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Abstract

Let Emb(S7, S™) denote the space of C°°-smooth embeddings of the j-sphere in the n-sphere.
This paper considers homotopy-theoretic properties of the family of spaces Emb(S7,S") for
n > j > 0. There is a homotopy-equivalence Emb(S7, S™) ~ SO,+1 Xs0,_ ; Kn,j where KCp ; is
the space of embeddings of R7 in R™ which are standard outside of a ball. The main results of
this paper are that K, ; is (2n — 3j — 4)-connected, the computation of ma,_3;_3kK, ; together
with a geometric interpretation of the generators. A graphing construction QKC,_1 ;1 — Ky ;
is shown to induce an epimorphism on homotopy groups up to dimension 2n — 25 — 5. The
graphing construction turns out to be a variant of Litherland’s ‘deform-spinning.’ This gives a
new proof of Haefliger’s theorem that moEmb(S7, S™) is a group for n —j > 2. The proof given
is analogous to the proof that the braid group has inverses. Relationship between the graphing
construction and actions of operads of cubes on embedding spaces are developed. The paper
ends with a brief survey of what is known about the spaces K, j, focusing on issues related to
iterated loop-space structures.
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2 Ryan Budney

1 Introduction

Haefliger proved that the isotopy classes of smooth embeddings of S7 in S™ form a group
provided n—j > 2, with the connect-sum as multiplication. This paper starts with a new proof of
Haefliger’s result, showing not only that mgEmb(S7, S™) is a group, but the reason it is a group is
that every element is spun. The inverse of a spun knot is its mirror-reflection, as in braid groups.
The key strategy revolves around a pseudo-isotopy fibre-sequence Ky 411j4+1 — Pnj — Knj-
The fact that the pseudo-isotopy embedding space P, ; is connected implies the result. In
his dissertation, Tom Goodwillie [22] gave a very detailed study of (general) pseudo-isotopy
embedding spaces. His results include that P, ; is at least (2n —2j — 5)-connected. This allows
for the computation of the first non-trivial homotopy groups of K, ; and Emb(S7, S™) provided
2n — 3j —3 > 0. The 2-fold spinning construction maky1 — mKe3 = mEmb(S3, %) ~ Z
is shown to be an isomorphism, answering a question posed in [7]. This also allows for a new
construction of explicit generators of ma,_3;_3K, ; for all n,j such that 2n — 35 —3 > 0.

Definition 1.1 e D" := {r € R": |z| <1} is the unit n-disc, with S"~! = 9D" the
(n — 1)-sphere.

e I=[-1,1] = D! is the standard interval.

e Given a topological space (resp. smooth manifold) X with base-point, denote the space
of continuous (resp. smooth) functions f : R — X such that f(R\I)=x by QX.

e Emb(D’, D") denotes the space of embeddings f : D’ — D™ which are ‘neat’ in the sense
that f(D7)NS"~! = f(S971) and f intersects S"~! transversely.

e The space of smooth embeddings of a j-sphere in an n-sphere is denoted Emb(S7, S™).

e K, denotes the space of ‘long’ embeddings of R/ in R™. This is the space of all smooth
embeddings f : R/ — R™ such that f(t1,t2, -+ ,t;) = (t1,t2,--- ,t;,0,---,0) provided
(t1,-+-,t;) ¢ IV and f(RI)NOI" = 9V x {0} 7. If f € K, ;, let K, ;(f) denote the
path-component of K, ; containing f.

e Let P, ; denote the space of embeddings f : RY — R™ such that:

— f(ta o, -+ t;) = (t1,ta, -+ ,t;,0,---,0) for (t1, - ,t;) & [-1,00) x !
— thereisa g € K,—1 j—1 such that for all (1, ,t;) € [1,00)xRI7L f(t1,te,--- ,t;) =
(t1,g(ta, -+ ,t5)).
— f(RI)NOI" = f(O1F) x {0},
In the literature, P, ; is sometimes given the notation PE(D’~1 DY) C(D/~1 Dn1)
or cemb(DI~1, D"1) and is either called a pseudoisotopy embedding space, or concor-

dance embedding space respectively. Here it will be called the pseudoisotopy embedding
space.

e EC(j, M) is defined to be the space of embeddings f : R/ x M — R/ x M such that
supp(f) € UV x M, where, supp(f) = {x € RI x M : f(z) # z}. ‘EC’ stands for
‘cubically-supported embeddings’. These embeddings are not required to send boundary
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A family of embedding spaces 3

to boundary.

e PEC(j, M) is the space of embeddings f : R x M — RJ x M such that supp(f) C
[—1,00)xI/~1x M and there exists some g € EC(j — 1, M) such that f(ti,to, - ,t;,m) =
(t1,g(ta, -+ ,tj,m)) for all (t1,ta,--- ,t;,m) € [1,00) x RI™1 x M. The letters ‘PEC’ stand
for ‘cubically-supported embedding pseudo-isotopy space.’

e A diagram of two maps A — B — (' is a homotopy fibre sequence if there exists a
commutative diagram

A—B——C
F—F——8B
such that F — E — B is a fibration and the vertical maps are homotopy-equivalences.

e Diff(D") denotes the space of smooth diffeomorphisms of D™ which restrict to the identity
on the boundary. Diff(S™) is the group of diffeomorphisms of S™.

All embedding spaces are endowed with the weak C'°°-topology [33], sometimes also called the
Whitney topology. Many classical results on the homotopy properties of embedding spaces that
will be repeatedly used in this paper appear in Cerf’s [15] paper, such as the fibration properties
of restriction maps, and the homotopy-classification of spaces of tubular neighbourhoods.

In the definition of K, ; replacing the cubes I" and I’ with discs D" and D’ gives a homotopy-
equivalent space. Similarly for the definition of Diff(D") and EC(j, M). The proof is a typical
argument when one deals with these spaces, see for example [7] Corollary 6.

Section 2 briefly covers the most elementary relationships between the spaces defined above:
Knj, Emb(S7,5™), Emb(S7,R"), Emb(D’, D"), P, ;, EC(j,D"7) and PEC(j, D"~7). This
section also includes a generalisation of an observation of Goodwillie and Sinha [73] concerning
the Smale-Hirsch map K, ; — 07 Vn,j- The Goodwillie-Sinha result is that this map is null-
homotopic for j = 1. The generalisation that appears here is that the map factors as a composite
Knj— QjVn_l,j_l — QjVn,j where the map QjVn_l,j_l — QjVn,j is the j-fold loop of the fibre
inclusion in the Stiefel fibration V,,—1 ;1 — V,,; — sn—1,

Section 3 is the heart of the paper. A proof of Haefliger’s theorem, that for n — j > 2
moEmb(S7, S™) is a group is given. The proof permutes some of the main concepts of Haefliger’s
original argument. It has two essential steps: 1) The construction of a homotopy-equivalence
Emb(S7,8") ~ SO, 11 X50,_; Kn,j together with fibrations P, ; — Emb(D’, D") — n,j and
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4 Ryan Budney

Knj — Pnj — Kn—1,j-1 reduces the problem to 2) proving that Emb(D7, D") is connected.
Thus, the argument boils down to showing the monoid 7ok, ; is a group because it is the image
of the group 7K, —_1 j—1. Further, it is shown that the ‘boundary map’ gry : QK,_1 ;-1 — Ky ;
has a geometric interpretation as a variant of Litherland ‘deform spinning.’ In this case it is
given by the formula

(gryf)(to, t1,- - ,tj—1) = (to, f(to) (t1,--- ,tj—1))-

In Proposition 3.9, Goodwillie’s dissertation is used to prove that gr; : QK,_1;—1 — Ky ;
induces an epimorphism of the on homotopy groups m; for ¢ < 2n — 2j — 5. By comparing with
the work of Turchin and Sinha this allows the computation of mg,_3;_3K, j. An enumerative-
geometry argument is used to construct a cohomology class 15 € H 2"_6(1Cn71;Z), which is
used to find an explicit generator of ma,_¢K, 1 ~ Z. The generator can be thought of as the
resolutions of a long immersion of R in R™ having two regular double points, corresponding to
the @ chord diagram. The generators of the groups m/Cy, ; for 2n —3j —3 = 0 are constructed
as iterated graphs of the generator of m;_1K,—jy1.1.

Section 4 investigates the extent to which the fibration K\, ; — Py ; — Ky—1,j-1, and its framed
analogue are equivariant with respect to natural actions of operads of cubes. PEC(j, M) is shown
to have an action of the operad of j-cubes, the map PEC(j, M) — EC(j — 1, M) is shown to
be equivariant with respect to the j-cubes action defined in [7]. The graphing construction
QEC(j — 1, M) — EC(j, M) is shown to be equivariant with respect to the (j+1)-cubes action.

