basis for the subspae topology on Y . Let S be a sub-basis for the topology on X and Y be a subsetof X. Show that the olletion SY = fS \ Y : S 2 Sgis a sub-basis for the subspae topology on Y .15. Let Y be a subspae of X and U be a subset of Y . If U is open in Y and Y is open in X, show that U isopen in X.16. Let Y be a subspae of X and A be a subset of Y . Prove that the subspae topology on A relative to Yis the same as the subspae topology on A relative to X.17. Let Y be a subspae of X. Prove that a subset A of Y is losed in Y if and only if A = B \ Y for somelosed set B of X.18. Let Y be a subspae of X and U be a subset of Y . If U is losed in Y and Y is losed in X, show that Uis losed in X.19. If U is open in X and A is losed in X, show that U nA is open in X and A nU is losed in X. Hene, anopen set omplement out a losed set remains open, and a losed set omplement out an open set remainslosed.20. Let X;Y; Z be topologial spaes. Prove the following:(a) (Constant funtion) If f : X ! Y maps all of X onto a single point y0 2 Y , then f is ontinuous.(b) (Inlusion) If A is a subspae of X, then the inlusion funtion � : A ! X given by �(a) = a for alla 2 A is ontinuous. Furthermore, the subspae topology on A is the oarsest topology on A thatmakes the inlusion map ontinuous.() (Composites) If f : X ! Y and g : Y ! Z are ontinuous, then g Æ f : X ! Z is also ontinuous.(d) (Domain restrition) If f : X ! Y is ontinuous and A is a subspae of X, then the funtionf jA : A! Y is ontinuous.(e) (Codomain restrition or expansion) Let f : X ! Y be ontinuous. If Z is a subspae of Y ontainingf(X), then the funtion g : X ! Z, g(x) = f(x) 8 x 2 X, obtained by restriting the odomain of f , isontinuous. If Z is a spae having Y as a subspae, then the funtion h : X ! Z, h(x) = f(x) 8 x 2 X,obtained by expanding the odomain of f , is ontinuous.21. Let X;Y; Z be topologial spaes. Prove the following:(a) (Inlusion) If A is an open subspae of X, then the inlusion funtion � : A! X given by �(a) = afor all a 2 A is an open map.(b) (Composites) If f : X ! Y and g : Y ! Z are open maps, then g Æ f : X ! Z is also an open map.() (Domain restrition) If f : X ! Y is an open map and A is an open subspae of X, then thefuntion f jA : A! Y is an open map.



18 EXERCISES 33(d) (Codomain restrition or expansion) Let f : X ! Y be an open map. If Z is a subspae of Yontaining f(X), then the funtion g : X ! Z, g(x) = f(x) 8 x 2 X, obtained by restriting theodomain of f , is an open map. If Z is a spae having Y as a subspae, then the funtion h : X ! Z,h(x) = f(x) 8 x 2 X, obtained by expanding the odomain of f , is an open map.22. Let X and Y be topologial spaes, and let fUigi2I be a olletion of open sets in X suh that X = Si2I Ui.Prove that a funtion f : X ! Y is ontinuous if and only if every f jUi : Ui ! Y is ontinuous. Supposethat C1; C2; :::; Cn is a �nite olletion of losed sets in X suh that X = Snj=1 Cj . Show that a funtionf : X ! Y is ontinuous if and only if every f jCj : Cj ! Y is ontinuous.23. Let X = Si2I Ui, where eah Ui is an open set in X. For eah i 2 I, let fi : Ui ! Y be a funtion suhthat fj(x) = fk(x) for all x 2 Ti2I Ui and j; k 2 I. De�ne a funtion h : X ! Y by h(x) = fi(x) forx 2 Ui. Show that h is ontinuous if and only if eah fi is ontinuous.24. Let X = Sni=1 Ci, where C1; C2; :::; Cn is a �nite olletion of losed sets in X. For eah i = 1; 2; :::; n, letfi : Ci ! Y be a funtion suh that fj(x) = fk(x) for all x 2 Tni=1 Ci and 1 � j; k � n. De�ne a funtionh : X ! Y by h(x) = fi(x) for x 2 Ci. Show that h is ontinuous if and only if eah fi is ontinuous.25. If A is losed in X and B is losed in Y , prove that A � B is losed in X � Y . More generally, if Ci islosed in Xi for eah i 2 I, show that Qi2I Ci is losed in Qi2I Xi in both the box and produt topologies.26. Let