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1 Definition of Categories and Functors. Some Constructions.

Definition 1.1. A category C consists of a class of objects, denoted by Ob(C), such that for each
pair A, B of objects in Ob(C), there is a set (possibly empty), denoted by Mor(A, B), called the set
of morphisms from A to B. An morphism f € Mor(4, B) is written as f : A — B. The following
properties are also satisfied.

1. The sets of morphisms are pairwise disjoint, namely, if either A # X or B # Y for objects
A, X,B,Y € Ob(C), then Mor(A, B) " Mor(X,Y) = 0.

2. For all objects C' € Ob(C), there is a morphism in Mor(C, C) called the identity morphism on
C', which is denoted by id¢.

3. For all morphisms av: A — B and 8 : B — C, we can associate a unique morphism foa: A — C.
The morphism 3 o « is called the composite of a and f.

4. Wa:A— B, 3:B — C and v: C — D are morphisms, then associativity holds:
(yoB)oa=rvo(foa)
5. For all morphisms a: A — B and §: B — C, we have idg oa = o and S oidg = f.

If «: A — B, it is customary to say that the domain of « is A, and the codomain of «a in B; each
morphism has a unique domain and codomain since all the sets Mor(A, B) are pairwise disjoint. In a
category C, a morphism « : A — B is known as an isomorphism if in C there is a morphism 3 : B — A
such that foa =id4 and a0 8 =idpg (in which case 8 : B — A is also an isomorphism). If there is an
isomorphism « : A — B, then we say that the objects A, B are isomorphic.

The identity morphism is always unique for any object C' because if idc and idy are two identity
morphisms on C, then by Definition 1.1(5), we have idc oidy, = idy since ide is identity, and also
idc oide = ide since idy is identity.

Lemma 1.2. Let C be a category.
1. For all objects C € Ob(C), the identity morphism idc : C — C' is an isomorphism.
2. The composite of two isomorphisms is an isomorphism.

3. If a: A — B is an isomorphism, then there is one and only one morphism B : B — A in the
category C such that foa =idy and ao f =idp.

Examples 1.3.

1. Let SET denote the class of all sets. For every A, B € SET, let Mor(A, B) be the set of all functions
from A to B. Then SET is easily seen to be a category, in which the composition of morphisms
is the same as the composition of functions. This requires a small technical proviso: functions
with different codomains must be distinguished even if their actions on a common domain are
identical; a function f : A — B must be distinguished from the function f : A — C in which C'is a
strict subset of B that contains Im(f). In the category SET, the identity morphism on a set is the
usual identity function, and a morphism f in SET is an isomorphism if and only if f is a bijective
function.

2. Let GRP denote the category whose objects are all groups, and for any groups G, H, Mor(G, H) is
the set of group homomorphisms from G to H (respecting the same technical proviso as in Example
1). A morphism ¢ in GRP is an isomorphism if and only if ¢ is bijective as a function. The category
AB of abelian groups is similarly defined.

3. A particular multiplicative group G can also be made into a category. Let the category have only
one object, G itself, and let Mor(G, G) be the set of elements of G; composition of morphisms a, b
is simply the product ab given by the binary operation in G. The group identity 1 is the identity
morphism on GG. Every morphim is an isomorphism since every element of G has a unique inverse.
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4. Let C be a category, Mor(C) be the class of all morphisms of C, and for any pair of morphisms
f:A— Bandg:C — D of C, define Mor(f, g) to be the set of all ordered pairs («, 3), where
a:A— Cand fB: B — D are morphisms of C such that the following diagram commutes.

A%B

L b

¢C —— D
9
Then the class Mor(C) together with the sets Mor(f, g) is a category under this definition.

5. If C is a category, the category CZ is the category whose objects consists of infinite sequences
{(Cn)}nez of objects in C and whose morphisms are collections {f, : C, = D, }pez of morphisms
of C indexed by Z. We call C” the category of C-objects graded by Z.

Definition 1.4. Let C be a catgeory. The opposite category C°P is defined to be the category whose
objects are the objects of C, namely, the class Ob(C), and in which the following properties hold.

1. For any pair of objects A,B € Ob(C), there is a bijective correspondence between the set of
morphisms Mor(A, B) in C and the set of morphisms Mor(B, A) in C°P, such that for all morphisms
a: A — B in the category C, we have a unique morphism a°? : B — A in C°P.

2. For all objects C, (id¢)°? =id¢.
3. For all morphisms a: A — B and §: B — C in C, we have (8 o a)°? = a°P o 3°P in C°P.

In other words, the opposite category C°P is constructed from C by reversing the direction of the mor-
phisms and compositions.

Example 1.5. SET is the category of sets and mappings, but with mappings written on the right,
namely, if f: S — T is a function and = € S, then the image of  under f is written as zf. Composition
of mappings is done from left to right, so that if g : T' — U is another mapping, then fog:S — U is
the mapping the sends z to (zf)g = z(f o g).

Metatheorem 1.6. A theorem which applies to all categories remain true if all the morphisms and
compositions mentioned in the theorem have their directions reversed.

Definitions and results that are obtained from each other by reversing the directions of the morphisms
and compositions are said to be dual of each other. A definition or result is said to be self-dual if it
remains unchanged when the direction of morphisms and compositions are reversed. For example, the
concept of an isomorphism is a self-dual concept.

Definition 1.7. Let C be a category and {4;};cr be a family of objects in C indexed by a nonempty set
I. Suppose that there is an object P € Ob(C) and a family of morphisms {m; : P — A;};cr such that
for any object C' € Ob(C) and any family of morphisms {p; : C' — A;};cr, there is a unique morphism
@ : C' — P such that m; 0 p = p; for all i € I.

Then we say that {P, {m; }icr} is a product in the category C. Casually, we may say that P is a product
of {A;}ier and denote it by J],.; A:.

Dualizing Definition 1.7 yields the following.
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Definition 1.8. Let C be a category and {A;};cr be a family of objects in C indexed by a nonempty
set I. Suppose that there is an object S € Ob(C) and a family of morphisms {o; : A; = S}iecs such that
for any object C' € Ob(C) and any family of morphisms {¢; : A; — C};er, there is a unique morphism
p:S — C such that poo; = ¢; forall i € I.

3!
A;
Then we say that {S,{o;}icr} is a coproduct or sum in the category C. Casually, we may say that S

is a coproduct of {A;};er and denote it by [[;; Ai.

Theorem 1.9. Let C be a category and {A;}icr be a family of objects in C indexed by a nonempty set
I. Suppose that {P,{m;}ic1} and {Q,{r}ic1} are products of {A;}ics in the category C. Then P and
Q) are isomorphic.

Similarly, dualizing Theorem 1.9 yields the following result.

Theorem 1.10. Let C be a category and {A;}icr be a family of objects in C indexed by a nonempty set
I. Suppose that {S,{0:}icr} and {T,{c}}icr} are coproducts of {A;}icr in the category C. Then S and
T are isomorphic.

Definition 1.11. Let C,D be categories. A covariant functor F' : C — D is a function F' that maps
objects in C to objects in D, and morphisms in C to morphisms in D, such that the following are satisfied:

Funcl: F(idx) = idp(x) for any object X € C;

Func2: If o, are morphisms in C for which the composite 8 o a is well-defined, then the composite
F(B) o F(a) is well-defined in D, and F (8o «a) = F(B) o F(a).

A contravariant functor F' : C — D is a function F' that maps objects in C to objects in D, and
morphisms in C to morphisms in D such that (1) above is satisfied, and in place of (2), we have:
Func2’: If o, 8 are morphisms in C for which the composite § o « is well-defined, then the composite
F(a) o F(p) is well-defined in D, and F(f o a) = F(a) o F(f).

Examples 1.12.

1. For any category C, there is a covariant functor C — C that sends every object and morphism to
itself. This is known as the identity functor on C and is denoted by Idc.

2. If D is a subcategory of C (a subclass of the class of objects and morphisms of C that forms
category), there is a covariant functor D — C known as the inclusion functor defined in the obvious
way.

3. If C is a category, there is a contravariant functor C — C°P that sends every object X € C to X°P
and every morphism f in C to f°P. This is known as the opposite functor on C.

4. There is a covariant functor GRP — AB that sends every group G to the quotient group G/G’,
where G’ is the commutator subgroup of G; G’ is the normal subgroup of G generated by all the
elements of the form zyz—'y~!, where z,y € G.

5. Let C be a category and let an object A € C be fixed. There is a covariant functor
Mor(A,—) : C — SET

that sends each object X € C to the morphism set Mor(A, X) and each morphism f: X — Y in C
to the set function Mor(A, f) : Mor(A4, X)) — Mor(A,Y") defined by Mor(A4, f) : a — foa.
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6. Let C be a category and let an object A € C be fixed. There is a contravariant functor
Mor(—, A) : C — SET

that sends each object X € C to the morphism set Mor(X, A) and each morphism f:Y — X in C
to the set function Mor(f, A) : Mor(X, A) — Mor(Y, A) defined by Mor(f, A) : a — «o f.

The composite of two functors is again a functor.

Definition 1.13. Let F) G : C — D be covariant functors. A natural transformation from F' to G is
a collection n = {nx : F(X) = G(X)}xec of morphisms in D indexed by the objects of C such that for
all morphisms f : X — Y in C, we have the following commutative diagram:

F(X) 25 G(X)
F(7) lG(f)
F(Y) n—) G(Y)

If F;G : C — D are contravariant functors, a natural transformation from F to G is a collection
n = {nx : F(X) - G(X)}xec of morphisms in D indexed by the objects of C such that for all
morphisms f :Y — X in C, we have same diagram as above.

If nx is an isomorphism for all objects X € C, we call  a natural isomorphism.

The composite of two natural transformations is again a natural transformation.
Definition 1.14. A concrete category is a category C with a functor v : C — SET.

The category of groups, equipped with the function that assigns to each group its underlying set in the
usual sense, is a concrete category. Similarly, the categories of abelian groups and of partially-ordered
sets, with the obvious underlying sets, are concrete categories. Since in the great majority of examples
of concrete categories, the functor v assigns to an object its underlying set in the usual sense (such as in
examples above), we shall denote both the object and its underlying set by the same symbol and leave
out any explicit reference to the functor v.

Definition 1.15. Let F be an object in a concrete category C, X be a nonempty set, and ¢ : X — F be
a function of sets. We say that F, or more exactly (F,t), is free on X if for any object C' € Ob(C) and
any set function f : X — C, there exists a unique morphism ¢ : F' — C in the category C such that
1 o1 = f as functions of sets.

In the concrete category C, an object that is free on some set is called a free object.

Lemma 1.16. In a concrete category C that contains objects which are sets with more than one element,
if (F,1) is a free on a set X, then the set function v : X — F is injective.

Proof. Suppose that t(z1) = t(x2) with 2; # 5. Choose an object C' which is set containing at least
two distinct elements, say ¢; and ¢2. Let f : X — C be any set function such that f(z1) = ¢; and
f(x2) = ¢o. Since F is free on X, we have a unique morphism ¢ : FF — C in the category C such that
1o = f as functions of sets. From the fact that ¢ (c(z1)) = 9 (c(z2)), we deduce that f(x1) = f(x2),
whence ¢; = ¢o, which contradicts our earlier assumptions. O

Theorem 1.17. If C is a concrete category in which (Fy,11) is free on X, and (F2,12) free on Xy with
| X1| = | Xz2|, then Fy and F5 are isomorphic.
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2 Group Actions on Sets

Definition 2.1. Let X be a nonempty set and G be a group. Let o : G x X — X be a function and
write an image a(g,z) simply as gz. We call a a group action if 1gz = z and (gh)z = g(hz) for all
g,h € G and z € X. If there is a group action a : G x X — X, we say that X is a G-set, and that G
acts on the set X.

Examples 2.2. Let G be a group.

1. G can be made to act on itself. The map (g,z) — gz for g,z € G is easily seen to be a group
action. We say that G acts on G by left multiplication.

2. Similarly, the map (g,z) — zg~' for g,z € G is also a group action. We say that G acts on G by
right multiplication.

3. The map (g,z) — gzg~! for g,z € G is yet another group action of G' on itself. We say that G
acts on G by conjugation.

4. The group of permutations on a set X, Sym(X), acts on X in the natural manner via the map
(0,2) — o(x), for 0 € Sx and z € X. We say that Sym(X) acts on X canonically.
Proposition 2.3. If X is a G-set with group action o : G x X — X, then there is a group homo-
morphism ¢ : G — Sym(X) given by ¥(g) : x — gxr = a(g,z). Conversely, if we can find a group
homomorphism ¢ : G — Sym(X), then the map (g,z) — ¢(g)(x) is a group action that makes X into
a G-set. These processes are inverse to one another, so that we have a bijective correspondence between
the G-set structures that can be defined on X and the group homomorphisms of G into Sym(X).