Section 5 covers, in a rather terse survey manner, many of the basic properties the spaces K, ;
which have not already been mentioned. A curiosity is put forward: two seemingly distinct null
homotopies of the inclusion K, 1 — K,411 are described, giving a mysterious map XK, 1 —
Krn+1,1- This leads to a question about the existence of a ‘Freudenthal suspension’ Elen,l —
Krn+1,1. Basic properties of other natural maps such as KC,, ; — QK,, j_1 and the Smale-Hirsch
map SH : K, ; — QjV,w- are described.

Part of this manuscript was produced while visiting the University of Rome ‘La Sapienza’,
Louvain-la-neuve, the American Institute of Mathematics, the University of Tokyo and THES.
I would especially like to thank the Max Planck Institute for Mathematics, in Bonn, for giv-
ing me the freedom to pursue this line of enquiry. I would like to thank my hosts for their
hospitality: Riccardo Longoni, Paolo Salvatore, Corrado De Concini, Magnus Jacobsson, Pascal
Lambrechts, Victor Turchin, and Toshitake Kohno. Victor Turchin’s comments on the first draft
of this manuscript were particularly helpful. T would like to thank several mathematicians whose
comments, knowingly or not, have helped me in putting this paper together: Greg Arone, John
Rognes, Tom Goodwillie, Larry Siebenmann, Dev Sinha, Arkadiy Skopenkov, Lee Rudolph,
Matthias Kreck, Paolo Salvatore and Danny Ruberman.

2 Basic relations between embedding spaces

This section describes some basic relationships between the spaces: K, j, EC(j, M), Emb(S7,5™),
Emb(S7,R"), Emb(D’, D"), P, ; and PEC(j, M). The essential spirit of the results is that most
homotopy questions about these spaces reduce to studying K, ; and P, ;.

Given a neat embedding f : DI — D™, the restriction to the boundary is an embedding
fiopi Si=1 — §7=1. On a global level, restriction defines a function

Emb(D?, D") — Emb($7~!, §" 1)

preprint



A family of embedding spaces 5

which is a fibration [15, 59]. In this paper ‘fibration’ means Serre fibration. The above map is
known to be more than a fibration, it is a locally trivial fibre-bundle [59]. Fibrations need not
be onto. In this example, the fibration is onto the isotopy classes of ‘slice’ knots (and not all
knots are slice, see [37] for examples). Thus, the homotopy-type of the fibre can change as one
changes base-space components, and fibres are allowed to be empty.

Consider Emb(S7~1,8"~1) to be a based space, with base-point the standard inclusion S$7~! C
S"=1. The fibre of Emb(D7, D") — Emb(S7~!,S"~1) over the base-point has the homotopy-
type of KCy, ;. There is a similar fibration KCp, j — Py, j — K,,—1;—1 defined by restriction to the
‘free face.” The next theorem shows that this fibration induces the fibration Emb(D7, D") —
Emb(S7-1, sn=1).
Theorem 2.1 For n — j > 0 there are homotopy-equivalences:

Emb(Dj,Dn) ~ SO, XS0, _; Pn,j

Emb(Sj_l,S"_l) ~ SOy X50,_; Kn-1j-1

Moreover, the homotopy fibre sequence K, ; — Emb(D’, D") — Emb(S7~1, S"~1) fits into a
commutative diagram of 6 homotopy fibre sequences:

K, Pn,j Kn-1,-1

l | |

K,j — Emb(DJ, D") — Emb(S7~1, 87— 1)

l | |

* VnJ’ Vn,j

Proof In [10] a homotopy-equivalence SO, xso,_; Kn-1j-1 — Emb(S771, S"~1) was con-
structed. The basic idea is to consider S™"! to be the one-point compactification of R"~!,
this gives an inclusion K,_1;—1 — Emb(S7=1, S7=1).  The action of SO, on S" ! gives
an extension SO, Xso,_; Kn-1;-1 — Emb(S7—1, 571, SO, X80,_; Kn-1,j-1 fibres over
Vi = SO, /SO, _; by projection onto the first coordinate. Emb(S7~1, S"~1) fibres over a space
homotopy-equivalent to V,, ; by restriction to a fixed hemi-sphere B C Si=1 Emb(S7-1, 87 1) —
Emb(B, S"1) ~ V,,; [15]. This makes SO,, xs0,, . Kn—1,;-1 — Emb(S7=1 §""1) a map of fi-
brations.

n—j

The same idea can be applied to Emb(D’, D"). Let B C D/ = S/~! be as above. Let
Emb(D’ rel B, D) denote the subspace of Emb(D7, D") which is fixed point-wise on B. There
is a fibre bundle Emb(D’ rel B, D") — Emb(D’, D*) — Emb(B, S"!) given by restriction
to B. The base-space has the homotopy-type of V,, ; ~ SO,,/SO,_; and as in the previous
paragraph, there is a map of fibrations

SO, xs0,_, Emb(D? rel B, D™) — Emb(D?, D™).

That Emb(D’ rel B, D™) has the same homotopy-type as Pp; is a fairly standard argument,
see for example the 2nd half of Corollary 6 of [7]. O
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6 Ryan Budney

When n = j, the above argument proves that Emb(D", D™) has the homotopy-type of O, xP,, ;.
Similarly, Emb(S"~!, 8"~1) = Diff (S"~!) has the homotopy-type of O, x Krn—1,n—1. This case
appears in [29].

There is a similar relationship between Emb(S7, R") and Kr,j. For this proposition, identify R™
(the one-point compactification of R™) with S™ via stereographic projection. This makes SO,
the stabiliser of oo under the SO, action on S™. Denote the projection map SO, — S™
by 7. Given f € K, ; let f € Emb(S7,5™) be the one-point compactification of f. Notice that
the space

{(A,f): A€ SOps1,m(a) € 8"\ img(f), f € K}
fibres over C' x K, ; with fibre SO,,, for

CxKpnj={(p.f):p €S \img(f), f € Knj}.

Denote {(4,f) : A € SOpy1,7(a) € S™\ img(f),f € Kn;} by (C x K, ;)*(7). Consider
(C'xICp 5)*(m) to be the pull-back of m over R". Since 7 is trivial over R", the pull-back must
be as well.

SO, X (C XKy j) =~ (Cx Ky ) ().

Notice that SO,—; acts on (C x K, ;)*(7) from the left, by considering SO,,—; C SO,41 to be
the group that leaves S/ = RJ in S™ fixed point-wise.

Proposition 2.2 Provided n — j > 0 there is a homotopy-equivalence
SO,,—;\(C x K, j)*(7) — Emb(S?,R").
Induced by the map (A, f) — A~ o f. Moreover, there is a homotopy-equivalence
SO, \(C % Ky j)"(7) — SO, xs0,_; (C % Ky 5)

where the action of SO,,_; on SO,, is by left multiplication.

Proof Observe that Emb(S7,R") fibres over V;, ;. The fibre can be identified with {f € K, ; :
0¢ f(R)}. C xK,; fibres over a ball with fibre {f € K, ; : 0 ¢ f(R7)}, thus there is a
homotopy-fibre sequence

C % Ky j — Emb(S,R™) — V,, ;

(CxICy, ;)* () similarly fibres over V;, ; giving a commutative ladder of homotopy fibre sequences

C x K:n,j - Emb(S], Rn) - Vn,j

T T !

C XL j— (C % Ky j)"(m) — Vi j

Let (A, f) € (CxK,, ;)*(m), then A is a matrix whose first column vector is 7(A), the remaining
vectors are in the tangent space to R™ at m(A). Let [A];4) denote the representation of A
with respect to the standard framing of R™ at m(A). Consider the map (C' x K, ;)*(7) —
S50, x(CxKy ;) given by sending the pair (A, f) to ([Alx(a), (7(A), f)). This map is equivariant
with respect to the action of SO,,_; since if B € SO,,—; then B.(4, f) = (BA, Bf), which is sent
to ([BA]w(BA)y (W(BA),B]C)) = ([BA]BW(A),B.(A, f)), but [BA]Bw(A) = B[A]W(A) by a change
of variables argument, giving the result. O
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A family of embedding spaces 7

A basic fact and conventions about homotopy-fibres is given for future reference.