Bi be a basis for the topology on eah spae Xi. Prove that the olletionD = (Yi2I Bi : Bi 2 Bi for all i 2 I)forms a basis for the box topology on Qi2I Xi, and the olletionD0 = (Yi2I Bi : Bi 2 Bi for �nitely many i 2 I; Bj = Xj for all other j 2 I)forms a basis for the produt topology on Qi2I Xi.27. Let Ai be a subspae of Xi for eah i 2 I. Show that the box (respetively produt) topology onQi2I Ai isthe same as the topology thatQi2I Ai inherits as a subspae ofQi2I Xi endowed with the box (respetivelyprodut) topology.28. Let Xi be a topologial spae for eah i 2 I. Let k 2 I be �xed and for eah i 2 I, i 6= k, let bi 2 Xi begiven. De�ne the anonial inlusion map �fbigi2I;i6=k : Xk !Qi2I Xi by�fbigi2I;i6=k : x 7! (yi)i2I ;where yk = x and yi = bi for all i 6= k. Let Qi2I Xi be endowed with either the box or produt topology.(a) Show that �fbigi2I;i6=k are ontinuous open maps for all hoies of k 2 I and fbigi2I;i6=k with bi 2 Xifor all i 6= k.(b) Show that the projetion maps �Xk :Qi2I Xi ! Xk are ontinuous open maps.() Prove that the produt topology is the oarsest topology onQi2I Xi relative to whih every projetionmap �Xk is ontinuous, in the sense that any topology on Qi2I Xi that makes every �Xk ontinuousmust ontain the produt topology as a subset.29. Let fi : Ai ! Xi funtions between topologial spaes for eah i 2 I. De�ne the funtion Qi2I fi :Qi2I Ai !Qi2I Xi by Yi2I fi : (ai)i2I 7! (fi(ai))i2I :Show that Qi2I fi is a ontinuous funtion with respet to the usual box (respetively produt) topologieson Qi2I Ai and Qi2I Xi if and only if fi is ontinuous for all i 2 I.30. De�ne the diagnoal inlusion map �X : X ! Qi2I Xi by �X(x) = (xi)i2I , where xi = x for all i 2 I.Prove that �X is ontinuous if Qi2I Xi is endowed with the produt topology.



18 EXERCISES 3431. Let fi : A! Xi be a funtion for eah i 2 I. De�ne the funtion f : A!Qi2I Xi byf(a) = (fi(a))i2I :Let Qi2I Xi be endowed with the produt topology. Show that f is ontinuous if and only if every fi is.32. Let A be a subset of a topologial spae X. Prove the following:(a) ClX(A) = X n IntX(X n A).(b) IntX(A) = X n ClX(X n A).() IntX(A) and BdX(A) are disjoint, and ClX(A) = IntX(A) [ BdX(A).(d) BdX(A) = ; if and only if A is both open and losed.33. Let Y be a subspae of X and A be a subset of Y . Show the following:(a) ClY (A) = ClX(A) \ Y .(b) IntY (A) = IntX(A) \ Y .34. Let X and Y be topologial spaes, and let f : X ! Y be a funtion. Show that the following areequivalent:(a) f is ontinuous.(b) For every subset A of X, we have f(ClX(A)) � ClY (f(A)).() For every losed set B in Y , the set f�1(B) is losed in X.35. Let f : X ! Y be a bijetive funtion between topologial spaes. Show that the following are equivalent:(a) f is a homeomorphism.(b) A subset V of Y is open in Y if and only if f�1(V ) is open in X.() A subset V of Y is losed in Y if and only if f�1(V ) is losed in X.(d) For any subset A of X, f(ClX(A)) = ClY (f(A)).36. Let X be a topologial spae with basis B, and let A be a subset of X. Show that the following areequivalent for an element x 2 X:(a) x 2 A.(b) Every open set of X that ontains x intersets A nontrivially.() Every basis set in B that ontains x intersets A nontrivially.37. Let A be a subset of a topologial spae X. Prove that A = A[A0. Dedue that a subspae A is losed ifand only if A ontains all its limit points.38. Let fAigi2I be a family of subsets of X, and let A1; A2; :::; An be a �nite olletion within this family.Show that the following hold:(a) Si2I A0i � (Si2I Ai)0.(b) Ti2I A0i � (Ti2I Ai)0.() Snj=1Aj = Snj=1Aj .(d) Si2I Ai � Si2I Ai.(e) Ti2I Ai � Ti2I Ai.39. Let fAigi2I be a family of subsets of X, and let A1; A2; :::; An be a �nite olletion within this family.Show that the following hold:(a) Tnj=1AÆj = (Tnj=1Aj)Æ.(b) Ti2I AÆi � (Ti2I Ai)Æ.() Si2I AÆi � (Si2I Ai)Æ.