If v : G —» Sym(X) is a group homomorphism of G into Sym(X), then we say that G acts on X
via 1, and the group action we are referring to will be that which arises from the abovementioned
correspondence, namely (g, z) — ¥(g)(x).

Definition 2.4. Let X be a G-set and # € X. The orbit of z in G, denoted by Og(z) or by Gz, is
defined by
Oc(z) ={gz : g€ G}.

Proposition 2.5. If X is a G-set, then the orbits of X form a partition of X.
In particular, this would mean that if G acts on X, then the relation ~ on X defined by

z~12 & gr=21 for some g€ G
is an equivalence relation on X, and the equivalence classes of X under ~ are simply the orbits Og(z).
If X is a G-set, the collection of orbits Og(z) is denoted by X/G. Thus X/G is the collection of
equivalence classes of X under the relation ~ defined above.

Definition 2.6. Let X be a G-set and x € X. The stabilizer or isotropy group of z in G, denoted
by G, is defined by
G, ={9€qG : gr=uz}.

Example 2.7. Let G be a group. Consider G acting on itself by conjugation. The orbit of z € G is the
conjugacy class

Clg(z) = {gzg™" : g € G}
and the stabilizer of z € G is the centralizer

Co(z)={g€qG : gzg™' =z}

Proposition 2.8. Let X be a G-set and let g € G, x € X.
1. Gy is a subgroup of G.
2. Ggp = 9gGrg™".

3. There is a bijective correspondence between the elements of Og(x) and the left cosets of G, in G.
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3 Basic Definitions in Topology

Definition 3.1. A topology on a set X is a collection I of subsets of X having the following properties:
1. § and X are in S.
2. If {U;}ier are a collection of sets in S, then | J;.; U; is in .
3. If {U;}™, is a finite collection of sets in S, then !, U; is in S.

A set X for which a topology S has been specified is known as a topological space, denoted by (X, ).

We often leave out mention of & is there is no confusion. If X is a topological space with topology &
and U € S, we say that U is an open set of X, and that X \ U is a closed set of X, with respect to
the topology 3.

Examples 3.2.
1. The discrete topology on a set X is the topology that consists of all subsets of X.
2. The indiscrete or trivial topology on X is the topology that consists only of ) and X.

3. The finite complement topology on X is the collection U of subsets of X such that X \ U is
either finite or the whole of X.

! !

Definition 3.3. Suppose that & and S are two topologies on a set X. If & C &', we say that & is

coarser than &/, and that $’ is finer than S

Definition 3.4. If X is a set, a basis for a topology on X is a collection B of subsets of X, whose
members are called basic sets, such that:

1. 0 € B.

2. Upes B =X.

3. If C1,Cs, ...,C)y is a finite collection of elements of B, then there is a collection {B;};cr of elements
of B such that .
UBi=[c¢
iel j=1

Let B be a basis for a topology on X. Let & be the collection of all arbitrary unions of elements of B.
Then (X, <) is a topological space.

Definition 3.5. The topology & constructed from a basis B by taking arbitrary union of basic sets is
known as the topology generated by 5, and the set B is known as a basis for S.
Example 3.6. Let M be a nonempty set. Suppose there is a function dy; : M x M — R such that:
1. dy(z,y) > 0 for all z,y € M, equality holding if and only if z = y;
2. dy(z,y) = du(y,x) for all x,y € M;
3. dy(z,2) < dp(z,y) +dp(y, 2) for all z,y,z € M.

Then we call (M, dps) a metric space. The collection of sets of the form B. = {y € M : dy(z,y) < €}
for x € M and e > 0 forms a basis for a topology on M known as the topology induced by the metric.

Definition 3.7. If X is a set, a sub-basis for a topology on X is a collection S of subsets of X whose
members are called sub-basic sets such that:

1. pes.

2. Uges S = X.
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Obviously, a sub-basis for a topology on X can be extended to a basis by collecting all the intersections
of finite collections of sub-basic sets.

Definition 3.8. The topology & constructed from a sub-basis S by first extending S to a basis B by
collecting all the intersections of finite collections of sub-basic sets, and then generating & from B, is

known as the topology generated by S, and the set S is known as a sub-basis for .

Definition 3.9. Let X and Y be topological spaces. A function f : X — Y is said to be continuous
if for each open set V in Y, the set f~(V) is open in X.

Example 3.10. In classical metric space theory, a function f : M — N between metric spaces is said
to be continuous if given any fixed point x € M and any € > 0, there exists some § > 0 such that
dn(f(z), f(y)) < € whenever das(z,y) < 6. A function between metric spaces is continuous in this
definition if and only if it is continuous in the sense of Definition 3.9.

Definition 3.11. A bijective function f : X — Y between topological spaces is said to be a homeo-
morphism if both f and f~! are continuous functions. If X is homeomorphic to Y we denote it by
XY,

Definition 3.12. A function f : X — Y between topological spaces is said to be an open map if
whenever U is an open set in X, f(U) is an open set in Y.

In other words, an open map sends open sets to open sets. In particular, a homeomorphism is a bijective
continuous open map.
From now on, the word “map” is always assumed to mean “continuous function”.
Definition 3.13. Let (X, ) be a topological space. If Y is a subset of X, the collection
Sy ={UNY : Ues}
is a topology on Y known as the subspace or induced topology. We call Y a subspace of X.

Example 3.14. The open sets of [0, 1] as a subspace of R are those of the form (a, b), where 0 < a,b < 1,
or of the form [0,a) or (a,1] where 0 < a < 1, in addition to the set [0, 1] itself.

Definition 3.15. Let {X;};cr be a collection of topological spaces. The box topology on []
the topology having as basis all the elements of the form []
1€ 1.

ier Xi 18
el U;, where U; is an open set in X; for each
For each j € I, let 7 : [[,.; X — X be the map that sends each element (z;);cr, where z; € X; for all
i, to the element z; € X;. We call ; the projection map at coordinate j.

Definition 3.16. Let {X;};cr be a collection of topological spaces. For each i € I, let S; denote the
collection
S; = {n;7"(U:) : U is open in X;},

s=Js.

i€l

and let

Then the collection S forms a sub-basis for a topology on [],-; X; known as the product topology.

il
The box and product topologies are generalizations for the topology on X x Y. For the case where I
is a finite set, the box and product topologies on [];.; X; coincide. If I is an infinite set, then the box

topology is in general finer than the product topology.

The product topology on [],.; X; has as basis all sets of the form [[,_; U;, where U; is open in X; for
all i € I and U; = X; except for at most finitely many i.

If [[;c; Xi is given the product topology, the canonical projections 7; : [[;c; Xi — X; are continuous
for each j € I.

Let A: X — [[;c; X be defined by A : 2+ (z;);er, where z; = x for all i € I. We call A the diagonal
map, and A is continuous if [[,.; X is given the product topology.
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Proposition 3.17. Let {X;}icr be a collection of topological spaces indexed by a nonempty set I, and let
[I;cr Xi be given the product topology. Then for any topological space Y and any collection of continuous
maps {p; : Y — X, }icr, there exists a unique continuous map ¢ : Y — HiEI X; such that mj 0 p = @;
for each j € I, where the 7;’s are the canonical projections. Hence, [[;.; X; with the product topology is
a product of {X;}ier in the category TOP of topological spaces and continuous maps.

Il

N

X

Y

HiEI Xi

Definition 3.18. Let X be a topological space, and let A be a subset of X.

1. The closure of 4 in X, denoted by Clx(A) (or A if there is no ambiguity), is the intersection of
all closed sets of X containing A.

2. The interior of A in X, denoted by Intx(A) (or A° if there is no ambiguity), is the union of all
open sets of X that are contained within A.

3. The boundary of A in X, denoted by Bdx(A) (or 0A if there is no ambiguity), is defined by

Obviously, 4 is a closed set and A° is an open set, implying that A = Clx (A) if and only if A is closed
in X, and A =Intx(A) if and only if A is open in X. Furthermore,

A° CACA.
Example 3.19. Let A =[0,1) CR. Then Clg(A) = [0,1], Intr(A) = (0,1), and Bdr(A) = {0,1}.

Definition 3.20. Let A be a subset of a topological space X. We say that € X is a limit point or
an accumulation point of A if for every open set U of X containing x, there is some y € A with y # «
and y € U. We denote the set of limit points of A in X by Lx(A) (or by A’ if there is no ambiguity).

Note that elements of A are not necessarily limit points of A. A subspace is closed if and only if it
contains all its limit points.

Example 3.21. Let A =[0,1) U {2}. Then Lg(A) = [0, 1].

Definition 3.22. Let X and Y be topological spaces, and let p : X — Y be a surjective function. We
say that p is a quotient map if every subset V of Y is open in Y if and only if p~(V) is open in X.

A quotient map between topological spaces is necessarily continuous.

Let p: X — A is a surjective function, and let & consist of those subsets V' of A for which p~!(V) is
open in X. Then it is straightforward to check that & is a topology on A. This is called the quotient
topology on A induced by p : X — A, and is the unique topology & on A relative to which p is a
quotient map.

Definition 3.23. Let R be an equivalence relation on a space X. Let p: X — X/R be the canonical
surjection that maps each element of X to its equivalence class. Under the quotient topology induced
on X/R by p, the space X/R is called a quotient space or identification space of X.

If A is a subspace of X, the space X/A is defined to be the quotient space of X obtained by identifying
A to a single point.
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4 Compact, Locally Compact, Hausdorff, Connected Spaces

Let X be a subspace of a topological space Y. A covering of X in Y is a collection {U;};c of subsets
of Y such that X C |J,.;U;. We call a covering {U;};e; of X in Y an open covering in Y if every set
U; is open in Y.

i€l

If every U; is a subset of X and X = J;; U;, we simply say that {U}icr is a covering of X.

Definition 4.1. A topological space X is said to be compact if given any open covering {U;} of X,
there exists a finite collection Uy, Us, ..., U, of sets drawn from {U;} such that X = U?Zl Uj. We say
that the open covering {U;} has a finite subcover.

Proposition 4.2. The notion of compactness of X is independent of the space that contains X. More
precisely, X is compact if and only if for all Y O X in which X is given the subspace topology of Y, any
open covering of X in'Y admits a finite subcover.

Proposition 4.3. The continuous image of a compact space is compact.
Proposition 4.4. A closed subspace of a compact space is compact.

Proof. Let X be a compact topological space and let S be a closed subspace of X. Let {U;}icr be an
open cover of S in X. Since X = ({J;c; U;) U (X \ S) and (X \ S) is open in X, it follows that there is a
finite collection Uy, Us, ..., U, of sets drawn from {U;}ier such that X = (U?:1 Uj)U(X '\ S). But then
this would mean that {U;,Us,...,U,} is a finite subcover of S in X. O

Definition 4.5. Let = be a point in a topological space X. We say that U is a neighbourhood of z if
there is some open set V' of X such that V C U and z € V.

Definition 4.6. A space X is said to be locally compact if every point in X has a compact neigh-
bourhood.

Clearly, any compact space is locally compact.

Example 4.7. R” is locally compact but not compact. The Heine-Borel Theorem states that any closed
bounded subset of R™ is compact.

Definition 4.8. A topological space X is said to be Hausdorff if given any distinct points u,v € X,
there are disjoint open sets U,V of X such that u € U and v € V.

Proposition 4.9. Every compact subspace of a Hausdroff space is closed.

Proposition 4.10. Let X be a locally compact Hausdorff space. Given a point x € X and a neighborhood
U of x, there is an open set V' such that x € V. CV CU and V is compact.

Let S® = {0,1} denote the topological space consisting of two distinct points and given the discrete
topology.

Definition 4.11. A topological space X is said to be disconnected if there is a continuous surjective
map X — S°. Such a map is termed a disconnection of X.

If f: X — S%is a disconnection of X, then X = f~1(0) U f (1) describes a partition of X into two
disjoint subsets, each of which are both open and closed.

Definition 4.12. A topological space X is said to be connected if it is no disconnection.
Proposition 4.13. The continuous image of a connected space is connected.

Definition 4.14. A topological space X is said to be path-connected for any points u,v € X, there
is a continuous map f : [0,1] = X such that f(0) = u and f(1) =v.

Proposition 4.15. The continuous image of a path-connected space is path-connected.

Proposition 4.16. A path-connected space is connected.