Lemma 2.3 Let p: E — B be a fibration. Let ¢ € F and b € B be the base-points of ' and
B respectively, with p(e) =b. Let i : F — E be the fibre inclusion. Let R(F) = {(a,h) : a €
F,h :[0,1] — E,h(0) = p(a)} then the map R(i) : R(F) — E given by evaluation h(1l) is a
fibration, and 7p : R(F) — F given by projection onto F' is a homotopy-equivalence. The fibre
of the map R(i) : R(F) — FE is the space HF (i) = {h : [0,1] — E,h(0) € F,h(1) = e}, and
the map p, : HF (i) — QB given by post-composition with p is a weak homotopy-equivalence,
giving a fibration:
QF - HF (i) — F

and a homotopy-commutative diagram

i

OB F E—2-B

| e

QF — HF(i) — R(F)

The map HF(i) — F is sometimes called the ‘connecting map’ or the ‘boundary map’ as
it induces the same map as the connecting map in the homotopy long exact sequence of the
fibration p.

The next two results are a modest generalisation of observations due to Goodwillie (unpub-
lished), Sinha [73], Turchin [79] and Salvatore [67], concerning the monodromy of the fibration
EC(j,D"7) — K, ; and the Smale-Hirsch map K, ; — Q'V,, ;.

Theorem 2.4 The homotopy fibre sequence
¥S0,,-; — EC(j, D"7) — Kn;

is trivial for j = 1, and also for n — j < 2. There is a pull-back diagram of homotopy fibre
sequences:

VS0, VSO,

| |

EC(j, D7) — PQI~1S0,,_;

| |

Knj —%—= Qi-150,,_;

Where QjSOn_j — PQj_lson_j — Qj_lsOn_j is the path-loop fibration of the space Qj_lsOn_j.
The classifying map cl : K, j — Q771SO,,_; fits into a commutative diagram

Qj Vn,n—j

|

VSO, —= WV, j —= VG, = VG

SHT lmono

ICn,j cl Qj_lson_j
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8 Ryan Budney

where ‘SH’ is the Smale-Hirsch map, V;, ; is the Stiefel manifold of j linearly independent
vectors in R", SO; — V,, ; — Gy, j is the canonical fibration for the Grassmanian of oriented
j-dimensional subspaces of R". ‘mono’ is the j-fold looping of the classifying map Gy n—; —
BSO,,—; for the bundle SO,,_; — V, _j — G n—j. Identify G, ; with Gy, ,_; via the oriented
orthogonal complement.

Framed and unframed pseudoisotopy embedding spaces are more directly related, as the forgetful
map PEC(j, D"7) — P, ; is a homotopy-equivalence.

Proof The observation of the existence of the above pull-back diagram first appears in Turchin’s
work [79] for j = 1. The idea is to divide I7 into I x I'~!. Given a knot f € Knj,let vf be its
normal bundle, and consider parallel transport (using the connection inherited as a submanifold
of Euclidean space R") from v fj;_jy, -1 to vf{yu -1, this is an element of Q71S0,,—;. The
map EC(j, D"7) — PQI~1S0,,_; is defined similarly, only along the paths I x {z} C I x P71
f € EC(j,D"7) one has a pre-defined framing of Vf|rix{oy»—s Which can be compared to the
parallel transport framing, giving the bundle map.

Observe that the way ), ; — Qj_lSOn_j is defined, it factors as a composite K,, ; — QjGn,j =
QjGnm_j — Qj—lson_j. Knj — QjGnJ is the ‘tangent space map.” G, ; is the Grassmanian
of j-dimensional subspaces of R™. mono : Gy pn—j — ' 71SO,,_; is the j-fold looping of the
classifying map of the bundle SO,_; = V,, n—j — Gpn—j.

For the fibration PEC(j, D7) — n,; observe the fibre has the homotopy-type of the path-
space PQj_ISOn_j. O

The homotopy-class of the Smale-Hirsch map SH : K, ; — 2V}, ; is not so well understood.
There are results concerning the induced map SH : moK,, ; — m;V,; in two cases: Kervaire
proved it to be trivial provided 2n — 3j > 2 [40]. In the co-dimension 2 case n — j = 2, Hughes
and Melvin showed that SH : moK,, ; — m;V,, ; has non-trivial image if and only if j = 3 mod 4
[35], moreover they gave a rather appealing description of the immersions that can be realised
as embeddings. Eckholm and Sziics [18, 19] have recently given more geometric interpretations
of the obstruction to an immersion having a representative that is an embedding.

Theorem 2.5 The Smale-Hirsch map SH : IC,, ; — 9% Vy,j fits into a homotopy-commutative
diagram

SH ;
Kn,j WV, ;

\ Qi (i)

O A

where i : Vy,_1 j—1 — Vi, ; is the fibre-inclusion of the fibration Vy,_1 ;1 — V;, ; — sn—l,

Proof Consider the commutative diagram of spaces and maps:

]Cnvj Pn?] ]Cn_lvj_l

v Jon o

WYV, —= QY HF (i) —= QW g
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A family of embedding spaces 9

HF (i) is the homotopy-fibre of i. By Proposition 2.3, there is a homotopy-equivalence HF(i) ~
Qs

The Smale-Hirsch map SH : P, ; — Q/S"! is given by differentiation in the vertical ‘pseudo-
isotopy’ direction. The map h : [0,3] x RY x P,, ; — S™~1 given by:

n(Z (1, x;)) t=0
h(t7x17'”7$j’f): n(f(wl—i_tax%”'7‘Tj)_f(x17"'7xj)) 0<t<2

pt_2(n(f(331 +27$27"' 7gjj) - f(xlv"' 73:]))) 2<t<3

is a null-homotopy of the Smale-Hirsch map, provided p : [0,1] x S?~1\ {-1} — S7~1\ {-1}
is a deformation-retraction of S"~1\ {—1} to {1} ¢ S !, and n : R*\ {0} — S"! is the
function n(v) = ﬁ O

Theorems 2.4 and 2.5 combine to give a commutative diagram involving the maps ¢l : ICp, ; —
Qj_lsOn_j and SH : K, ; — QjVn,j.

9% Vn—l,n—j

QL

ijn,j -~ Qj‘/n—l,j—l — Qj(;n—l,j—l = Qj(;'n—l,n—j

e !

’Cn,j cl Qj_lson_j

3 Spinning and graphing in high co-dimensions

This section is devoted to the concepts surrounding a new proof that my/C,, ; is a group, provided
n — j > 2. The proof is quite simple: show that the total-space of the fibration ), ; — P ; —
Kn—1,-1 is connected. This forces the boundary map mK,,—1 ;-1 — /K, ; from the homotopy
long exact sequence to be an epi-morphism. Showing that P, ; is connected reduces to showing
that every neat embedding of D’ in D" is isotopic (through neat embeddings) to a linear
inclusion. The remainder of the section elaborates on ingredients used in the proof and its
consequences. The boundary map Q&,_1 ;-1 — K, ; is shown to be homotopic an explicitly-
defined graphing map gr; : QK,_1 ;-1 — K, ; in Proposition 3.2. Propositions 3.4 and 3.6
demonstrate that gry is a variant of Litherland’s deform-spinning construction [47]. Goodwillie’s
dissertation is invoked, showing that gr; is a surprisingly highly-connected map. This allows the
computation of the first non-trivial homotopy groups of K, ; provided 2n —3j5 — 3 > 0. Using
some computations of Victor Turchin and a quadrisecants argument, an explicit generator is
constructed for mo,_6K, 1. Via spinning, this gives new explicit constructions of Haefliger’s
spheres mo/C,, ; for 2n — 35 —3 = 0.

The next proposition is an old result which is known to hold in far greater generality [34, 22].
Goodwillie’s generalisation will later be used in this paper. So strictly speaking, this proposition
is redundant. The proof is included as several later developments in this section build on it,
making it the natural starting point.
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10 Ryan Budney

Proposition 3.1 Provided n—j > 2, the map mK,—1 -1 — mK,; is an epi-morphism. The
spaces Emb(D?, D™) and P, ; are connected.