18 EXERCISES 3540. Let Ai be a subset of Xi for eah i 2 I. Show thatClQi2I Xi�Yi2I Ai� =Yi2I ClXi(Ai);if Qi2I Xi is endowed with the box topology or produt topology.41. Let X be a topologial spae, A be a set, and p : X ! A be a surjetive funtion. Show that the quotienttopology on A indued by p is the �nest topology on A relative to whih p is ontinuous, in the sense thatif =0 is any topology on A that makes p ontinuous, then =0 is ontained within the quotient topology asa subset.42. Suppose that A has the quotient topology with respet to the surjetive mapping p : X ! A. Prove thata set C is A is losed if and only if p�1(C) is losed in X.43. Let X be a topologial spae and let f : X ! Y be a surjetive funtion. Suppose that Y is given thequotient topology with respet to f . Show that a funtion g : Y ! Z from Y to a topologial spae Z isontinuous if and only if the omposite g Æ f is ontinuous.44. Show that the omposite of two quotient maps is again a quotient map.45. Let X and Y be topologial spaes. Prove that X and Y are ompat if and only if X�Y is ompat withrespet to the produt topology.46. Show that [0; 1℄n is a ompat subset of Rn for all positive integers n.47. (Heine-Borel) Show that a subset of Rn is ompat if and only if it is losed and bounded.48. Let X and Y be topologial spaes. Show the following:(a) If X is Hausdor�, then any subspae of X is Hausdor�.(b) X and Y are Hausdor� if and only if X � Y is Hausdor� with the produt topology.49. Let f : X ! Y be a ontinuous map. Suppose that X is ompat and Y is Hausdor�. Show that f is alosed map. Hene dedue that a bijetive ontinuous map from a ompat spae to a Hausdor� spae isa homeomorphism.50. Let f : X ! Y be a quotient map. Suppose that X is Hausdor�. Show that if f is a losed map andf�1(y) is ompat for any y 2 Y , then Y is Hausdor�.51. Let X;Y be topologial spaes. Prove the following:(a) If p : X ! Y is a quotient map and Z is a loally ompat Hausdor� spae, then p� idZ : X � Z !Y � Z is a quotient map.(b) If A is a ompat subspae of X and p : X ! X=A is the anonial quotient map, then for any spaeZ, p� idZ : X � Z ! (X=A)� Z is a quotient map.52. Show that if p : A! B and q : C ! D are quotient maps and A;D are loally ompat Hausdor� spaes,then p� q : A�B ! C �D is a quotient map.53. Suppose that X is a G-spae. Prove that the anonial projetion X ! X=G is an open map.54. Let X be a ompat Hausdor� spae. Prove the following:(a) If G is a �nite group and X is a G-spae, then X=G is a ompat Hausdor� spae.(b) If A is losed subspae of X, then X=A is ompat Hausdor�.55. Show that if U is a onneted subspae of X and U � V � U , then V is onneted.56. Suppose X = Si2I Ai, where eah Ai is onneted, and Ti2I Ai 6= ;. Show that X is onneted.57. Show that every quotient of a onneted (resp. path-onneted) spae is onneted (resp. path-onneted).58. Show that every �nite produt of a family of onneted (resp. path-onneted) spaes is onneted (resp.path-onneted).