Example 4.17. The subspace Y = {(z,y) € R? : y =sin(1/x), = > 0} U {(0,0)} of R? is connected
but not path-connected.
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5 Some Important Topological Constructions and Examples

Definition 5.1. Given a collection {X;};er of topological spaces, the disjoint union | |;.; X; is the
union of the spaces X; regarded as pairwise disjoint sets, with topology given by open sets of the form
U;cr Ui, where Uj; is open in X;.

The canonical inclusions o; : X; — | |,; X; are continuous for all j € I.

iel
Proposition 5.2. Let {X;}ics be collection of topological spaces. If {1; : X; — Y }ier is a collection
of continuous maps, then there is a unique continuous map 1 : | |;c; X;i =Y such that ) o o; = 1p; for
all j € I, where 05 : Xj — | |;c; Xi is the canonical inclusion. Hence, the disjoint union | |;.; X; is a
coproduct of {X;}icr in the category TOP of topological spaces.

iel

3!
I—liEI X v

N A

X

Y

Definition 5.3. A pair of spaces (X,Y) is a space X together with a subspace Y. Given pairs (X,Y)
and (A, B) of spaces, a map of pairs f: (X,Y) — (4, B) is a continuous map f : X — A that satisfies
f(Y) C B. We call f a homeomorphism of pairs if f is a homeomorphism and the inverse map f~*
is a map of pairs (4, B) — (X,Y).

Let (X,Y) and (A, B) be pairs of spaces, and let f : Y — B be a continuous map. Define an equivalence
relation ~ on the disjoint union X U A by identifying y with f(y) for all y € Y. The space (X U A)/ ~
is denoted by AUy X and is referred to as an adjunction space.

If (X,Y) is a pair of spaces in which ¥ = {x} is a singleton set, we denote it simply by (X,x*) and
say that X is a pointed space with basepoint x. A map of pairs between pointed spaces is called a
pointed map. Thus a pointed map sends the basepoint of one space to that of the other. We often
denote (X, *) simply by X if there is no danger of confusion.

Definition 5.4. If XY are pointed spaces with base points zg, yo respectively, the wedge X VY is the
adjunction space Y Uy X where f : {20} = {yo}. In other words, X VY is obtained from the disjoint
union of X and Y by identifying the base points of X, Y.

For a space Z, define the fold map v : ZVZ — Z by v : (2,%) — z and ¥/ : (%, 2) = z. The fold map
is continuous.

Definition 5.5. If X,Y are pointed spaces, the smash X AY is defined to be (X xY)/(X VY'), where
we identify X VY as a subspace of X x Y.

Examples 5.6.

1. For a space X with subspace A, the quotient space X /A is often regarded as a pointed space with
basepoint being the equivalence class containing the elements of A.

2. For all nonnegative integers n, the n-sphere is denoted by S™ and is the subspace of R**! consisting
of all points of distance 1 from the origin. S™ is often regarded as a pointed space with basepoint
being the north pole. We have S™ = D" /0D" for all n > 1, where D™ = [0,1]" C R”. We often
identify S™! as the boundary of D", and write S™ = D"/S™" ! for n > 1.

3. The real projective space RP" (n > 0) is defined to be the quotient space of R**1\ {0} under the
equivalence relation ~ defined by x ~ y < =z = ry for some real number r. RP"™ is homeomorphic
to the quotient space of S™ under the equivalence relation R defined by xRy & z = +y.
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Let X and Y be topological spaces. The mapping space Map(X,Y) is the space of all continuous maps
from X to Y under the compact-open topology defined as follows:

Let K be a compact set in X and U be an open set in Y. Let Wg y = {f € Map(X,Y) : f(K)CU}.
Then all the elements Wi 7 as K varies over the compact sets in X and U varies over the open sets in
Y form a sub-basis for the compact-open topology on Map(X,Y’). If X and Y are pointed spaces, then
the pointed mapping space Map, (X,Y), also commonly denoted as Y, is the subspace of Map(X,Y))
consisting of all pointed maps f: X — Y.

Definition 5.7. Let f : A — X and ¢ : ¥ — B be continuous maps. Then the function ¢/ :
Map(X,Y) — Map(A4, B) is defined by g/(\) = go Ao f. If f and g are pointed continuous maps,
then they induce a function g : Map, (X,Y) — Map, (4, B) also defined as above.

Proposition 5.8. Let f : A — X and g : Y — B be continuous maps (or pointed continuous maps).
Then the function gf : Map(X,Y) — Map(A, B) (resp. g/ : YX — B4) is a continuous map.

Remark 5.9. If X and Y are pointed spaces, then Map(X,Y) and Map, (X,Y") are also pointed spaces
with the base point being the constant map X — {yo}, where yg is the base point of Y. If g: Y —» B
is a pointed continuous map, then for any continous map f : A — X, the induced function ¢/ is also a
pointed continuous map between the mapping spaces.

Let Top, denote the category of pointed topological sapces. Then both Map(X, —) and Map, (X, —)
are covariant functors on Top and ToP, respectively for any space X (respectively pointed space X),
and both Map(—, X) and Map, (—, X) are contravariant functors on Top and TOP, respectively for any
space X (respectively pointed space X).

Proposition 5.10. Let X, Y and Z be topological spaces.
1. If Z is a subspace of Y, then Map(X, Z) is a subspace of Map(X,Y").

2. If X, Y and Z are pointed spaces with Z being a subspace of Y (sharing the same base point as
Y ), then Map, (X, Z) is a subspace of Map,(X,Y).

Definition 5.11. Let X and Y be topological spaces. The evaluation map e: Map(X,V) x X -V
is defined by e : (f,z) — f(x). If X and Y are pointed spaces, the restriction of e to Map,(X,Y") gives
the evaluation map e : Map,(X,Y) x X — Y, with the property that if f is the constant pointed map
or z is the base point of X, then e(f,z) = yo, where yo is the base point of V.

Remark 5.12. It follows from the definition that for pointed spaces X and Y,
e(Map* (X7 Y) \ X) = {yO}a
and so e induces the evaluation map €: Map, (X, Y)A X — Y.

Proposition 5.13. Let X andY be pointed spaces. If X is locally compact Hausdorff, then the evaluation
maps e : Map(X,Y) x X =Y ande: Map,(X,Y)AX — Y are continuous.

Proposition 5.14. Let X, Y and Z be pointed spaces with X and Y Hasudorff. Then
1. Map(X 1Y, Z) = Map(X, Z) x Map(Y, Z).
2. Map, (X VY, Z) = Map, (X, Z) x Map, (Y, Z).
Proposition 5.15. Let X, Y and Z be pointed spaces with X Hausdorff. Then
1. Map(X,Y x Z) = Map(X,Y) x Map(X, Z).
2. Map, (X,Y x Z) = Map,(X,Y) x Map, (X, Z).

Let X, Y and Z be topological spaces, and let A : X x Y — Z be a continuous map. For a given z € X,

we define a function A\, : Y — Z by Az(y) = A(z,y). Then the function A, is continuous, and the

function a(\) : X — Map(Y, Z) defined by a(\)(xz) = A, is also continuous.
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Definition 5.16. Let X, Y and Z be topological spaces. The association map is the function
a:Map(X xY,Z) = Map(X,Map(Y, 7))
defined by [a(X)(2)](y) = AM(z,y) forz € X,y e Y and A: X xY — Z.

We consider the pointed case. Let X, Y and Z be pointed spaces and let p : X XY — X AY be
the quotient map. Then we have the continuous map (idz)? : Map, (X AY — Z) — Map,(X x Y, 7).
Clearly o maps the image of (idz)? into the subspace Map, (X, Map, (Y, Z)) of Map(X,Map(Y, Z)).
Thus « induces the reduced association map @ : Map,(X AY,Z) — Map,(X,Map,(Y, 7)) with
[@N)(2)](y) =AMz Ay)forze X,y eY and A\: X AY — Z. In fact, @ is the composite

gxay (4270 oy “'zXXY} (ZY)X

Proposition 5.17. If X is Hausdorff, the association map « : Map(X x Y, Z) — Map(X,Map(Y, Z))
is continuous, and therefore the reduced association map @ : Map, (X AY,Z) — Map, (X, Map, (Y, Z))
s also continuous.

Proposition 5.18. Let X, Y and Z be topological spaces. Then o and @ are injective. If Y is locally
compact Hausdorff, then a and @ are bijective. If X and Y are locally compact Hausdorff, then « is a
homeomorphism. If X and Y are compact Hausdorff, then @ is a homeomorphism.

Examples 5.19.

1. For a pointed space Y, define Q(Y) = Map,(S',Y). In general, for all nonnegative integers
n, define Q"*(Y) = Map,(S™,Y). Q*(Y) is termed the n-fold loop space of Y. For pointed
spaces X,Y, we have Q"(X xY) = Q"(X) x Q*(Y) and for nonnegative integers n, m, we have
QX)) = Qn(Q™(X)).

2. For a pointed space X, define ¥(X) = St A X. In general, for all nonnegative integers n, define
EM(X)=S"AX. £"(X) is termed the n-fold suspension of X. For nonnegative integers n,m,
we have X"t (X) & ¥*(£™(X)). For any pointed spaces X,Y, we have

Map, (X" (X),Y) = Map, (X, Q" (Y)).

Both the loop 2 and suspension ¥ are functors on the category ToP, of pointed topological spaces.
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6 Introduction to Homotopy

Definition 6.1. Let f,g : X — Y be two maps. We say that f is homotopic to ¢ if we can find a
map F: X x I — Y such that F(z,0) = f(z) and F(z,1) = g(z) for all z € X. The map F' is called a
homotopy from f to g. We write f ~g,or F: f ~¢g. Amap f: X — Y is called null-homotopic
if f is homotopic to a constant map from X to Y.

Definition 6.2. Let A be a subspace of X and suppose f,g : X — Y are maps. We say that f is
homotopic to g relative to A if we can find a map F': X x I — Y such that F' is a homotopy from f
to g and F(a,t) = f(a) foralla € A, t € I. We write f ~ grel A or F': f ~ grel A. We say that f is
null-homotopic relative to A if f is homotopic to a constant map from X to Y relative to A.

If f ~ grel A, then we have g(a) = f(a) for all @ € A. Hence the maps f and g agree on the subspace A.
If in addition, ¢ is a constant map, then f|4 is also a constant map. Homotopy relative to a subspace A
is an equivalence relation on the set of maps from X to Y.

The notation [X,Y]4 will be used to denote the set of equivalence classes of maps from X to ¥ under
the relation of homotopy relative to the subspace A of X. Given a map f : X — Y, we use [f]a to
denote the equivalence class in [X, Y] 4 to which f belongs. For unpointed spaces X and Y, we can write
[X, Y]y simply as [X,Y], and [f]p simply as [f].

Proposition 6.3. Let A be a subspace of X and B be a subspace of Y. Let fo, fi : X — Y be homotopic
relative to A and go,g1 : Y — Z be homotopic relative to B. Suppose further that fo(A) = fi1(A) C B.
Then go o fo =~ g1 o firel A.

Definition 6.4. Let X and Y be pointed spaces and let f,g : X — Y be pointed maps. f is called
pointed homotopic to g if f ~ grelzy, where z( is the base point of X. We can simply write f ~ g if
there is no ambiguity.

For pointed spaces X and Y, the notation [X,Y] is used to denote the set of equivalence classes of
pointed maps from X to Y under the relation of pointed homotopy, that is, homotopy relative to the
base point z¢ of X. For any pointed map f : X — Y, [f] denotes the equivalence class in [X,Y] to
which f belongs.

Let TopH and ToPH, respectively denote the category of topological spaces (respectively pointed
spaces) in which the morphism sets are the equivalence classes of maps (respectively pointed maps)
under homotopy. Then for any pointed space X, [X,—] is a covariant functor on ToPH, and [—, X] is
a contravariant functor on ToPH,. For a map f : X — Y, we often denote [X, f] simply as fX or f.,
and [f, X] simply as fx or f*. Thus f.:[a] = [foa]forall a: Z — X and f*: [5] = [B o f] for all
B:Y — Z.

Proposition 6.5. Let X, Y and Z be pointed spaces.

1. There is a bijection 0 : [X VY, Z] — [X,Z] x [Y, Z] given by 0 : [\] = ([Aoix],[\oiy]), where
ix: X =>XVY andiy :Y — X VY are inclusion maps.

2. There is a bijection v : [X,Y x Z] = [X,Y] x [X, Z] given by v : [A\] = ([py o A],[pz o A]), where
py Y XZ =Y andpz :Y X Z — Z are projection maps.