Proof Once Emb(D7, D™) is shown to be connected, the remaining results follow from the ho-
motopy long exact sequences of the fibrations K, j — Py, ; — Kp—1,j—1 and P, j — Emb(Dﬁ D")
Vp,j from Theorem 2.1.

e Consider n = 4. The path-connectivity of Emb(D', D*) is well-known and appears in
many places. Let f € Emb(D! D*), and isotope it to be standard on the bound-
ary: f(=1) = (-=1,0,0,0) and f(1) = (1,0,0,0). Let v € S3. By Sard’s theorem,
the projection of f into the orthogonal complement of v is generically an embedding.
Choose one such value for v such that ¢ = (v,(1,0,0,0)) > 0. Then the formula
f(t) —a(f(t),v)v + act - v describes a path (parametrised by a € [0,1]) in Emb(D?!, D%),
starting at f and ending at a function which is monotone increasing in the direction of v,
thus isotopic to t — (¢,0,0,0) by the straight-line homotopy.

e Consider n = 5. As in the previous case, isotope f € Emb(D? D%) to be standard on
the boundary, and let f, : D> — D5 for a € [0,1] be the straight-line homotopy from f
to the standard inclusion. By the weak Whitney immersion theorem, one can assume f,
is generically an embedding, with only finitely many times a for which it has an isolated,
regular double point. Wu [85] developed a 1-parameter ‘Whitney trick’ for this situation,
to remove the double points from the family.

e Consider the case n > 6 and let e : D/ — D" be a proper embedding. Let B C DJ be
the open ball of radius %, centred about the origin. Consider D’ = D7 x {0}"~/ C D".
By a local linearisation, isotope e so that it agrees with inclusion on B, e(z) = z for all
x € B. Let U be the open ball of radius % centred about 0 in D™, and isotope e so
that e(D7)NU =e(B). Let W = D"\ U, M; = 0U and My = 9D™. OW = M; U M>.
M; — W is a homotopy-equivalence for i € {1,2}, since W is a product. Let V = e(D’\B)
with Vi = W1NnV, Vo =WenNV,and let f: V] x [%,1] — W be the map defined by
f(v,t) = e(2tv). f maps Vi x[3,1] diffeomorphically to V. Corollary 3.2 of [76] states that
f extends to a diffeomorphism of pairs f : (Wy, Vi) x [$,1] — (W, V). Therefore it further
extends to a diffeomorphism of pairs f: (D", D?) — (D", img(e)). So e = f o h where h
is the standard inclusion h : D/ — D™. Given an orientation-preserving diffeomorphism
f of D™ it acts on Emb(D7, D), but the action is trivial on mgEmb(D?, D™) — the idea is
that one can linearise f on the complement of a neighbourhood of a point in the boundary
of D™.

O

The earliest claim in the literature that Emb(D7, D") is connected for n — j > 2 seems to be
made by Haefliger. It appears in his AMS math review [28] of Zeeman’s paper [87]. Perhaps
the above proof is similar to what Haefliger had in mind, as he states the result follows from
Smale’s paper [76]. It would be interesting to know if there are any more elementary proofs.

The fibre-sequence ), j — Pp;j — Kp—1,j—1 ‘backs-up’ to a fibre-sequence QC,_1 ;1 — Ky ; —
Ppn; by Lemma 2.3. The remainder of this section is devoted to the properties of the ‘connecting
map’ QK,_1 ;-1 — K, ; and its relatives.
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A family of embedding spaces 11

Proposition 3.2 The connecting-map QC,_1 ;-1 — K, ; is homotopic to

Q—1,j-1 &l Kn,j
f———(to,t1, -+ ,tj—1) — (to, f(to)(t1, -+ ,tj—1))]

and the connecting map QEC(j — 1, M) — EC(j, M) is homotopic to

gry

QOEC(j — 1, M) EC(j, M)
fr——1[(to. t1, - ,tj_1,m) — (to, f(to)(t1, -+ ,tj—1,m))]

Proof The two cases are essentially the same, so restrict attention to the fibration
EC(j, M) —— PEC(j, M) ——=EC(j — 1, M) .
By Lemma 2.3
HF(i) = {f :[0,1] — PEC(j, M), f(0) = Idgsx s, f(1) € EC(j, M)}.

The map HF(i) — QEC(j — 1, M) defined in Lemma 2.3 is a weak homotopy equivalence.
Palais has proved that every embedding space has the homotopy-type of a CW-complex [60].
Strictly speaking, he proves embedding spaces are dominated by CW-complexes, but at that
time it was a well-known theorem of Whitehead’s that a space dominated by a CW-complex
has the homotopy-type of a (perhaps different) CW-complex [84]. The further fact that the
various loop space and homotopy-fibre constructions send spaces with the homotopy-type of
CW-complexes to spaces having the homotopy-type of CW-complexes is due to Milnor [54].
Thus, HF (i) — QEC(j — 1, M) is a homotopy-equivalence.
An explicit homotopy-inverse of QEC(j — 1, M) — HF'(i) is exhibited. Given f € QEC(j — 1, M),
consider the object

tl,f t1 t2,"',t',m f01‘2t—1§t1
(bt ty,m) — { Etl,fEQt)(— ) (ta, - ,tz),m)) for ¢, < 2t — 1

This would be the ‘right’ map QEC(j — 1, M) — HF (i) (with loop-space parameter t) if it was
a smooth function in the variable t;. Consider a smooth ‘wet blanket’ function b : R — R with
the properties:

e b(x)==xforall z<0
e b(x)=1/2 forall x > 1
o V(z)>0 forall z € R.

Such a function can be obtained in closed-form as

b(:p):/ox <1—/OIB(x)dﬂc> da

where B : R — R is any smooth function such that B(3 +z) = B(3 — ) and B(z) > 0 for all
z € R, with B(z) =0 for all |z — 1| > 1 and [ B(z)dx = 1.

For t € R define b; : R — R as by(z) = b(x —t) +t. Consider the function QEC(j — 1, M) —
HPF (i) defined by sending f € QEC(j — 1, M) to f € HF (i) by the formula

FO) - trm) = (B, flbosgss (1)t b+ tym)) (3)
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12 Ryan Budney

The composite QEC(j — 1, M) — HF (i) — QEC(j — 1, M) is obtained by setting ¢; = 1 in (x),
thus f is sent to the map |:(t,t2,"' Jtj,m) — f(bfis;st(l))(tg,"' ,tj,m)} € QEC(j —1,M)
which is just a reparametrisation of f by b—32+5t(1) (thought of as a function of ¢). Since

b732+5t (1) is an increasing function of ¢ it is homotopic to the identity. O

Zeeman proved that the complements of certain co-dimension two ‘twist-spun’ knots fibre over S!
[88]. Litherland later went on to formulate a more general notion of spinning, at the time called
‘deform-spinning,” further generalising Zeeman’s theorem to this context [47]. The Zeeman-
Litherland results are important for a number of reasons — one being that they are an excellent
source of embeddings of 3-manifolds in S*, as the Seifert-surfaces of embeddings of S? in S%.
The next proposition points out that the connecting map gry : QK,—1 ;-1 — K, ; is a mild
variation of Litherland’s spinning construction.

Given a topological space X, denote the space of continuous functions f: S' = R/2Z — X by
LX called the ‘free loop space of X.” Define P : I — 12 by Py(t1,t2) = (% cos(7ty), t2;2 sin(7rt1))
and P, : I" — I" as P, = P, x Idjn—2. Notice P, is an embedding on the interior of I, and is
globally one-to-one except for the equality P,(—1,ta,t3, -+ ,tn) = Ppo(1,t2, -+ ,tn).

Definition 3.3 Given f € LK,_1 -1, let h: R — R" be the function h(tg,t1, -+ ,tj—1) =
(to, f(to)(t1,--- ,tj—1)), and consider the composite P, o hOPj_l. It is well-defined on the image

of P;. On 9P;(VV) it agrees with the standard inclusion R/ — R". Define gr(f) € K, ; to be
the unique extension of PnOhOPj_1 such that gry(f) s\ p;(17) agrees with the standard inclusion.

Proposition 3.4 The diagram

gry

T gry

Q—1,j-1

is homotopy-commutative.

Proof There exists a 1-parameter family P,(¢) : I" — I" for ¢ € [0,1] satisfying P,(0) = P,,
P,(1) = Idin, such that for all t € (0,1] the function P,(t) : I" — I" is an embedding.
Substituting P, (t) for P, in the definition of gry : LK,,_1 j—1 — Ky, ; gives the desired homotopy.

O

In the literature, Litherland spinning is not defined as the map gr, : LK,,_1 ;1 — K, ;, but
what Litherland defined in [47], when appropriately adapted to the smooth category, turns out
to be precisely gr;. This is the content of Proposition 3.6.
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A family of embedding spaces 13

EC(n,*) is the group of diffecomorphisms of R” whose support is contained in I", thus it acts
(by composition on the left) on IC,, ;. Notice that if n —j >0, f € K, ; and g € EC(n, *) then
go f is in the the same path-component of K, ; as f. In fact, much more is true. Let K, ;(f)
denote the path-component of f in I, ;.