18 EXERCISES 3659. For a spae Z, de�ne the fold map 5 : Z _ Z ! Z by 5 : (z; �) 7! z and 5 : (�; z) 7! z. Show that thefold map is ontinuous.60. Let X and Y be pointed spaes with base points x0 and y0 respetively. Show that X_Y is homeomorphito the subspae (X � fy0g) [ (fx0g � Y ) of X � Y .61. Show that (X _ Y ) _ Z �= X _ (Y _ Z) for any pointed spaes X; Y; Z.62. Show that (X ^ Y ) ^ Z �= X ^ (Y ^ Z) for any pointed spaes X; Y; Z.63. Given three pointed spaes X;Y; Z, show that (X _ Y ) ^ Z is homeomorphi to (X ^ Z) _ (Y ^ Z).64. Show that Sn ^ Sm �= Sn+m for any nonnegative integers n;m.65. Show that for pointed spaes X;Y , we have 
n(X � Y ) �= 
n(X) � 
n(Y ) and for nonnegative integersn;m, we have 
n+m(X) �= 
n(
m(X)).66. Show that for nonnegative integers n;m, we have �n+m(X) �= �n(�m(X)), and for any pointed spaesX;Y , we have Map�(�n(X); Y ) �= Map�(X;
n(Y )):67. Show that for a pointed spae X with base point x0, �(X) �= (X�I)=((X�f0g)[ (X �f1g)[ (fx0g�I)),where I = [0; 1℄.68. Let p0 be any point of Sn and let f : Sn ! Y . Show that the following are equivalent:(a) f is null-homotopi.(b) f has a ontinuous extension to Dn+1, where we identify Sn as the boundary of Dn+1 in the naturalway.() f is null-homotopi relative to p0.Dedue that any ontinuous map from Sn to a ontratible spae has a ontinuous extension over Dn+1.69. Show that �n(X � Y ) �= �n(X)� �n(Y ) as sets for any n � 0.70. Show that �n(X) �= �0(
n(X)) �= �1(
n�1(X)) as sets for all n � 1.71. Let X be a pointed spae with base point x0. Show that �0(X) = [S0; X℄ and the equivalene lasses of Xunder path-onnetedness are equivalent as sets. In partiular any n-onneted spae X is path-onnetedif and only if �0(X) is the one-point set.72. Show that a subspae A of X is a weak retrat of X if and only if i� : [X;A℄ ! [A;A℄ is a surjetivefuntion, where i : A ,! X is the inlusion map.73. Show that if (X;A) has the homotopy extension property with respet to A, then A is a weak retrat (resp.weak deformation retrat) of X if and only if A is a retrat (resp. deformation retrat) of X.74. Show that if (X � I; ((X �f0g)[ (X �f1g)[ (A� I))) has the homotopy extension property with respetto X and A is losed in X, then A is a deformation retrat of X if and only if A is a strong deformationretrat of X.75. If A is ontratible and the pair (X;A) satis�es the homotopy extension property with respet to X, showthan the anonial quotient X ! X=A is a homotopy equivalene.76. Let A � B � X be subspaes. Suppose that the inlusions A ,! B and B ,! X are o�brations. Showthat the inlusion A ,! X is a o�bration.77. Show that the natural inlusion Sn ,! Dn+1 is a o�bration.78. Let (X;A) be a pair of spaes. Suppose that the inlusion i : A ,! X is a o�bration. Show thatp = (idZ)i : Map(X;Z)!Map(A;Z) is a �bration for any spae Z.79. Let X be a pointed spae with base point x0. We say that the base point x0 is nondegenerate if theinlusion fx0g ,! X is a o�bration. Let X be a pointed spae with nondegenerate basepoint x0. Provethat the evaluation map Map(X;Y )! Y de�ned by f 7! f(x0) is a �bration.



18 EXERCISES 3780. If p : E ! B is a �bration, show that pidZ : Map(Z;E)! Map(Z;B) is a �bration for any loally ompatspae Z.81. Let p : ~X ! X and q : ~Y ! Y be overing projetions. Show that p� q : ~X � ~Y ! X � Y is a overingprojetion.82. Let p : ~X ! X be a overing projetion, and let B � X. Let ~B = p�1(B) � ~X, and let p0 = pj ~B : ~B ! Bbe the overing projetion of B indued by p. Suppose that ~X;X;B are all path-onneted, and that themap �1(B)! �1(X) indued by the inlusion B ,! X is surjetive. Show that ~B is also path-onneted.83. Let X be path-onneted and let Y be simply onneted. Suppose that there exist small ontratible openneighbourhoods of the base points x0; y0 of X; Y respetively, and that p : ( ~X; ~x0)! (X; x0) is a universalovering projetion. Let Z = f(~x; y) 2 ~X � Y : (p(~x); y) 2 X _ Y gand let p0 = (p � idY )jZ : Z ! X _ Y . Show that p0 : Z = X̂ _ Y ! X _ Y is a universal overingprojetion.84. (Borsuk-Ulam) Show that there does not exist any nonzero ontinuous map f : S2 ! S1 suh hat f(�x) =�f(x) for all x 2 S2. Dedue that no subspae of R2 is homeomorphi to S2.85. Show that the map f : Sm+n = Sn^Sm ! Sm^Sn = Sn+m given by f : x^y 7! y^x has degree (�1)mn.
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