Proposition 6.6. Let X,Y,Z be pointed spaces. If Y is locally compact Hausdorff, then the reduced
association map @ : Map,(X AY,Z) — Map,(X,Map, (Y, Z)) induces a bijection @, : [X ANY,Z] —
[X, Map, (Y, Z)].

7 Homotopy Equivalences and Contractible Spaces

Definition 7.1. Let X and Y be topological spaces. A map f : X — Y is called a homotopy
equivalence if there is a map g : Y — X such that go f ~ idx and f o g ~ idy. The map g is called
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a homotopy inverse of f. A space X is homotopy equivalent to Y if we can find a homotopy
equivalence f : X — Y. In this case, we say that X has the same homotopy type as Y, and we
write X ~ Y, or X ~; Y. Definitions remain the same if X and Y are pointed spaces and the word
“homotopy” is replaced by “pointed homotopy”.

Definition 7.2. A space X is contractible if the identity map idx : X — X is homotopic to a constant
map on X, namely, idx is null-homotopic.

Proposition 7.3. Any two maps from any arbitrary space to a contractible space, or from a contractible
space to any arbitrary space, are homotopic, and in particular, are null-homotopic.

Corollary 7.4. IfY is a contractible space, then any two maps on'Y are homotopic. In particular, any
two constant maps on Y are homotopic, so the identity map idy is homotopic to any constant map on
Y.

Proposition 7.5. A space X is contractible if and only if X is homotopy equivalent to the one-point
space.

Corollary 7.6. Any two contractible spaces have the same homotopy type. If X and Y are contractible
spaces, then any map f : X — 'Y is a homotopy equivalence.

8 The Fundamental Group

Definition 8.1. Let X be a topological space and let A: I — X and p: I — X be two paths in X with
A(1) = u(0). The product A % p: I — X is defined by

A(2t) 0<t<1/2

Ax () = {M(Qt—l) 1/2<t<1.

Clearly the product A % u is also a path in X.

Let A\, : I — X be two paths in X. X\ and p are briefly said to be homotopic, denoted by A ~ p, if A
is homotopic to u relative to 0I = {0,1}. Note that if A ~ p then A(0) = ©(0) and A(1) = p(1).
Lemma 8.2. Let Ao, A1, lto, 11 be paths in a topological space X with Ao(1) = uo(0) and A1 (1) = u1(0).
If Ao 2 A1 and po == py, then Ao * g = A1 * g .

Lemma 8.3. Suppose that Ao, A1, A2 are paths in X with Ag(1) = A1 (0) and A\ (1) = X2(0). Then
(AO * Al) *A2 ~ )\0 * ()\1 * )\2)

For each x € X, we define a constant path €, : I — X by €,(t) = z.
Lemma 8.4. Let A be a path in X with A(0) =z and A\(1) =y. Then €z x A = XA ~ X x¢,.

Given a path X in X, the inverse of A\, denoted by A~1, is defined by A™* : I — X, A71(¢) = A(1 — ¢).
Clearly the inverse of a path is itself a path.

Lemma 8.5. Let A be a path in X with \(0) =z and A\(1) =y. Then Ax A™' ~ ¢, and \7' x X ~ ¢,,.

Let X be a pointed space with base point zo. By Lemmas 8.2-8.5, the set of homotopy classes of paths
in X having start and end points z is a group with identity [e,,] under the well-defined multiplication
given by

[Al - (] = [A pa].

Definition 8.6. Let X be a pointed space with base point zg. The n*’-homotopy group ,(X,zo)
is defined by
T (X, 20) =[S, X]

for n > 0. If there is no danger of confusion, we may omit mentioning the base point and simply write
T (X).
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Since S' = I/0I, a path X : I — X with start and end points zo factors uniquely into:

where ¢ : I — S! is the canonical quotient. We have just shown that (X, z9) = [S!, X] is a group.
This is known as the fundamental group of X with base point z.

Corollary 8.7. A map f : X — Y induces a group homomorphism f, : m (X,z) — m (Y, f(z)) given
by f« : [\] = [f o A], where we regard X as having base point xo and Y as having base point f(x) when
we pass to the homotopy group. If f,g: X =Y and f ~ grelzx, then f. = g.. If X and Y are pointed
spaces which are pointed homotopy equivalent, we have m (X) = w1 (Y') as groups.

It is known that 7,(X) is an abelian group for all n > 2.

Proposition 8.8. Let z,y € X. If there is a path from x to y in X, then the groups m, (X, z) = m,(X,y)
as groups.

By Proposition 6.5(2), we have m,(X x V) =2 7,(X) x 7,(Y") as sets for any n > 0.

Definition 8.9. A pointed space X is said to be n-connected if 7, (X) = 0 for all 0 < m < n. A
pointed space X is said to be simply connected if it is 1-connected.

If a space X is simply connected, then for any z,y € X, any two paths from z to y are homotopic.

Proposition 8.10. A contractible space X is n-connected for all n > 0.

9 The Fundamental Group of S!

We define a map e : R — S C C by e(t) = exp(2int). We observe that e is continuous and that
e|(—1/2,1/2) is a homeomorphism from (—1/2,1/2) onto S* \ {exp(i=)}. Let

log : S*\ {exp(im)} — (—=1/2,1/2)
be the inverse of e|(_1/2,1/2)-

Definition 9.1. A subset X C R" is said to be starlike from a point z if whenever z € X, the
closed segment [z, x] from zo to z lies in X.

Lemma 9.2. Let X C R" be compact and starlike from a point xo € X. Then given any map f : X — St
and any to € R such that e(to) = f(xo), there exists a map f : X — R such that f(z¢) =tg andeof = f.

Lemma 9.3. Let X be a connected subspace of R" and let f,g : X — R be maps such that eo f =eog
and f(xo) = g(xo) for some xg € X. Then f = g.

Let a : I — S' be a closed path at 1 € S'. Since I is compact, connected and starlike from 0 € I and
a(0) = a(l) =1, it follows from Lemmas 9.2-9.3 that there exists a unique lifting @ : I — R such that
@(0) =0 and eo@ = a. Since (eoa)(l) = a(l) =1, it follows that @(1) is an integer. We define the
degree of a by

deg(a) = @(1).

Lemma 9.4. Let a,3: 1 — S* be homotopic closed paths at 1 € St. Then deg(a) = deg(B).
It follows that there is a well-defined function deg : m; (S, 1) — Z defined by
deg([a]) = a(1).

Theorem 9.5. The function deg : (S, 1) — Z is a group isomorphism.
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10 Free Groups and Free Products of Groups With Amalaga-
mation

For a nonempty set X, denote by X ' a set disjoint from X with the property that there is a bijection
X — X~!in which we associate every element x € X with a corresponding element (called its inverse)
in X' that we label as z~!. It is convenient to use the same notation y — y~! for the inverse bijection
X! — X; in particular we have (z71)"! =z for all z € X U X !. Hence we may denote the inverse of
an element z € X U X ! unambiguously as '.

A word in X is a finite product 1 zs...z,, where z; € X UX ~'; in the case that n = 0, the word w is the
empty word which is written simply as 1, where we may regard 1 as an element disjoint from X U X!,
The product of two words is defined by juxtaposition, namely, if w = z1z2...z,, and v = y1y>...ym, then

WU = T1T2...TpY1Y2-.Ym,

with the convention that wl = w = 1w for all words w. A word w in X is said to be reduced if no pair
of elements = and z’ are adjacent. By convention, the empty word 1 is reduced.

For a nonempty set X, we let X denote the set of all words in X. Define a relation ~ on X by the
following. Two words w and v in X are said to be equivalent (written w ~ v) if it is possible to pass
from w to v by a finite sequence of operations of the following type:

1. insertion of zz', where 2 € X U X!, as a block of two consecutive elements;

2. deletion of such zz', with the additional rule that when they are the only elements left, they must
be replaced by the element 1.

The reader will find it a straightforward exercise to check that ~ is an equivalence relation on X. For a
word w in X, we denote by [w] the equivalence class containing w under ~.

Proposition 10.1. Every word is equivalent to a reduced word and every equivalence class [w] of words
in X contains a unique reduced word. Let F(X) = X/ ~ be the set of all equivalence classes of words
in X. We can define a binary operation on F(X) by setting [w][v] = [wv]. Then F(X) is a group under
this operation.

Definition 10.2. The group F(X) is known as the free group on the set X.

Theorem 10.3. Let X be a nonempty set, F(X) be the free group on X, and v : X — F(X) be the
canonical inclusion x — [x]. The given any group G and set function f : X — G, there exists a unique
group homomorphism 1 : F(X) — G such that ¢ ov= f. Hence, (F(X),1) is free in the category GRP of
groups, and so this universal property determines the group F(X) uniquely up to isomorphism with
respect to the given set X .

Vi

Definition 10.4. Let X be a subset of a group G that does not contain the identity 15. We say that G
is free on X if every nonidentity element g € G has a unique expression of the form g = 7" z3”...2*,
where z; € X, nj = Z\ {0}, and z; # ;11 for each i. We call such an expression of ¢ € G a normal
form of g with respect to X. Thus G is free on X if and only if every nonidentity ¢ € G has a unique

normal form with respect to X.

F(X) G

Proposition 10.5. Suppose that X is a subset of a group G that does not contain the identity 1. Then
there is a group homomorphism 1 : F(X) — G such that v is an isomorphism if and only if G is free on
X.
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Corollary 10.6. Every group is a homomorphic image of a free group.

Proposition 10.7. Suppose that Xy and Xy are nonempty sets for which |X1| = |Xz|. Then we have
the isomorphism F(X;) = F(X5).

Definition 10.8. Let C be a category and fix an object C' in C. Let & = {a; : C — A;}ier be a
family of morphisms. A pushout for ® consists of an object P together with a family of morphisms
{a} : A; = P}ier that make each of the following squares commute

C —% 5 4

o

Aj —— P
o',
J
and which satisfy the property that whenever there is another object M and a family of morphisms
{¢i: A; = M};cr that make each of the following squares (with the same morphisms «;) commute
C — A

ajl lw

A; —— M
@

then there exists a unique morphism y : P — M such that y o a} = ¢; for all i € I.

C

Theorem 10.9. If in a category C, {P,{a}}icr} and {P',{ca)}icr} are pushouts for the family of
morphisms ® = {a; : C' = A;}icr, then P and P' are isomorphic.

Let {G;}ier be a family of groups such that all their identity elements are identified and there is a group
H such that G; N Gj = H whenever ¢ # j. Label the common identity element of all the groups as 1
(which is equal to 1f). Let X = |J;; Gi, and let X be the set of all nonempty words in X. We say
that a word is reduced if it is either the identity 1, or none of its symbols is the identity and no two
adjacent symbols belong to the same group.

1. Define a relation ~ on X by the following rule: Two words w,v are equivalent (written w ~ v) if
it is possible to pass from w to v by a finite sequence of operations of the following type:
(a) insertion of 1;
(b) deletion of 1 except when it is the only symbol left;
()
(d)

replacing an element g € GG; with a pair 125, where x1, 25 € G;

deleting a pair z1z9, where 21,25 € G4, and replacing it with g, where g = x; 5.

Then ~ is an equivalence relation on X, and each equivalence class of words under ~ contains a
(not necessarily unique) reduced word that is either an element of H, or a reduced word of the
form gx, gx,---gxn., Where gn, € Gy, \ H and \; # ;41 for each ¢ whenever k > 2. Denote the
equivalence class containing the word w as [w].
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2. Similar to the construction of free products, there exists a group whose elements consist of the

equivalence classes of X under ~ in which the group operation is given by [w][v] = [wv] — we term
this the free product amalgamating H of the groups {G;}ics, and denote it by [[, G;.
icl

3. The inclusion functions o; : g — [g] are group monomorphisms from G; into [ [, G; for each i, and
the group [[, G; together with the inclusion maps o; forms a pushout for t}ig Ifamily of canonical
inclusions {ZZI: H — G,}ier in the category GRP of groups.

Examples 10.10.
1. If K is the trivial group, G][, K = G.

2. If f: H— G is a group homomorphism and K is the trivial group, G [[, K is the quotient group
of G by the normal subgroup generated by f(H).

3. Z]],Z is the free group generated by two elements, ie, F(z1,z2). In general, the n-fold free
product of Z is a free group of rank n.

4. Z/m]1l, Z /n is the quotient group of F(x1,x2) by the relations z* = z§ = 1.

11 The Seifert-Van Kampen Theorem

Theorem 11.1. Let X be a topological space. Suppose X = Uy UUy with Uy, Us open, Uy NUs nonempty
and path-connected. Let xg € Uy NUs be the base point of X. Then

T (X, 20) = m1 (U1, 20) H m1(Uz, 7o)
Wl(UlﬁUg,zo)

Examples 11.2.