Lemma 3.5 Provided n —j > 0 and f € K, ;, the map EC(n,*) — I, ; given by sending
g € EC(n,*) to go f is a null-homotopic fibration whose image is K, j(f). The fibre of this
fibration is denoted Diff (I", f).

Proof That the map is a fibration is classical [15]. That the image contains /C,, ;(f) follows from
the isotopy extension theorem. Consider an orientation-preserving affine-linear transformation
L : R" — R" such that L(I") C I". Given g € EC(n,*) notice that Lo go L™! € EC(n, %),
moreover the support of L ogo L1 is contained in L(I"). The space of orientation-preserving
affine linear transformations of R™ which preserves I" is connected, thus there is a path L; in
this space such that Ly = Idg» and L; = L. The function

[0,1] x EC(n, *) Knj

(t,g)l—>LtogoLt_10f

is a null-homotopy of the map EC(n,*) — K, ; provided L(I") N f(R7) = ¢, which can always
be arranged provided n — j > 0, by Sard’s theorem. m]

The map m K, ;(f) — mDiff(I", f) is therefore a bijection onto the subgroup of mDiff(I", f)
which is the kernel of the forgetful map moDiff(I", f) — meEC(n,*). Given an element g €
m1Kn;(f), let g € moDiff(I", f) be its image. Given g € m/C,, ;(f) and grig € Ky41,j41 denote
the one-point compactification by gr7g € Emb(S7T1, §nt1).

Starting from an element h € Diff (I", f) which is in the kernel of the forgetful map Diff (I", f) —
71oEC(n, %), Litherland gave a ‘surgery’ description [47] of an embedding S/*! — S"*!. Consider
I"*2 to be the product I"*2 = I" x I?, so 91" =I" x (9I%) U (9I") x I?. Think of I" x (01?)
as a trivial I"-bundle over 912, therefore it is diffeomorphic to the bundle over 9I? with fibre
I" and monodromy given by h. Call this space I" x;, OI%. Since h acts as the identity on 9I",
the boundary of I" x;, 9I? is canonically identified with 9I" x 0I?. Thus the union

(X", f) x OT%) U (91", 0F) x I?

makes sense as a manifold pair. Identify 9I"*t2 with S"*! C R"*?2 by radial projection from the
origin. Thus, ((I", f) x;, 9I?) U (91", 017) x I? describes an embedding of S7*! in S™*1. This
is Litherland’s deform-spun knot construction [47].

Proposition 3.6 Given g € m1K,, ;(f), the ‘Litherland spun’knot ((I", RS 812)U(8I", o) x
12 and gr;g € Emb(S/*!, S"*1) are isotopic, once S"*! is identified with O1"*2 via radial pro-
Jjection.

Proof The key step is to remember that the identification of I" x (012) with I" x 501? is made
via the null-isotopy of § when considered as an element of EC(n,*). Under this identification,
the two definitions are identical. O
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14 Ryan Budney

Given f € K, ; and g € QK,, ;(f), let C; be the complement of an open tubular neighbourhood
of f in S™. By the above argument, the complement of gr,(g) in S"*! is diffeomorphic to
C x5 S union a 2-handle and an (n — j + 1)-handle. Here C x5 S* indicates the C'; bundle
over S! with monodromy induced by §. This gives a presentation

mCqy(g) = My /(g2 = x Vo e mCy)

where (§.x = x Vo € m1C}) is the normal subgroup of mCy generated by the relations g.o =«
for all x € mCy.

Example 3.7 If g € QK51(f) is the Gramain element (rotation by 2w about the long axis),
its action on mCy is conjugation by the meridian. Thus mCly, (4) is trivial, as all knot groups
are ‘normally generated’ by a meridian. This observation anticipates the Zeeman-Litherland
theorem, which states that gri(g) is the unknot [88, 47] whenever g is the Gramain element.
The Zeeman-Litherland theorem is stated in full generality in Section 5.

The spaces K, , = EC(n, %) are the groups of diffeomorphisms of a cube, and have the homotopy-
type of Diff(D™), the group of diffeomorphisms of a disc which are the identity on the boundary.
The maps gry : QK, , — Kp4+1,n+1 have been studied in this context. Define gry : Qlen,j —
Kn+2,j+2 to be the composite gry o Qgr; where {gry : Qlen,j — Q41,541 is the induced map
of gr;. Similarly define gr; : 'K, j — Kptijti- In the literature [4, 83, 24] elements of Tk, ,,
which are in the image of gr; : mKCp,—; ,—; — MoKy, but which are not in the image of gr;,, are
typically said to have Gromoll degree 1.

Definition 3.8 An element f € 79K, ; has (Gromoll) degree ¢ if it is in the image of the i-th
graphing map gr; : mKp—; j—; — 7ok, ; but not in the image of the (i 4 1)-st graphing map
grit1-

Proposition 3.9 (1) The Gromoll degree of the elements of molCy, ; is at least 2n — 2j — 4
for all m > j > 0.

(2) K,; is (2n—3j —4)-connected for all n > j > 1. Provided 2n—3j—3 >0 and n—j > 2
the first non-trivial homotopy group of K, ; is

e Z j=1orn—jisodd
Ton—3j-3Nn,j = Zo j>1andn—jiseven

The elements of moK,, ; for 2n — 3j — 3 = 0 have Gromoll degree (j — 1), ie: gr;_; :
Tj—1Kn—j+1,1 — m0Ky ; Is onto.

(3) Emb(S7,S™) is min{(2n — 3j — 4), (n — j — 2)}-connected for all n > j > 1. Let m =
min{2n — 35 —3,n — j — 1}. Provided 2n —3j —3 > 0 and n — j > 2 the first non-trivial
homotopy-group of Emb(S7,S") is

Z 2n—-3j—-3<n—j7—1,(j=1o0rn—jodd)
Z 2n—-3j—3>n—7—1,n—j even

TmBEmb (87, 8™) ~ ¢ Zy 2n —3j—3<n—j—1,7>1andn— j even
Zo 2n—35—3>n—j—1,n—j odd

Z&Zy 2n—3j—3=n—j—1
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(4) Emb(S7,R") is min{2n — 3j — 4,n — j — 2} connected for all n > j +2 > 3. Let
m = min{2n — 35 — 3,n — j — 1}. Provided 2n — 3j —3 > 0 and n — j > 2 the first
non-trivial homotopy group of Emb(S7,R") is

Z 2n—3j—-3<n—j—1,(j =1 orn—jodd)

Zo 2n—3j—3<n—j—1,7>1andn—j even
T Emb(S7, R") ~ { Z 2n—3j-3>n—j—1

7?2 2n—3j—3=n—35—1,(j =1orn—j odd)

Z®7Zy 2n—3j—3=n—j—1,7>1 and j even
(5) Pn; is (2n —2j — 5)-connected for all n —j > 2.
(6) Emb(D7,D") is (n — j — 2)-connected for all n — j > 2.

Proof (5) That P, ; is 2n — 3j — 5 connected follows directly from Goodwillie’s dissertation
[22] (see Theorem C on page 9, and the comments immediately afterwards).

(6) This result follows from (5) and Theorem 2.1.

(1) Consider the homotopy fibre-sequence QKC,,—1 ;-1 — K, ; — Ppn; from Proposition 3.2.
Since Py ; is (2n — 2j — 5)-connected, m1K,—1,-1 — m/Cp; is epic for n — j > 2. Moreover,
moln—2,j—2 — mKp—1,-1 is also epic, as mPp_1 ;1 is trivial. The result follows by induction.

(2) There is a computation of the 3rd stage of the Goodwillie tower for K, ; in [9]. This is a
(2n — 6)-connected map IC,, 1 — AM3. AMs is known to have the homotopy-type of the 3-fold
loop-space on the homotopy fibre of the inclusion S”~!v §*~1 — §7~1 x 7~ thus Kn,1 is
(2n—T)-connected. The first non-trivial integral homology group of I, 1 is computed by Victor
Turchin [78] (see the computations for the homology of the complexes CTy D™ and C'T,D°
for j =4, i = 2). Turchin’s result is that Hop,_6(KCpp,15Z) ~ Z, so by the Hurewicz Theorem,
Ton—6Kn,1 = Z. That verifies the result for £, 1.

