Abstract

Some nontrivial elements in the stable homotopy groups of sphere

For connected finite type spectra X, Y, there exists Adams spectral sequence (ASS) $\{E_r^{s,t}, d_r\}$ such that:

- (1) $d_r: E_r^{s,t} \to E_r^{s+r,t+r-1}$ is the differential,
- (2) $E_2^{s,t} \cong Ext_A^{s,t}(H^*X, H^*Y)$ and
- (3) converges to $[\Sigma^{t-s}Y, X]_p$

i.e. $E_2^{s,t} \cong Ext_A^{s,t}(H^*X, H^*Y) \Longrightarrow [\Sigma^{t-s}Y, X]_p$. When Y is sphere spectrum S, it is $E_2^{s,t} \cong Ext_A^{s,t}(H^*X, Z_p) \Longrightarrow \pi_{t-s}(X)_p$. When X is sphere spectrum S, Moore spectrum M, Toda-Smith spectrum V(1), V(2) respectively, $\pi_{t-s}(X)_p$ is respectively the stable homotopy group of S, M, V(1), V(2). Today, we detected some new nonzero elements of the stable homotopy groups of sphere and Toda-Smith spectrum V(1) by using of the ASS. If a family of homotopy generators x_i in $E_2^{s,*}$ converges nontrivially in the ASS, then we get a family of homotopy elements f_i in π_*S and we say that f_i is represented by $x_i \in E_2^{s,*}$ and has filtration s in the ASS. so far, not so many families of homotopy elements in π_*S have been detected. For example, a family $\xi_{n-1} \in \pi_{p^n q+q-3}S(n \geq 2)$, which has filtration 3 in the ASS and is represented by $h_0 b_{n-1} \in Ext_A^{3, p^n q+q}(Z_p, Z_p)$.

This thesis contains four chapters. In the first chapter, we find the convergence of the products $\tilde{\gamma_t}\tilde{l_1}g_0 \in Ext_A^{t+5,(t+1)p^2q+(t+2)pq+tq+t-3}(Z_p, Z_p)(3 \le t < p-2)$ in Adams spectral sequence, where A is mod p Steenrod algebra, $\tilde{\gamma_t} \in Ext_A^{t,tp^2q+(t-1)pq+(t-2)q+t-3}(Z_p, Z_p)$ converges to $\gamma_t = j_0 j_1 j_2 \gamma^t i_2 i_1 i_0 \in \pi_*(S)$.

In the second chapter, by the algebraic method, we prove the existence of a new nontrivial family $\tilde{\gamma}_{s+3}h_nh_m, (m \ge n+2 > 5, s < p-3)$ which filtration is s+5 in the stable homotopy groups of spheres $\pi_{q(p^m+p^n+(s+3)p^2+(s+2)p+(s+1))-5}S$.

In the third chapter, we use the estimation about $Ext_P^{s,t}(Z_p, Z_p)$, which is the subalgebra of mod p Steenrod algebra A which is generated by all $P^i(i \ge 0)$, we find $Ext_A^{4+s,p^2q+pq+q+s}(H^*V(1), Z_p) = Z_p\{b_0^pg_0\}$ $(s \ge 1)$. At the same time, Massey product and Toda brackets are very important to determine some new families of homotopy elements in $\pi_*(S)$, in this chapter, a nontrivial product $i_1i_0(\xi_1) \cdot i_1j_1\beta i_1i_0 \ne 0$ (where $p \ge 7$) in $\pi_*V(1)$ was obtained.

In the forth chapter, we discuss the property of the ring spectrum $V_r(2)$. At

Abstract

last, we get the convergence of $\gamma_{tp^n/r} (p \ge 7, t \ge 1, 1 \le r \le 2^n < \frac{p-3}{2})$ in the Adams-Novikov spectral sequence (ANSS).

Key Words: stable homotopy groups sphere spectrum Toda-Smith spectrum Adams spectral sequence May spectral sequence