1. Suppose X = U UV with U,V open in X and simply connected, and U NV is nonempty and
path-connected. Then X is simply connected.

2. S™ is simply connected for n > 2. In particular, 71 (S™) is trivial for n > 2.

3. Suppose that xg € X and gy € Y are base points of X, Y respectively such that each base point is
contained in a contractible neighbourhood. Then m (X VY) = 7 (X) ][, m (V).

4. m (St v SY) =F(z1,72). In general m (V*S?) = F(x1, 22, ..., Tp).
5. T (RP') = Z and m (RP") = Z /2 for n. > 2.

Lemma 11.3. Let ¢ : F(z1, 22, ..., Zm) = F(y1,y2, ..., yn) be any group homomorphism. Then there is a

continuous map
f:\/s'=\/s
such that ¢ = fo :m (V™ SY) — m (V" Sh).

Theorem 11.4. For all groups G, there is a space X = X(G) such that m (X)=G. If  : G — H is a
group homomorphism, then there is a natural continuous map f : X(G) — X(H) such that

¢ = fo: m(X(G)) = m(X(H)).
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12 Deformations, Cofibrations, Fibrations

Definition 12.1. A subspace A of X is said to be a retract of X if the inclusion i : A < X has a left
inverse, that is, there is a map r : X — A such that roi =id4.

A subspace A of X is said to be a weak retract of X if the inclusion 7 : A < X has a left
homotopy inverse, that is, there is a map r : X — A such that r o¢ ~id4.

Definition 12.2. Given a subspace X' of X, a deformation of X' in X is a homotopy D : X' x I — X
satisfying D(z',0) = «' for all ' € X', that is, D is a homotopy from the inclusion 7 : X' < X to some
other map X’ — X. If D(X' x {1}) C A C X, then D is said to be a deformation of X' into A, and
the subspace X' is said to be deformable into A in X.

A space X is said to be deformable into its subspace A if X is deformable into A in X. In
particular, a space X is contractible if and only if X is deformable into one of its points in X.

Proposition 12.3. A space X is deformable into a subspace A if and only if the inclusion i : A — X
has a right homotopy inverse, that is, there is a map h : X — A such that h =ioh ~idx.

Definition 12.4. A subspace A of X is said to be a weak deformation retract of X if the inclusion
i: A — X is a homotopy equivalence.

Hence, a subspace A of X is a weak deformation retract of X if and only if it is A is weak retract of X
and X is deformable into A in X.

Definition 12.5. A subspace A of X is called a deformation retract of X if there exists a map
h:X — A such that hoi =id4 and 70 h ~idx, where i : A < X is the inclusion.

Hence, a subspace A of X is a deformation retract of X if and only if it is A is retract of X and X is
deformable into A4 in X.

Definition 12.6. A subspace A of X is a strong deformation retract of X if there is a retraction
r: X — A such that ior ~idx rel A, where i : A — X is the inclusion.

Definition 12.7. Let (X, A) be a pair of spaces, and let Y be any space. The pair (X, A) is said to
have the homotopy extension property with respect to Y if for all maps g : X — Y and all maps
G : Ax I — Y satisfying G(a,0) = g(a) for all a € A, there exists a map F : X x I — Y such that
F(z,0) = g(z) for all z € X and F(a,t) = G(a,t) for all a € A and ¢ € [0, 1].

I .y

X x {0}

<

S
’

aF,
a

’

XxI +«——AxI

Proposition 12.8. Suppose that (X, A) has the homotopy extension property with respect to Y, and
fo,fi + A = Y are homotopic. If fo has an extension to X, then so does fi, and their respective
extensions are homotopic as well.

Proposition 12.9. Let (X, A) be a pair of spaces. If A is contractible and the pair (X, A) satisfies the
homotopy extension property with respect to X, then the canonical quotient X — X/A is a homotopy
equivalence.

Proposition 12.10. If (X, A) has the homotopy extension property with respect to A, then A is a weak
retract (resp. weak deformation retract) of X if and only if A is a retract (resp. deformation retract) of
X.

The notion of a cofibration is a generalization of the notion of having a homotopy extension property.
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Definition 12.11. A map f : X' — X between two spaces is said to be a cofibration if for all spaces
Y and all maps g: X =Y, G: X' x I = Y satisfying G(z',0) = g(f(z')) for all ' € X', there exists
amap F: X x I = Y such that F(z,0) = g(z) for all z € X and F(f(2'),t) = G(2',t) for all ' € X'
and ¢ € [0,1].

Xxx{oy—2 v
/4
3rF.,”’
¢ G
// ’d
Xx 72X g

Proposition 12.12. Leti: A < X be the inclusion. The following are equivalent:
1. i is a cofibration.
2. (X, A) has the homotopy extension property with respect to any space Y .
3. (X x{0})U (A x I) is a retract of X x I.

Definition 12.13. A map p: F — B is said to have the homotopy lifting property with respect to
a space X if for all maps f': X — E and F : X x I — B satisfying F(z,0) = p(f'(z)) for all z € X,
there exists a map F' : X x I — E such that F'(z,0) = f'(z) for all z € X and po F' = F.

!

X x{0} ——E

<

7
’

IF
A

’

XxI B

Proposition 12.14. If p : E — B has the homotopy lifting property with respect to a space X, and
fo, f1 + X — B are homotopic, then fo can be lifted to E (namely, there exists Fy : X — E such that
po Fy = fo) if and only if f1 can be lifted to E.

Definition 12.15. A map p: E — B is called a fibration if p has the homotopy lifting property with
respect to every space X. In this case we say that E is the total space and B is the base space of the
fibration. For b € B, the set p~!(b) is called the fibre over b.

Ifp: E— Band f:Y — B are maps, a lifting of f is amap f:Y — E such that po f = f.

Proposition 12.16. If p: E — B is a fibration, any path w in B satisfying w(0) € p(E) can be lifted
to a path in E.

Definition 12.17. A map p: E — B is said to have unique path-lifting if given paths A\, \' in E such
that po A = po A" and A(0) = X (0), then A = \'.

Lemma 12.18. If a map p : E — B has unique path-lifting, then it has the unique lifting property
for path-connected spaces, in the sense that for any maps f,g : Y — E where Y is path-connected,
pof=pog, and f(yo) = g(yo) for some yo € Y, then f =g.
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Proposition 12.19. A fibration p : E — B has unique path lifting if and only if every fibre p—*(b) has
no nonconstant paths.

Proposition 12.20. The composite of two fibrations is a fibration.

Lemma 12.21. Let p: E — B be a fibration. If A is any path-connected component of E, then p(A) is
a path-connected component of B, and p|a : A — p(A) is a fibration.

Definition 12.22. A space is said to be locally path-connected if for any z € X and any neighbour-
hood U of z, there exists a path-connected open neighbourhood V' of x such that V' C U.

Remark 12.23. In Maunder [3] (Chapter 6, Exercise 23), the definition of locally path-connected is as
follows: A space X is said to be locally path-connected if, for each € X and any neighborhood U of z,
there is an open neighborhood V' of z such that z € V' C U and any two points in V' can be connected by
a path in U. Thus our definition of locally path-connected, which is the definition given by Hatcher [1]
and Massey [2], is stronger than Maunder’s definition.

Proposition 12.24. Letp : E — B be a map. If E is locally path-connected, then p is a fibration if
and only if for each path-connected component A of E, p(A) is a path-connected component of B, and
pla: A — p(A) is a fibration.

Theorem 12.25. Let p: E — B be a fibration with unique path-lifting. If X\, \' are paths in E such that
A0) = )N(0) and po X ~poXNreldI, then A ~ X relOI.

Corollary 12.26. Let p: (E,ep) — (B, bo) be a fibration with unique path-lifting. Then
p« :m(E, e0) = m1(B,bo)
s a group monomorphism.

Theorem 12.27. Let p : E — B be a fibration with unique path-lifting. If B is path-connected, then
any two fibres are homeomorphic.

If B is path-connected and p: F — B is a fibration with unique path-lifting, the number of sheets of
p, or the multiplicity of p, is defined to be the cardinality of the fibre p~!(b), which is independent, of
the choice of b € B by Theorem 12.27.

Theorem 12.28. Let p : E — B be a fibration with unique path-lifting and suppose that E,B are
path-connected. Then the multiplicity of p is the index of p.(m1(E,ep)) in w1 (B, p(ep))-

Theorem 12.29. Let p: (E,eq) — (B, bo) be a fibration with unique path-lifting. LetY be a connected,
locally path-connected space. Then a map f: (Y,yo) — (B,bo) has a lifting (Y,y0) — (E, eo) if and only
if f(m1(Y,90)) C pu(m1(E,e0)).

13 Covering Spaces

Definition 13.1. A map p: X — X is called a covering projection if:
1. p is surjective;

2. For all x € X, there exists an open neighbourhood U of z, called an elementary neighbourhood
of z, such that

p '(U) = || U,

aEA

is a topological disjoint union of open sets U, called sheets and p maps each U, homeomorphically
onto U.

We call X the covering space and call X the base space of the covering projection p.
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Examples 13.2.
1. Any homeomorphism p : X — X is a one-sheeted covering projection.

2. Let F be a space endowed with the discrete topology, and let X = X x F. Then the coordinate
projection p : X — X is a covering projection.

3. The canonical quotient p : S™ — RP" is a two-sheeted covering projection.
4. The map p: St — S* given by p(z) = 2" is an n-sheeted covering projection.
5. The exponential map e : R — S! is a covering projection with Ng-many sheets.
Proposition 13.3. A covering projection exhibits its base space as a quotient of its covering space.

Lemma 13.4. A covering projection p : X — X has the unique lifting property for connected spaces,
namely, if f,g : Y — X are liftings of the same map pof = pog :Y — X, Y is connected and

f(o) = g(yo) for some yo €Y, then f =g.
Theorem 13.5. A covering projection is a fibration.
Proposition 13.6. Let p: (X,2) — (X,z0) be a covering projection.

1. Every path X : (I,0) — (X, zo) has a unique lifting X : (I,0) — (X, %o). In particular, p has unique
path-lifting (Definition 12.17).

2. Every map F : (I x I,(0,0)) = (X,x0) has a unique lifting F : (I x I,(0,0)) — (X, ).

Since a covering projection p : X — X is a fibration with unique path-lifting, it follows from Theo-
rem 12.25 that if A\, \" are paths in X such that A(0) = A\'(0) and po A ~ po X' rel 91, then A ~ X' rel O1.
By Corollary 12.26, p. : m1 (X, Zo) — 71 (X, x0) is a group monomorphism.

Definition 13.7. A group G is termed a topological group if G is a topological space, and the group
multiplication G x G — G, (g, h) = gh, and the inverse function G — G, g — g~, are both continuous
maps.

Let G be a group and let Y be a G-space. For an element g € G and a subset S of V', let
gS={gs : s€S}

Definition 13.8. Let G be a discrete group (a topological group endowed with the discrete topology).
Let Y be a G-space. We call the G-action on Y properly dicontinuous if for every y € Y, there exists
a neighbourhood W, of y such that for all g1, 9> € G,

g1 # g = gWyNgW,=0.
This is equivalent to saying that for all g € G,
9g# 1l = gW,NnW, =0.

Proposition 13.9. Let X be a G-space. The G-action on X is properly discontinuous if and only if the
canonical quotient p: X — X/G is a covering projection.

Definition 13.10. A group G is said to act freely on a space X if gx #Z x forall z € X and 1 #g € G.
This is equivalent to saying that g1@ # gox for all x € X and g1 # g2 € G.

Proposition 13.11. Let X be a G-space. Suppose that G is a finite group and X is Hausdorff. Then
the G-action on X is properly discontinuous if and only if G acts freely on X.

Examples 13.12.

1. Let an action of Z on R be defined by (n,z) — n + . This action is properly discontinuous, and
so the canonical quotient e : R — R/Z = S! is a covering projection.
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2. Let G be a Hausdorff topological group and let H be a finite subgroup of G. Let G/H be the set
of left cosets of H in G endowed with the quotient topology. H acts on G by left multiplication
and this action is free. Hence the canonical quotient G — G/ H is a covering projection.