Consider the space K4 41 for j > 1. The fibre-sequence
Qn+j-15 = Kntjjtr = Prtjjer

has a (2n — 7)-connected base-space. In the special case of j = 1 the fibre has first non-trivial
homotopy group in dimension 2n—7. But ma,_7Pp41,2 is trivial, thus mo,—6K, 1 — Ton—7Kn41,2
is epic with kernel generated by the image of m2,_¢Pp+1,2, giving the isomorphism

Ton—1Knt1,2 =~ Ton—6Kn 1/img (Ton—6Pn+1,2) -

Repeat the argument for j > 1, inductively assuming that the first non-trivial homotopy group
of Q,yj—1j is mopm—j—62p4j-1,; and isomorphic to mon—6Kn1/img (Ton—6Pn+1,2). Since
Prtjj+1 is (2n — T)-connected, the map mop—j_6QKntj—1; — Ton—j—6Kntjj+1 IS an iso-
morphism of first non-trivial homotopy-groups, thus for all j > 1 there is an isomorphism
Ton—j—6Kntjj+1 = Ton—6Kn,1/img (T2n—6Pnt1,2)-

Setting j equal to 2n — 6 gives the isomorphism
T0K3n—6,2n—5 =~ Ton—6Kn,1/img (T2n—6Pn+1,2) -
Haefliger’s computations [27] completes the proof:

. ) Zy forn>4o0dd
ToA-3n—6,2n—5 = 7Z  for n > 4 even.
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(3) Theorem 2.1 gives us a homotopy equivalence Emb(S7,S™) ~ SO, 11 XS0,_,; Kn,j- Since
SO,+1/SOn—j = Vpg1,j+1 is (n — j — 1)-connected, the homotopy long exact sequence of the
fibration KC,, j — Emb(S7, S™) — Vj41,j41 tells us that Emb(S7, S™) is min{n—j—1,2n—3;j—4}-
connected. Since the bundle Emb(S7,S") — n+1,j+1 is split, the first non-trivial homotopy
group of Emb(S7,S™) can be computed directly.

(4) For Emb(S7, R™) use the homotopy equivalence Emb(S7,R") ~ SO, xs0,,_, (C % Ky ;) from
Proposition 2.2. The bundles C' x K, ; — Ky, ; and SO, Xs0,,_; (C %Ky ;) — Vy; are split, so
the computation follows directly. O

An interesting corollary is that there are ‘exotic families’ of smooth 2-discs in the 6-disc.
Corollary 3.10 72,_6Ppn+1,2 has rank at least 1 provided n > 5 is odd.

Brian Munson gave a lower bound of min{2n — 3j — 4,n — j — 2} on the connectivity of
Emb(S7,R™). Proposition 3.9 proves that Munson’s lower bound is sharp.

The rest of this section is devoted to a geometric construction of the generators of ma,_¢/Ky 1
for n > 4. Take a ‘long’ immersion f : R — R?® C R" having two regular double points
f(t1) = f(tz), f(te2) = f(ta) with t; < t2 <t3 < ts € R such that one of the four resolutions of
f in R3 is a trefoil knot. Let T'f; be the tangent space to f(R) at ;. Let Py be the orthogonal
complement to T'f1 & T f3 in R™, and P, the orthogonal complement of T'fo ® T'f4 in R™. P,
and P, are (n — 2)-dimensional, so if S; and Sy are the unit sphere of P, and P, respectively
they are both (n — 3)-dimensional. There is a ‘resolution function’ r : Sy x Sy — K, 1 given by
perturbing f near the double points via bump-functions whose directions are prescribed by the
pair (v1,v2) € Sy x Sa. The claim is that r is a generator of Hoy,_6(Ky,1;Z) ~ Z.

One could potentially trace through the computations of Turchin and Vassiliev [78, 81] to verify

that r generates Hay,_6(Ky,1;7Z). The following approach is perhaps more direct. It is inspired
by the quadrisecant description of the type-2 Vassiliev invariant for knots R3 [9]. The idea is
to construct an integral co-homology class vy € H 2"_6(1Cn71; Z) such that if z € Hoy_6(Ky,1;7Z)
is represented as an oriented (2n — 6)-dimensional manifold mapping into C;, 1 then vp(z) can
be computed as a signed count of the number of alternating quadrisecants along the family
of long knots represented by x. Every class in Ha,—6(Ky,1;7Z) is realisable as a map from an
oriented (2n—6)-dimensional manifold M to IC,, 1 since K, 1 is (2n—7)-connected (Proposition
3.9). Moreover, by the Hurewicz theorem, M can be assumed to be $2"76  as Ton—6Kn,1 ~
Hop6(Kn1:Z).
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Definition 3.11 Given two points z,y € R" let [z, y] denote the oriented line segment in R",
starting at « and ending at y. An alternating quadrisecant in Cy(R™) is a point (x1,x2,x3,x4) €
C4(R™) such that [z1,24] C [z3, 2] as an oriented subinterval. CyM denotes the configuration
space of distinct k-tuples of points in M, C,M = {x € M* : x; # xj Vi # j}. Provided
M is a manifold, let Ci[M] denotes the (real oriented) Fulton-Macpherson compactification of
CyM, as in [9]. Cy[M] is a compact manifold, provided M is compact. The ‘real oriented’
Fulton-Macpherson compactification has the property that the inclusion CpyM — Ci[M] is a
homotopy-equivalence.

Let AQ, C C4]R"] denote the closure of the set of all alternating quadrisecants in Cy(R"™).
Let C4[R] = {t € C4(R) : t; < ta < t3 <ts}. Given f € Kp1 let AQ,(f) C C4[R] denote the
pull-back of AQ,,. More generally, if f: M — I, ; is smooth, define AQ,(f) C M x C}[R] as
the pull-back of AQ,.

Given a closed, oriented (2n — 6)-dimensional manifold M and a map f : M — K, such
that fi : M x C}[R] — C4[R"] is transverse to AQ,, AQ,(f) C M x C}[R] is a 0-dimensional
submanifold whose normal bundle is oriented by the map. A well-defined integer invariant
vo(f) € Z is defined as the signed count (of the relative orientations) of the points in AQ,(f).
The sign of each point of AQ,(f) could be computed by a formula analogous to the one in
Proposition 6.2 of [9]. Lemma 3.12 is the key technical lemma needed to show that va(f) is an
invariant of the homology class of f.

Given f € Ky let I'(f) € (0,00] be the ‘cut radius’ of f in R"™, defined as the supremum
over all R such that the exponential map from f’s radius- R normal disc bundle to R” is an
embedding. T' : K, 1 — (0,00] can be shown to be a continuous function, as I'(f) is the
minimum of two continuous quantities 1) the focal radius of f (which can be computed in terms
of the 2nd fundamental form of f) and 2) the minimum of the distances L such that there exists
two geodesics segments, each of length L, emanating from a point in R” and terminating in
f(R), orthogonal to the tangent space of f(R). This kind of continuity argument is standard in
differential geometry, see Proposition 4.1 in §IIT of [66] for example.

Lemma 3.12 Every z € Ha,_6(Ky1;Z) represented by a manifold f : M — K, can be
perturbed so that f, is transverse to AQ, .

Proof Let R be the cut radius of f, R = min{['(f(z)) : x € M}. Let b: R — R be a
C*°-smooth function satisfying:

e b(z)=0forall [z >1

b(z) = b(—x) for all z € R
7 b(z)de =1

V(xz) >0 forall -1 <z <0.

For € > 0 and ¢ € R let b, : R — R be defined as bey(z) = 1b(ZL). By a compactness
argument, there exists an m € Z (perhaps very large) such that if Iy,---, I, is the partition
of T into m equal-length sub-intervals, then for all z € M and j € {1,2,--- ,m}, f(z)(I;) is

contained in the radius R/2 tubular neighbourhood of f(x).
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Consider the function f defined as

M x (R™")™ x R R”

(2,01, O ) —= (O + X bs

J

(t)v;

where p; € I; is the mid-point of the interval I;. Since embeddings are an open subset of the
space of all ‘long’ smooth maps from R to R™ [33], in some neighbourhood U of 0 in (R™)™, a
restriction of f can be thought of as amap f: MxU — Kn1. Consider a point (z,y,t1,t2,t3,t4)
of AQy(f) € M xUxC4[R]. For each i, t; and t;+1 cannot both be elements of some common I;
since (f(t1), f(t2), f(t3), f(t4)) is an alternating quadrisecant. Thus f, : M xUxC4[R] — C4[R"]
is transverse to AQ,. By the Transversality Theorem [25], f can be approximated by a map

M — K1 such that the induced map M x Cj[R] — C4[R"] is transverse to AQ,. O

Theorem 3.13 15 € H*"75(K,, 1;Z) is a well-defined cohomology class. Moreover, vo(r) = +1,
forcing r to be a generator of Hop_6(Kp1;Z) >~ Z.