Fix a covering projection p : (X, %) = (X, z0). Let aloop a: (I,0,1) — (X, zo,x0) be given. Suppose
that & : (1,0) — (X, 2p) is its unique lifting. Then

poa(l) = a(l) = a(0) = xo,
and so a(1) € p~1(xp). There is a well-defined function ¢ : w1 (X, zo) — p~ (o) given by ¢ : [a] — a(1).
Proposition 13.13. If X is path-connected, then v is surjective, and if X is simply connected, then v
is bijective.
Suppose now that X is a G-space and that the quotient p : X — X/G is a covering projection. Let

[Z0] € X /G denote the orbit of 7y under the G-action. Since the G-action is properly discontinuous, we
can identify p~!([#p]) with G by the correspondence g7y ¢ g.

Theorem 13.14. If X is path-connected, then the function ¢ : m (X/G,[70]) = p'(z0) =G isa gmup
epimorphism with kernel p.(1(X,%0)). In particular, if X is simply connected, then m (X /G, [7o]) =

Examples 13.15.

1. Since S™ is simply connected for all n > 2 and there is a properly discontinuous Zs-action on S™
given by (n,x) — nx, where n = £1, so m (RP™) = 7 (S™/Zs) = 7> for all n > 2.

2. Since R is contractible and there is a properly discontinuous Z-action on R given by (n,z) — n+z,
so we have m(S1) = m;(R/Z) = Z. In this example, 1) as defined above is simply the degree map
deg : w1 (S') — Z defined in Section 9.

Let p : (X,25) — (X,20) be a covering. Suppose that (Y, yo) is simply connected and locally path-
connected. Since p is a fibration with unique path-lifting, so by Theorem 12.29 and Lemma 13.4, every
map f : (V,50) = (X, 20) admits a unique lifting f : (Y, y0) = (X, 20).

Corollary 13.16. Let p: (X, %) — (X,x0) be a covering. Then for all n > 1 and all maps
f : (Yay()) - (XaxO)

with Y simply connected and locally path-connected, there exists some f: (Y,y0) — (X,20) such that
Py © fuo = fe i mn(Y,y0) = mn(X, 20).

Example 13.17. Since S™ is always locally path-connected, and is simply connected for all n > 2, so
all pointed maps f : S™ — S! admit a unique lifting f : S — R. Since R is contractible, so 7,(S!) =0
for all n > 2.

Corollary 13.18. For all n > 2 and any covering projection p : (X, %) — (X, xo), the map
Py s (X, 50) = mp (X, x0)

is a group isomorphism.

Example 13.19. 7,,,(S™) & 7,,,(RP™) for all m > 2 and n > 1. In particular, 7, (RP!) = 7, (S') = 0
for all m > 2.

Definition 13.20. Let p; : X; — X and py : Xo — X be covering projections. A homomorphism of
(Xl,pl) to (X2,p2) is a continuous map ¢ : X; — X, such that ps o © =pi.

- ¥ -
X1 X2

N A

X
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Fix a space X. The class of all covering projections with base space X and their homomorphisms form
a category. Two covering projections with the same base space X are called isomorphic if they are
isomorphic objects in this category.

Theorem 13.21. Two covering projections (X1,p1) and (Xo,ps) with the same base space X and where
X1, Xz are path-connected and locally path-connected are isomorphic if and only if for any points T, € X3
and Tz € Xo such that py(Z1) = p2(F2) = xo € X, the subgroups (p1)«(m1(X1,21)) and (p2)«(m2(X2, Z2))
of m (X, zo) are conjugate.

Lemma 13.22. Let ()~(1,p1) and ()~(2,p2) be covering projections with the same base space X where

X1, Xy are path-connected and locally path-connected. Let ¢ : (X1,p1) = (Xa,p2) be a homomorphism.
Then ¢ : X1 — X5 is a covering projection.

Definition 13.23. A covering projection p : X — X is termed universal if X is path-connected and
X is simply connected.

Let p : X — X be a covering projection, with X simply connected and locally path-connected. If (X', p')
is any other covering space of X, then there exists a homomorphism ¢ of (X, p) onto (X’,p'), and by
Lemma 13.22, ¢ : X X'isa covering projection. In other words, X can serve as a covering space of
any covering space of X.

Definition 13.24. A space X is called semi-locally simply connected if for each point z € X, there
exists a neighborhood U of z such that i, : m (U,z) — m (X, z) is the trivial group homomorphism,
where i : U < X is the inclusion map. is trivial.

Theorem 13.25. Let X be path-connected, locally path-connected, and semi-locally simply connected.
Then there is a universal covering X of X.

Corollary 13.26. Let X be path-connected, locally path-connected, and semi-locally simply connected.
Then for all subgroups H of m (X, o), there exists a covering projection py : Xy — X such that
(pu)«(m1(Xu,%0)) = H for a suitably chosen base point o € Xp.

14 Barratt-Puppe Exact Sequences

Let S, T be pointed sets with base points sg, to respectively. Let f : S — T be a pointed function. Set
Ker(f) = f*(ty). A sequence of pointed sets

R e I T

is set to be exact if each function f,, is pointed and Ker(f,,) = Im(f,+1) for all n.

For a pointed space (X, zg), the reduced cone is defined by C'(X) = (X xI)/(({zo} x I) U (X x {1})).
We identify X as a subspace of C'(X) via the correspondence z > (z,0).

Let f: (X,z9) — (Y,y0) be a pointed map. The reduced mapping cone is the adjunction space
YU C(X)=(C(X)uY)/((z,0) ~ f(z) : z € X) and is denoted by Cf.

Let (Y,y0) be a pointed space. The path space P(Y) is defined to be the space of all paths A in V'
satisfying A(0) = yo under the compact-open topology. Let f : (X,z9) — (Y, y0) be a pointed map. The
mapping path space Py is defined by

Pr={(z,A\) e X xP(Y) : f(z)=A1)}.

Theorem 14.1 (Barratt-Puppe). Let f: (X, 20) = (Y,y0) be a pointed map. Let j : Y — C} be the
canonical inclusion, p : Py — X be the canonical quotient, and let Z be any pointed space. Then there
are long exact sequences

s e, 2] P )21 Lm0,z — (05,2 S vz DS x, 2
and
— [z 2 (z,ox) L z000) — [(ZP] B (2,X] L (z,y).
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15 CW-Complexes

Definition 15.1. Let X° be a discrete space whose points are called 0-cells. Inductively form X™ from
X" ! by attaching n-cells as follows: Let X™ be the adjunction space

xm=x"' ( || DZ) = << | | DZ>|_|X”1> [(s~@a(s) : s €851 a€hy),

QYo @ €N, SaEA, a€N,

where {D"},cy, is a collection of discs and {¢, : S?71 — X" 71} ,ca, is a collection of maps for each
n, where we canonically identify S7~* = §(D?) for each a € A,,. Thus as a set, X™ is the disjoint union

of X™~1 and Ll,ca, €4, where each efy is an open disc called an n-cell. Let X = [J, X" be given the

weak topology: a subset A of X is closed if and only if AN X™ is closed in X™ for all n > 0. We call X
a CW-complex.

In the special case where the cells being attached have a maximum finite dimension, we call X a finite-
dimensional CW-complex.

Examples 15.2.

1. S™ has the structure of a CW-complex with just two cells e” and e™. The n-cell " is attached via
the constant map S™ ! — €°.

2. RP™ has the cell structure e® e ... Ue™.

An alternative description of CW-complexes is as follows: A CW-complex is a Hausdorff space X together
with an indexing set A,, for all n > 0 and characteristic maps ¢ : D" — X for all a € A,,, such that
the following properties are satisfied, where e = (D™)° for all n > 1:

1. X =J¢%(e"), the union being taken over all n > 0 and a € A,, (set e® = D° = {x}).
2. ¢n(e”)N¢F(e™) =0 unless n = m and a = B.
3. ¢|en is injective for all n > 0 and « € A,,.

4. Let X" = U _, 2 (e™), where the union is taken over all @ € Ay, for 0 < m < n. Then
" (S™1) C X! for each n > 1 and a € A,,.

5. A subset K of X is closed in X if and only if (¢?)~!(K) is closed in D" for each n > 0 and o € A,,.

6. For each n > 0 and « € A, ¢(D™) is contained in the union of a finite number of sets of the form
o5 (™).

It is known that the above definition is equivalent to Definition 15.1. Condition 6 is known as closure-
finiteness, which is equivalent to saying that the closure of each cell (Definition 15.1) is contained in
the union of a finite number of cells.

Definition 15.3. A subcomplex of a CW-complex X is a closed subspace A of X that is a union of
cells of X.

Proposition 15.4. A wedge of CW-complexes is again a CW-complez.

For a CW-complex X, let the skeleton sk, (X) be the subspace of X consisting of the cells up to
dimension n.

Proposition 15.5. For each n > 1, the inclusion sk, _1(X) < sk, (X) is a cofibration and

skn(X)/skn_1(X) = \/ S™,
a€A,

a wedge of n-spheres.
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16 Homology

Two maps of pairs f, g : (X, A) — (Y, B) are said to be homotopic, written f ~ g, if there is a homotopy
F: X x I — Y such that F(z,0) = f(z), F(z,1) = g(x), and F(a,t) € B for all z € X, a € A, and
t € [0,1]. A special example is when f ~ grel A for f,g: X - Y and A C X.

Let G, H be groups and let f : G — H be a group homomorphism. The kernel of f, denoted Ker(f), is
defined by
Ker(f) = f'(lg) ={z € G : f(z) =1}

A sequence of groups and group homomorphisms

D G oG, I Gl —

is set to be exact if Ker(f,) = Im(f,+1) for all n. A short exact sequence of groups is an exact
sequence of the form
l1— B — E — A — L

If H is an abelian group, we use additive notation, writing the identity of H as 0.

An unreduced homology theory h. consists of the following items:

1. A sequence {h,(X, A)}n,ez of abelian groups for any pair of spaces (X, A). The abelian group
hn(X, A) is called the n'* relative homology group of X modulo A, and is simply written as
hn(X) if A=10.

2. A sequence of group homomorphisms {f, : h,(X,A) = h,(Y, B)},ez corresponding to any map
of pairs f: (X, A) — (Y, B).
3. Group homomorphisms 0,,(X, A) : h,(X,A4) = h,_1(A) for all n € Z and pair of spaces (X, A).
These are called the boundary operators.
The above items satisfying the following Eilenberg-Steenrod axioms:
1. If f= id(X,A), then f, = idhn(X,A) for all n € Z.
2. f:(X,A) - (Y,B)and g: (Y,B) — (Z,C), then (go f)n = gno fn: hn(X, A) = hy(Z,C).

Hence, h,, is a covariant functor from the category of pairs of topological spaces to the category
AB of abelian groups for all n € Z. More explicitly, h, is a covariant functor from the category of
pairs of topological spaces to the category AB” of graded abelian groups.

For brevity, we denote by f. the collection of all group homomorphism f,, for any map of pairs f.
If a statement holds for all f,,, we simply say that it holds for f.. We may view f, as the image of
fin AB” under the functor R

3. For all map of pairs f: (X, A) — (Y, B), we have 0 o f, = (f|a)« 0. In particular, the diagram

h(X, 4) — 3T+ (v, B)
04(X, A) 0,(Y, B)
() Ty

commutes for all ¢ € Z.

Hence, there is a natural transformation 9,, : h, — hp_1 o R for all n € Z, where R is the functor
sending (X, A) to (4, 0).
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4. (Exactness) For any pair of spaces (X, A), there is a long exact sequence of abelian groups

C s b (5 A) TR R (A) I ha(X) 2 ha(X,A) 2 () —

where i : (4,0) = (X,0) and j : (X,0) — (X, A) are the inclusion maps.
5. (Homotopy) If f ~g:(X,A) = (Y, B), then f. = g.: h.(X,A) = h.(Y,B).

6. (Excision) If U is an open subset of X, and U C A°, then the inclusion j : (X \U, A\ U) — (X, A)
induces an isomorphism j. : h.(X \ U,A\ U) = h«(X,A). This is equivalent to saying that
for all subspaces X, Xy of X such that X; is closed and X = (X;)° U (X5)°, the inclusion
i: (X1, X1 NXy) = (X, X5) induces an isomorphism i, : h, (X1, X1 N X5) =N he(X, X5).

An ordinary homology theory is a homology theory h, that satisfies an addition axiom:

7. (Dimension Axiom) Let P be a one-point space. Then hy(P) = 0 for all ¢ # 0.
In this case, h.(X, A) is called the homology of (X, A) with coefficients in G = hy(P), and we
denote h.(X, A) more precisely by H.(X, 4;G).
We write H,(X, A) for the integral homology H.(X, A;7Z).

Proposition 16.1. If A is a weak deformation retract of X, then h.(X,A) = 0. In particular,
he(X,X)=0.

Lemma 16.2. Suppose that the inclusion i : A < X is a cofibration. Then the reduced mapping cone
C; is homotopy equivalent to the quotient space X/A.

Corollary 16.3. Suppose that the inclusion i : A < X is a cofibration. Then there is an exact sequence
of groups:

7T1(A) i) 71'1(X) — 71'1(X/A) — 1.
Theorem 16.4. Let (X, A) be a pair of spaces such that the inclusion i : A < X is a cofibration. Then
the quotient map p: (X, A) = (X/A, ) induces an isomorphism p. : h,(X, A) = h«(X/A,*).
Given a homology theory h,, the reduced homology h, is defined as follows: For a pointed space X

with base point xg, _
hi(X) = he(X, 70).

In general, we have h,(X) = Ker(e, : hye(X) = hye(P)) and hy(X) = he(X) @ h.(P), where P is the
one-point space and € : X — P is the constant projection.

Corollary 16.5. Let (X, A) be a pair of spaces such that the inclusion i : A — X is a cofibration. Then
there is a long exact sequence

e B (X/A) I R (A) S Ba(X) 25 Ra(X/A) 2 Baoi(4) —s .

where p: X — X/A is the canonical quotient.

Theorem 16.6. Let X be a pointed space. Then there is a natural isomorphism

O hn(X) = hpi (2(X))
for each n € 7.

Theorem 16.7 (Mayer-Vietoris). Let X = A° U B° where A, B are subspaces of X. Then there is a
long ezxact sequence

208 h(ANB) 25 ho(A) @ ha(B) 25 ho(X) 25 hy (ANB) ...

where o, = (8%"), i1r: ANB — A and i» : AN B — B are the inclusions, 5, = (j1)n — (J2)n,
2)n

j1: A= X and jo : B — X are the inclusions.
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Proposition 16.8. Ifix : X - X UY andiy : Y — X UY are the inclusions, then
()0 (iy)2)  ha(X) @ Bu(Y) = (X UY)

is an isomorphism.

Proposition 16.9. For alln >0,

G = Hyo(P) i=n;

0 i #n.

Corollary 16.10. For all n, the sphere S™~' is not a weak retract of the disc D™.

Any pointed map f : S™ — S™ induces a group homomorphism f, : H,(S™) — H,(S™). For all n > 1,
we have f. : Z — Z. Tt follows that there is a unique integer deg(f) such that f.(a) = deg(f)a for all
a € H,(S™) which depends only on the homotopy class of f.

Proposition 16.11. For ordinary homology over Z, we have the following for pointed maps
fig:S"—=S":
1. deg(idg,) = 1.
2. If f is not surjective, then deg(f) = 0.
3. f =~ g if and only if deg(f) = deg(g).
4. deg(g o f) = deg(g) deg(f)-
5. If f is a reflection fizing points in a subspace S™ 1, then deg(f) = —1.
6. The antipodal map x — —x has degree (—1)"1,
7. If f has no fived points, then deg(f) = (—1)"T1.
Corollary 16.12. If n is even, then Z /27 is the only nontrivial group that can act freely on S™.

17 Cohomology

An unreduced cohomology theory h* consists of the following items:

1. A sequence {h"(X, A)},ez of abelian groups for any pair of spaces (X, A). The abelian group
h"™(X, A) is called the n*? relative cohomology group of X modulo A4, and is simply written
as h"(X) if A =0.

2. A sequence of group homomorphisms {f™ : h"(Y, B) — h"™(X, A)}nez corresponding to any map
of pairs f: (X, 4) — (Y, B).

3. Group homomorphisms 6" (X, A) : h"(A) — h"*1(X, A) for all n € Z and pair of spaces (X, A).
These are called the boundary operators.

The above items satisfying the following Eilenberg-Steenrod axioms:
1. If f =id(x,a), then f" =idpn(x a) for alln € Z.

2. f:(X,A) = (V,B) and g: (Y,B) = (Z,C), then (go f)* = f"og" : h"(Z,C) = h"(X, A).
Hence, h™ is a contravariant functor from the category of pairs of topological spaces to the category

AB of abelian groups for all n € Z. More explicitly, h* is a contravariant functor from the category
of pairs of topological spaces to the category ABZ of graded abelian groups.

For brevity, we denote by f* the collection of all group homomorphism f" for any map of pairs f.
If a statement holds for all f™, we simply say that it holds for f*. We may view f* as the image
of f in ABZ under the functor h*.
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3. For all map of pairs f: (X, A) — (Y, B), we have f*od =6 o (f|4)*. In particular, the diagram

(fla)et

h'=H(B) hi~(4)
§9-1(Y, B) 11X, A)
v, B) —2 . pax, a)

commutes for all ¢ € Z.
Hence, there is a natural transformation 6”~' : h» "' o R — h™ for all n € Z, where R is the functor
sending (X, A) to (4, 0).

4. (Exactness) For any pair of spaces (X, A), there is a long exact sequence of abelian groups

s A YD erx,A) S e A pra) O Rt (X, A) —

where i : (4,0) — (X,0) and j : (X,0) = (X, A) are the inclusion maps.
5. (Homotopy) If f ~g: (X,A) = (Y, B), then f* = g¢*: h*(Y,B) — h*(X, A).

6. (Excision) If U is an open subset of X, and U C A°, then the inclusion j : (X \U, A\ U) — (X, A)
induces an isomorphism j* : h*(X, A) — h*(X \ U, A\ U). This is equivalent to saying that
for all subspaces X, X5 of X such that X; is closed and X = (X;)° U (X5)°, the inclusion
i: (X1, X1 NXy) = (X, X5) induces an isomorphism i* : h*(X, X5) = h* (X1, X1 N Xo).

An ordinary cohomology theory is a cohomology theory h* that satisfies an addition axiom:

7. (Dimension Axiom) Let P be a one-point space. Then h?(P) = 0 for all ¢ # 0.

In this case, h*(X, A) is called the cohomology of (X, A) with coefficients in G = h°(P), and
we denote h*(X, A) more precisely by H*(X, A4;G).

We write H*(X, A) for the integral cohomology H* (X, A;7Z).
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18

Exercises

Exercises 18.1.

1.

10.

11.

Let C be a category, Mor(C) be the class of all morphisms of C, and for any pair of morphisms f: A — B
and g : C — D of C, define Mor(f,g) to be the set of all ordered pairs (a, 3), where o : A — C and
B : B — D are morphisms of C such that the following diagram commutes.

A%B

N

C —— D
g9

Show that the class Mor(C) together with the sets Mor(f, g) is a category under this definition.

Describe how a nonempty class A can be made into a category in which the only morphisms are identity
morphisms.

A pointed set is a pair (S,z), where S is a set and z € S. A morphism of pointed sets (S,z) — (T,y) is
a set function f : S — T such that f(z) = y. Show that the pointed sets form a category, which we denote
by SETq.

. Let {A;}ier be a family of sets. Let S be the set of all ordered pairs (a,i), where a € A; and 7 € I. For

each i € I, define a function o; : A; — S by oi(a) = (a,7). Show that {S,{oi}icr} is a coproduct of
{A;}icr in the category SET of sets.

Show that every family {A;}icr of pointed sets (Exercise 3) has a product and coproduct in the category
SETq of pointed sets.

An object I in a category C is said to be initial if for any object C, there exists precisely one morphism
I — C in C. An object T is said to be terminal if for any object C, there exists precisely one morphism
C—-TinC.

(a) Show that any two initial (respectively terminal) objects in a category are isomorphic.

(b) Show that the trivial group {1} is both initial and terminal in the category GRP of groups.
Let X be a topological space. Prove the following:

(a) 0 and X are closed sets.
(b) Finite unions of closed sets are closed.

(c) Arbitrary intersections of closed sets are closed.

Let R be a collection of subsets of X such that §, X € ®, R is closed under finite unions, and R is closed
under arbitrary intersections. Show that I ={X \ C : C € R} is a topology on X.

Let B be a basis for a topology on X. Let & be the collection of all arbitrary unions of elements of 5.
Show that (X, S) is a topological space.

Let B and B’ be bases for topologies & and S’ respectively. Show that & C 3 if and only if for every finite
collection C4,C5, ..., C), of basis elements of B, there is a collection {B;]};cr of basis elements in B’ such

that .
Usi=Noa.
iel j=1

Let X be a topological space. Suppose that B is a collection of open sets of X such that for any open set
U of X, there is a collection {B;}icr of elements of B such that

U&:U

€1

Show that B is a basis for the topology on X.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Let X and Y be topological spaces, and let z € X. A function f : X — Y is said to be continuous at
z if whenever V' is an open set in Y containing f(z), there is an open set U in X such that z € U and
U C f~1(V). Show that a function f: X — Y is continuous if and only if f is continuous at every z € X.

Let X and Y be topological spaces, and let f : X — Y be a function. Suppose that B is a basis for the
topology on Y, and § is a sub-basis for the topology on Y such that the basis B is the natural extension of
S obtained by taking intersections of all finite collections of sub-basic sets of S. Show that the following
are equivalent:

(a) f is continuous.

(b) For every basic set B € B, the set f~!(B) is open in X.

(¢) For every sub-basic set S € S, the set f~*(S) is open in X.

Let B be a basis for the topology on X and Y be a subset of X. Show that the collection
ByZ{BﬂY : BEB}

is a basis for the subspace topology on Y. Let & be a sub-basis for the topology on X and Y be a subset
of X. Show that the collection
Sy={SnY : SeS§}

is a sub-basis for the subspace topology on Y.

Let Y be a subspace of X and U be a subset of Y. If U is open in Y and Y is open in X, show that U is
open in X.

Let Y be a subspace of X and A be a subset of Y. Prove that the subspace topology on A relative to Y
is the same as the subspace topology on A relative to X.

Let Y be a subspace of X. Prove that a subset A of Y is closed in Y if and only if A = BNY for some
closed set B of X.

Let Y be a subspace of X and U be a subset of Y. If U is closed in Y and Y is closed in X, show that U
is closed in X.

If U is open in X and A is closed in X, show that U \ A is open in X and A\ U is closed in X. Hence, an
open set complement out a closed set remains open, and a closed set complement out an open set remains
closed.

Let X,Y, Z be topological spaces. Prove the following:

(a) (Constant function) If f : X — Y maps all of X onto a single point yo € Y, then f is continuous.

(b) (Inclusion) If A is a subspace of X, then the inclusion function ¢ : A — X given by ¢(a) = a for all
a € A is continuous. Furthermore, the subspace topology on A is the coarsest topology on A that
makes the inclusion map continuous.

(c) (Composites) If f: X — Y and g:Y — Z are continuous, then go f : X — Z is also continuous.

(d) (Domain restriction) If f : X — Y is continuous and A is a subspace of X, then the function
fla: A=Y is continuous.

(e) (Codomain restriction or expansion) Let f : X — Y be continuous. If Z is a subspace of ¥ containing
f(X), then the function g : X — Z, g(x) = f(z) V x € X, obtained by restricting the codomain of f, is
continuous. If Z is a space having Y as a subspace, then the function h : X — Z, h(z) = f(z)Vz € X,
obtained by expanding the codomain of f, is continuous.

Let X,Y, Z be topological spaces. Prove the following:
(a) (Inclusion) If A is an open subspace of X, then the inclusion function ¢ : A — X given by t(a) = a
for all @ € A is an open map.
(b) (Composites) If f: X - Y and g: Y — Z are open maps, then go f : X — Z is also an open map.

(¢) (Domain restriction) If f : X — Y is an open map and A is an open subspace of X, then the
function f|a : A — Y is an open map.
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22.

23.

24.

25.

26.

217.

28.

29.

30.

(d) (Codomain restriction or expansion) Let f : X — Y be an open map. If Z is a subspace of ¥
containing f(X), then the function g : X — Z, g(z) = f(z) V z € X, obtained by restricting the
codomain of f, is an open map. If Z is a space having Y as a subspace, then the function h: X — Z|
h(z) = f(z) YV z € X, obtained by expanding the codomain of f, is an open map.

Let X and Y be topological spaces, and let {U; }ier be a collection of open sets in X such that X = Uiel U;.
Prove that a function f : X — Y is continuous if and only if every f|y, : U; — Y is continuous. Suppose
that C1,Cs, ..., C, is a finite collection of closed sets in X such that X = U;‘Zl C;. Show that a function
f: X =Y is continuous if and only if every f|c; : C; = Y is continuous.