Proof An alternating quadrisecant can never appear on 9(M x C}[R]) nor can a 1-parameter
family of alternating quadrisecants run off to infinity, thus, by the Transversality Extension The-
orem (see for example Chapter 2 of [25]) v5(f) is well-defined integer invariant of the homology
class of f.

In the picture of the ‘immersed trefoil’ f : R — R® C R™ there are no quadrisecants, except the
‘degenerate’ quadrisecant that consisting of the secant between the two pairs of double-points.
Consider all the possible resolutions r of this immersed trefoil. r only has 4 resolutions in
R3 C R™, so these are the only 4 resolutions that could possibly have quadrisecants. Moreover,
only the resolution which is a trefoil in R? has a quadrisecant. m]

Since IC,1 is (2n — 7)-connected, by the Hurewicz Theorem ma, 6Ky 1 > Z is generated by any
map 7: 526 Kr,1 homologous to r. One can explicitly construct such a map — attachment
of an (n—3)-handle to S; x Sy %[0, 1] along Sy x {*} x{1} gives a cobordism between S; x Sy and
§2n=6 715, x{+} 18 null so r extends over the cobordism. 7 can be chosen to be the restriction
of this cobordism to S?"76.

4 Actions of operads of little cubes on embedding spaces

This section is devoted to the study of the iterated loop-space structures on the embedding
spaces K, ; and EC(j, D"), especially focusing on the compatibility of these structures with
Litherland spinning gr;. The context of these results comes from the work of Boardman, Vogt
and May [5, 49, 50]. They give a very simple criterion for recognising if a space X has the
homotopy-type of an n-fold loop-space, being that X admits an action of the operad of little
n-cubes, and that the induced monoid structure on myX is that of a group. A useful reference
for operads relevant to topology, including operads of cubes, is the book of Markl, Shnider and
Stasheff [48].

There is an action of the operad of j-cubes on the spaces EC(j, M) and IC,, ; given by concate-
nation (see Definition 4.2). The first instance of an action of the operad of (j + 1)-cubes on any
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space of the form EC(j, M) was given by Morlet [56]. The Cerf-Morlet ‘Comparison Theorem’
states that EC(j,*) ~ Q/T(PL;/0;) (see [12] or [42] for a proof). Here PL; is the group of
PL-automorphisms of R/ (given a suitable topology) and O; is the group of linear isometries of
R7.

The first ‘hint’ of a higher cubes action on the spaces EC(j, M) for M non-trivial would
perhaps be the work of Schubert [68]. Schubert demonstrated that the connect-sum pairing
turns w31 into a free commutative monoid on the isotopy-classes of prime long knots, where
the demonstration of commutativity involved ‘pulling one knot through another’ as in the figure
above.

In ‘Little cubes and long knots’ [7] this idea was extended to construct a (j+ 1)-cubes action on
the spaces EC(j, M) for an arbitrary compact manifold M. By some elementary considerations,
this also gives an action of the operad of (j + 1)-cubes on I, ; for all n — j < 2. Schubert’s
theorem that my/KC3 1 is a free commutative monoid over the isotopy classes of prime long knots
generalises in this context to say that K3 is a free 2-cubes object over the based space P L {*}
where P C K3 is the subspace of prime long knots. This can be thought of as a precise ‘space
level’ non-uniqueness result for the connect-sum decomposition of knots, whereas Schubert’s
result states uniqueness on the level of isotopy classes of knots.

There is a major conceptual gap between the Cerf-Morlet ‘Comparison Theorem’ and the freeness
of K31 as a 2-cubes object. Getting a better understanding of this defect was one of the primary
motivations behind this paper.

Definition 4.1 e A (single) little n-cubeis a function L : I" — I" such that L = [3 x---xl,
where each [; : I — I is affine-linear and increasing ie: [;(t) = a;t + b; for some 0 < a; < 1
and b; € R.
e Let CAut, denote the monoid of affine-linear automorphisms of R™ of the form L =
[y X -+ x 1, where [; : R — R affine linear and increasing, and L(I") C I".

e Given a little n-cube L a mild abuse of notation is to consider L € CAut,, by taking the
unique affine-linear extension of L to R".

e The space of j little n-cubes C,(j) is the space of maps L : U{ZII” — I"™ such that the
restriction of L to the interior of its domain is an embedding, and the restriction of L to
any connected component of its domain is a little n-cube. Given L € C,(j) let L; denote
the restriction of L to the i-th copy of I". By convention C,(0) is taken to be a point.
This makes the union I_I‘;iOCn(j) into an operad, called the operad of little n-cubes C,
[49].
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e There is an action of CAut,, on EC(n, M) given by
i CAut,, X Emb(R™ x M,R" x M) — Emb(R" x M,R" x M)
p(L, f) = (L x Idy) o fo (L™t x Idyy)

In the above formula, L~! is the inverse of L in the group of affine-linear isomorphisms
of R™. The above action is denoted (L, f) = L.f. There is an action of CAut; on K, ;
defined essentially the same way.

An action of the operad of j-cubes on both /C,, ; and EC(j, M) where the associated multipli-
cation on mo/Cy, ; is the connect-sum operation, is given next.

Definition 4.2 k; : Cj(i) x (Kn;)" — Knj, ki : Cj(i) x EC(j, M)" — EC(j, M) is defined by the
rule kj(L1,- -, L;, f1,--- , fi) = Li.fio---oL;.f;. In the case of the space IC,, ;, given f,g € I, ;
e )  flx) if f(x)#=
with disjoint support, f o g is defined so that fog(z) = { g(x) if otherwise.

Definition 4.3 extends the j-cubes action on EC(j, M) to a (j + 1)-cubes action.

Definition 4.3 e Given j little (n 4 1)-cubes, L = (L1, - ,L;) € Cpt1(j) define the j-
tuple of (non-disjoint) little n-cubes L™ = (LT,--- ,L}r) by the rule LT =1;1 x -+ Xl
where L; = l;1 X -++ X ljny1. Similarly define L' € IV by L' = (Li,--- ,L;) where
Lt =1 p1(—1).

{0}" xR

<>

R™ x {0}

e The action of the operad of little (n 4 1)-cubes on the space EC(n, M) is given by the
maps £; : Cpy1(j) x EC(n, M)” — EC(n, M) for j € {1,2,---} defined by

Hj(Lla"' 7Lj7f17"' 7f]) = Lg(l)’fo(l) oLg(Q)’fUQ) S oLg(])fU(])
where o : {1,---,j} — {1,---,4} is any permutation such that LZ(1) < L’;@) <. <

Lt ... The map kg : Cny1(0) x EC(n, M)° — EC(n, M) is the inclusion of a point * in

a(7)

EC(n, M), defined so that ro(*) = Idrnxs-

Theorem 4.4 [7] For any compact manifold M and any integer n > 0 the maps r; for
j€40,1,2,---} define an action of the operad of little (n 4+ 1)-cubes on EC(n, M).
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Example 4.5

Lo
I

t_|
Lt

LY < LY < LY so 0 = (23) and k3(L, Lo, L3, fi1, fa, f3) = LT.f1 0 LY. f3 0 L3. fo, which explains
the figure-8 knot being ‘inside’ of the trefoil on the left hand side of the picture.

In the definition of EC(n, M), if one replaces the condition that the support of f is contained in
I" x M with it being contained in D™ x M one obtains a homotopy-equivalent space ED(n, M).
By a similar construction to Definition 4.3, one also obtains an action of the operad of unframed
little (n+1)-discs on ED(n, M). Since moKy, ; is a group for n—j > 2, EC(j, D"7) an (n+1)-
fold loop space. Next is a construction of analogous operad actions on the spaces PEC(n, M).

Definition 4.6 &; : C,(j) x PEC(n, M)’ — PEC(n, M) for j € {1,2,---} is defined by

ki(La,--+ Ly, fi, 05 £5) = Loy -fo1) © Lo@)-fo2) © - © Lo)-fo()

where o : {1,---,5} — {1,--- ,j} is any permutation such that Lff(l) < LZ_(2) <..o.< It

o))"
Proposition 4.7 The maps k, define an action of the operad of little n-cubes on PEC(n, M).

Proof There are three axioms to verify.

(1) Identity. Let Id» be the identity n-cube, then ki (Idin, f) = Idin.f = f by design.
(2) Symmetry. We need to verify that k,(L.c, f.a) = k,(L, f), for « € %,,.