Let X = Uiel U;, where each U; is an open set in X. For each i € I, let f; : U; — Y be a function such
that fj(z) = fr(zx) for all z € (,c,; Ui and j,k € I. Define a function h : X = Y by h(z) = fi(x) for
x € U;. Show that h is continuous if and only if each f; is continuous.

Let X = J_, Ci, where C1,Cs,...,Cy is a finite collection of closed sets in X. For each i = 1,2,...,n, let
fi : C; = Y be a function such that f;j(z) = fr(z) for all z € ()]_, C; and 1 < j,k < n. Define a function
h:X =Y by h(z) = fi(z) for z € C;. Show that h is continuous if and only if each f; is continuous.

If Ais closed in X and B is closed in Y, prove that A x B is closed in X x Y. More generally, if C; is
closed in X; for each i € I, show that Hiel C} is closed in Hiel X; in both the box and product topologies.

Let B; be a basis for the topology on each space X;. Prove that the collection

D:{HBZ- : BiEBiforalliGI}

€1

forms a basis for the box topology on []..; X;, and the collection

iel
D = {H B; : B; € B; for finitely many i € I, B; = X for all other j € I}
iel
forms a basis for the product topology on Hie[ X;.

Let A; be a subspace of X; for each i € I. Show that the box (respectively product) topology on [, ., A; is
the same as the topology that [].., A; inherits as a subspace of [],.; X; endowed with the box (respectively
product) topology.

€T i€l

Let X; be a topological space for each i € I. Let k € I be fixed and for each i € I, i # k, let b; € X; be
given. Define the canonical inclusion map o}, P O [Lic; Xi by
Tibitierizr - T (yi)ier,
where y, = x and y; = b; for all i # k. Let [],.; X be endowed with either the box or product topology.
(a) Show that O(b:}ier.ien ATE continuous open maps for all choices of k € I and {b; }icr,i%r with b; € X;
for all i # k.
(b) Show that the projection maps 7x, : [[,.; Xi — X} are continuous open maps.

(c) Prove that the product topology is the coarsest topology on [, ; X; relative to which every projection
map mx, is continuous, in the sense that any topology on [, ; X; that makes every mx, continuous
must contain the product topology as a subset.

€T

Let f; : A; — X; functions between topological spaces for each i € I. Define the function [[,., fi :
[Lier A = ILie, Xi by

Hfz s(ai)ier = (fila:))ier.

iel
Show that Hiel fi is a continuous function with respect to the usual box (respectively product) topologies
on Hie] A; and Hie] X; if and only if f; is continuous for all 7 € I.

Define the diagnoal inclusion map ox : X = [[,.; Xi by ox(x) = (zi)ier, where z; = z for all 4 € I
Prove that ox is continuous if Hiel X; is endowed with the product topology.
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31. Let fi: A— X; be a function for each i € I. Define the function f: A — [],.; Xi by
fla) = (fi(a))ier.

Let [[;,c; Xi be endowed with the product topology. Show that f is continuous if and only if every f; is.

32. Let A be a subset of a topological space X. Prove the following:

(a) Clx(A) =X \Intx(X \ A).

(b) Intx(A) = X\ Clx (X \ A).

(c) Intx(A) and Bdx(A) are disjoint, and Clx (A) = Intx (A4) U Bdx (A).
(d) Bdx(A) =0 if and only if A is both open and closed.

33. Let Y be a subspace of X and A be a subset of Y. Show the following:
(a) Cly(A) =Clx(4A)NY.
(b) Inty (A) =Intx(A)NY.
34. Let X and Y be topological spaces, and let f : X — Y be a function. Show that the following are

equivalent:

(a) f is continuous.
(b) For every subset A of X, we have f(Clx(A4)) C Cly(f(A)).
(c) For every closed set B in Y, the set f~'(B) is closed in X.

35. Let f: X — Y be a bijective function between topological spaces. Show that the following are equivalent:

f is a homeomorphism.
A subset V of Y is open in Y if and only if f~*(V) is open in X.
A subset V of Y is closed in Y if and only if f~!(V) is closed in X.
For any subset A of X, f(Clx(A)) = Cly(f(A)).
36. Let X be a topological space with basis B, and let A be a subset of X. Show that the following are
equivalent for an element x € X:
(a) = € A.
(b) Every open set of X that contains z intersects A nontrivially.
(c) Every basis set in B that contains z intersects A nontrivially.

37. Let A be a subset of a topological space X. Prove that A = AU A’. Deduce that a subspace A is closed if
and only if A contains all its limit points.

38. Let {A;}icr be a family of subsets of X, and let A, As,..., A, be a finite collection within this family.
Show that the following hold:

(8) User 41 € User As)'-
(B) Micr 42D (Mies A1)’
© U 4 =U_ 4,
(@) U, & € Ues A

)

39. Let {Ai}ier be a family of subsets of X, and let Ay, As,..., A, be a finite collection within this family.
Show that the following hold:

() My A3 = (N, 4))°.

() Nier A7 2 (Nier 4i)°-
(€) Uier A7 C (Ujer 4i)°-
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40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.
54.

55.
56.
57.
58.

Let A; be a subset of X; for each 7 € I. Show that
Cll’[ig X; (H Al) = H ClXi (Az)a
iel i€l
if [[,c; Xi is endowed with the box topology or product topology.

Let X be a topological space, A be a set, and p: X — A be a surjective function. Show that the quotient
topology on A induced by p is the finest topology on A relative to which p is continuous, in the sense that
if & is any topology on A that makes p continuous, then $' is contained within the quotient topology as
a subset.

Suppose that A has the quotient topology with respect to the surjective mapping p : X — A. Prove that
aset O is A is closed if and only if p~'(C) is closed in X.

Let X be a topological space and let f : X — Y be a surjective function. Suppose that Y is given the
quotient topology with respect to f. Show that a function g : Y — Z from Y to a topological space Z is
continuous if and only if the composite g o f is continuous.

Show that the composite of two quotient maps is again a quotient map.

Let X and Y be topological spaces. Prove that X and Y are compact if and only if X x Y is compact with
respect to the product topology.

Show that [0,1]"™ is a compact subset of R™ for all positive integers n.
(Heine-Borel) Show that a subset of R™ is compact if and only if it is closed and bounded.
Let X and Y be topological spaces. Show the following:

(a) If X is Hausdorff, then any subspace of X is Hausdorff.
(b) X and Y are Hausdorff if and only if X x Y is Hausdorff with the product topology.
Let f: X — Y be a continuous map. Suppose that X is compact and Y is Hausdorff. Show that f is a

closed map. Hence deduce that a bijective continuous map from a compact space to a Hausdorff space is
a homeomorphism.

Let f: X — Y be a quotient map. Suppose that X is Hausdorff. Show that if f is a closed map and
f~(y) is compact for any y € Y, then Y is Hausdorff.

Let X,Y be topological spaces. Prove the following:

(a) If p: X —» Y is a quotient map and Z is a locally compact Hausdorff space, then p x idz : X x Z —
Y x Z is a quotient map.

(b) If A is a compact subspace of X and p: X — X/A is the canonical quotient map, then for any space
Z,pxidz: X x Z — (X/A) x Z is a quotient map.

Show that if p: A — B and ¢ : C — D are quotient maps and A, D are locally compact Hausdorff spaces,
then p x ¢: Ax B — C x D is a quotient map.

Suppose that X is a G-space. Prove that the canonical projection X — X/G is an open map.
Let X be a compact Hausdorff space. Prove the following:

(a) If G is a finite group and X is a G-space, then X/G is a compact Hausdorff space.
(b) If A is closed subspace of X, then X/A is compact Hausdorff.

Show that if U is a connected subspace of X and U C V C U, then V is connected.

Suppose X = |J..; 4;, where each A; is connected, and (.., A; # 0. Show that X is connected.

iel i€l

Show that every quotient of a connected (resp. path-connected) space is connected (resp. path-connected).

Show that every finite product of a family of connected (resp. path-connected) spaces is connected (resp.
path-connected).
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59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.
78.

79.

For a space Z, define the fold map v : ZV Z — Z by v : (2,%) — z and ¥ : (x,2) — z. Show that the
fold map is continuous.

Let X and Y be pointed spaces with base points x¢ and yo respectively. Show that X VY is homeomorphic
to the subspace (X x {yo}) U ({zo} xY) of X x Y.

Show that (X VY)V Z = X V (Y V Z) for any pointed spaces X,Y, Z.

Show that (X AY)AZ =2 X A (Y A Z) for any pointed spaces X,Y, Z.

Given three pointed spaces X,Y, Z, show that (X VY) A Z is homeomorphic to (X A Z) V (Y A Z).
Show that S™ A S™ = S§"*™ for any nonnegative integers n, m.

Show that for pointed spaces X,Y, we have Q" (X x Y) =2 Q"(X) x Q"(Y) and for nonnegative integers
n,m, we have Q"7 (X) =2 Q" (Q™(X)).

Show that for nonnegative integers n,m, we have "™ (X) = ©"(2™(X)), and for any pointed spaces
XY, we have
Map, (3" (X),Y) = Map, (X, Q"(Y)).

Show that for a pointed space X with base point zo, (X) =2 (X xI)/(X x {0})U(X x {1})U({zo} x I)),
where I =0, 1].
Let po be any point of S™ and let f: S™ — Y. Show that the following are equivalent:

(a) f is null-homotopic.

b has a continuous extension to D" 1, where we identify S™ as the b()undary of D™ ! in the natural
way.

(¢) f is null-homotopic relative to po.
Deduce that any continuous map from S™ to a contractible space has a continuous extension over D",
Show that m, (X xY) 2 m,(X) x mn(Y") as sets for any n > 0.
Show that 7, (X) = o (Q"(X)) 2 m (Q" (X)) as sets for all n > 1.

Let X be a pointed space with base point zo. Show that 7(X) = [S°, X] and the equivalence classes of X
under path-connectedness are equivalent as sets. In particular any n-connected space X is path-connected
if and only if mo(X') is the one-point set.

Show that a subspace A of X is a weak retract of X if and only if " : [X, A] — [A, A] is a surjective
function, where i : A — X is the inclusion map.

Show that if (X, A) has the homotopy extension property with respect to A, then A is a weak retract (resp.
weak deformation retract) of X if and only if A is a retract (resp. deformation retract) of X.

Show that if (X x I, ((X x {0}) U (X x {1}) U (A x I))) has the homotopy extension property with respect
to X and A is closed in X, then A is a deformation retract of X if and only if A is a strong deformation
retract of X.

If A is contractible and the pair (X, A) satisfies the homotopy extension property with respect to X, show
than the canonical quotient X — X/A is a homotopy equivalence.

Let A C B C X be subspaces. Suppose that the inclusions A — B and B — X are cofibrations. Show
that the inclusion A — X is a cofibration.

Show that the natural inclusion S™ — D"*! is a cofibration.

Let (X, A) be a pair of spaces. Suppose that the inclusion ¢ : A — X is a cofibration. Show that
p=(idz)" : Map(X, Z) — Map(A, Z) is a fibration for any space Z.

Let X be a pointed space with base point zo. We say that the base point zo is nondegenerate if the
inclusion {zo} — X is a cofibration. Let X be a pointed space with nondegenerate basepoint zo. Prove
that the evaluation map Map(X,Y) — Y defined by f +— f(zo) is a fibration.



18 EXERCISES 37

80.

81.

82.

83.

84.

85.

If p: E — B is a fibration, show that p'd% : Map(Z, E) — Map(Z, B) is a fibration for any locally compact
space Z.

Let p: X — X and ¢ : Y — Y be covering projections. Show that p x ¢: X x ¥ — X x Y is a covering
projection.

Let p : X — X be a covering projection, and let B C X. Let ~B =p }Y(B)C X, and let p' = Pl BB
be the covering projection of B induced by p. Suppose that X, X, B are all path-connected, and that the
map 71 (B) — m1(X) induced by the inclusion B — X is surjective. Show that B is also path-connected.

Let X be path-connected and let Y be simply connected. Suppose that there exist small contractible open
neighbourhoods of the base points xo, 0 of X,Y respectively, and that p : (X', Zo) = (X, o) is a universal
covering projection. Let ~

Z={(&y) eXxY : (p(¥),y) € XVY}

and let p' = (p xidy)|z : Z - X VY. Show that p' : Z = XVY = X VY is a universal covering
projection.

(Borsuk-Ulam) Show that there does not exist any nonzero continuous map f : S — S* such hat f(—z) =
—f(z) for all 2 € S*. Deduce that no subspace of R? is homeomorphic to S>.

Show that the map f : S™™™ = S*AS™ — S™AS"™ = ™™™ given by f : 2 Ay — yAx has degree (—1)™".
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