Let
ki (L, f) = Lo(r)-fo1) © Lo@)-Jo2) © -+ © Loy - Joy)
and
Kj(L.a, f.a) = Lagr(1)-fao' (1) © Lag'(2)-fao'(2) © -+ © Lao()-fao' (5)
where 0,0’ € S,, satisfy Lff(l) < ... < Lf}_(n) and Lfm,(l) < ... < Ltw,(n). Up to the

1

ambiguity in our choice of ¢ and ¢’ one can assume ¢’ = o~ ‘o, giving the result.
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(3) Associativity. We need to verify the diagram below commutes:

axm)x(axﬁ)xPEcoumnﬂ><u.xcn@m)xPEC@LAn%Q-——>a4m)xPEC@uAnm

| |

Calju + -+ + jim) x PEC(n, M)+ PEC(n, M)

Given something in the top-left corner, consider what it maps to in the bottom-right
corner, going around both ways. Either way around the diagram, one gets a composite of
functions of the form L;.L; . f; ,, in some order. The difference in the order of composition
is irrelevant as our definition only allows functions to appear in different relative orders if
they have disjoint supports.

Proposition 4.8 Both the fibre-inclusion and projection maps in the fibration
EC(n,M) — PEC(n,M) — EC(n —1,M)

are maps of little n-cubes objects. The graphing map gr; : QEC(n —1,M) — EC(n, M) is a
map of (n + 1)-cubes object.

Proof The map PEC(n, M) — EC(n — 1, M) is of course restriction to the {1} x R*~! x M
‘face’, followed by the natural identification with R?~! x M.

Ki(L1, 5 Ly, f1,0 5 f5) = Lo()-fo(1) © Lo@)-fo@) © * © Log)-fo(j)
Once restricted to {1} x R*~1 x M it becomes the composite

L7 ay-foy iy xra-1x0r © Lgo)y-fo@) {1y xRr-1501 © - i) -Jo() {1y xR-15x M
which is precisely
Kj(La, s Ly, frjgiysme—1xms o Fj){1yxRr-1x00)-
Consider the (n + 1)-cubes action on QEC(n —1,M). Given ¢ little (n + 1)-cubes L =
(Ly, -, L;) let LY = (L§,---,L$) € Ci(1)" be the projection on the Ist coordinate, and

let L8 = (Lf o ,Lf ) € C;(1)" be their projections on the remaining n coordinates. The
(n + 1)-cubes action on QEC(n — 1, M) is given by &’ defined below:

/{;(Lb"' 7Li7f17"' 7f2) = K/Z(Lfv B i fl)"' Lafl) (1)

= LT L3y fo(r) © Loty Loy foy © -+ 0 LIT LSy foy (2

L. f; is the Cy-action on QEC(n — 1, M ) (reparametrlsatlon in the loop—space coordmate) and
Lﬁ acts on this via the C,-action on EC(n —1,M). o € ¥, is any permutation such that

Bt 8t Bt
Loy S Loy = = Lo

Consider applying the map gr:
r; : QEC(n—1,M) 3 F — ((to,t,v) — (to, F(to)(t,v))) € EC(n, M)

Observe that grl( (p L3y fg(p) ).grl(fg(p)) thus
gry(ri(Las -y Lis fro o5 fi) = L1 (for) © Ly oy-811(fo@) 0+ 0 Ly g1 (foy)  (3)
= rKi(Ly,- -+, Liygri(f1), -+ gri(fi)) (4)
since gr; commutes with o. m]
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5 Survey

Much of this paper has been devoted to studying the map gr; : QK,_1 ;-1 — K, ; and the
pseudoisotopy formalism for embedding spaces. This section is more survey in nature, mention-
ing what is known on the homotopy-type of the embedding spaces K, ; and the properties of
natural maps into and out of these spaces, focusing largely on the issues most closely related to
iterated loop-space structures on these spaces and EC(j, D"77).

Proposition 5.1 is a generalisation of the classical theorem that an embedding of S! in 3
unknots in S*. Tt is based loosely on the argument in Rolfsen’s textbook [63]. The argument
itself is likely much older.

Proposition 5.1 The natural inclusion R* — R™*! induces an inclusion i : Kni — Kns11
which is null-homotopic.

Proof Two null-homotopies of i will be constructed, giving a map K1 — QL 411-

Let ji : Kng — Ky for t € I = [—1,1] be defined as ji(f)(x) = f((1+t2)m_1i2;(t3’0""’0). Jo is

the identity, yet j; consists of knots which are standard outside of [0,1], and j_; consists of
knots which are standard outside of [—1,0].

Let b: R — R be a C*°-smooth function with the properties that:
e b(z)=0 forall |[x] >1.
o b(x)=0b(—x) for all z € R.
e V(x)>0forall -1 <uz<0.

Let B : R — R"! satisfy B(z) = (2,0,---,0,b(z)). Let C : R — R"! satisfy C(z) =
(,0,---,0,0).

Given f € K,.1, consider the function F : I x R — R"*! defined as

i(J3e(f)) () for [t| € [0, 5],z € R
Fie) =4 @31t i (5 () (@) + @il ~1)BG) for 1€ [4,3)2 c B
(3 = 3[t))B(x) + (3]t| — 2)C(x) for |t| € [3,1],z € R
F, restricted to either [0,1] x R or [—1,0] x R is a null-homotopy of . O

It is not known whether or not F' : K, 1 — QK,, 111 is null-homotopic. The adjoint of F,
YKn1 — Kpt1,1 is the direct-analogue of the ‘Freudenthal suspension map for configuration
spaces’ [17] SCxR"™ — CyxR™™! which is known to induce an isomorphism on the 1st non-trivial
homology groups of the spaces provided n > 1. But in this case, first non-trivial homology
group of X/, 1 is in dimension 2n — 5, while for ICp,41,1 it is in dimension 2n — 4.

Using the same constructions, one can construct null-homotopies of the inclusions K, j — Kpyj

for all 5 > 0.

Question 5.2 e [Foreach n and j, what is the smallest ¢ such that inclusion ICp, j — Ky j
is null-homotopic?

o Is F':YK, 1 — Kyt1,1 defined in Proposition 5.1 null-homotopic?
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e If the answer to the previous question is positive, then does F' have two distinct null-
homotopies? Is there a ‘Freudenthal suspension map’ E2ICn71 — Kp41,1 inducing an
isomorphism of Hgn_4221Cn,1 and Hop_4Kpi117

There is a ‘fibrewise restriction’ map R : K, ; — QK, ;j_1, thinking of RJ as R x RI-L. If
2n — 37 — 3 > 0 this map is exactly (2n — 3j — 3)-connected, as the first non-trivial homotopy
groups of the two spaces are in different dimensions. These maps have been studied in some
detail by Morlet and Goodwillie. The ‘Morlet Disjunction Lemma’ (see for example [22], page 9)
is a theorem on the connectivity of this map in the context of arbitrary pseudoisotopy embedding
spaces.

Proposition 5.3 There is a homotopy-equivalence K, , — QUCy, 5—1.

Proof There are homotopy-equivalences I, , ~ EC(n,*) and K, ,—1 ~ EC(n — 1,I) given by
the fibrations in Proposition 2.4. Restriction to R*~! x I gives a map EC(n, *) — EC(n — 1,1)
which is homotopic to a fibration, whose fibre has the homotopy-type of EC(n, *)2. The fibre-
inclusion map EC(n, %)? — EC(n, ) is homotopic to multiplication in the group EC(n, ) (the
homotopy is constructed via the (n + 1)-cubes action on EC(n,*)). Thus, the homotopy fibre
of the map EC(n,*)? — EC(n,%) is EC(n,*). By Lemma 2.3, this homotopy-fibre has the
homotopy-type of QEC(n — 1,1). O

The above argument is a mild variant of Hatcher’s arguments where he gives various equiva-
lent statements of the Smale conjecture [29]. A way to look at the above proposition is that
studying the homotopy-type of the spaces Emb(S™"~!, S") and Diff(S™) ultimately reduces to
studying the homotopy-types of the spaces K, ,-1 and K, ,. Since QK, -1 ~ K, ., the
study of the homotopy-properties of these spaces is essentially identical modulo mo/C), 1 ~
moEmb(S™~1, 8™). The next result compiles the major theorems on ToKnn—1-

Theorem 5.4 o [51,6]If f:S"! — S™ is a smooth embedding, then f(S" ') bounds a
topological disc.

e [76] The disc D™ has a unique smooth structure for n > 6.

e (Corollary of the above two results) If f : S"~! — S™ is a smooth embedding, then
f(S™1) bounds a smooth disc provided n > 5. Thus, Emb(S"~!, S")/Diff(S"71) is
connected. See [43] for a modern account of the results in Smale’s paper [76].

e Forn € {2,3}, Emb(S"™1,S") is known to be connected. For n = 2 this is the Schoenflies
theorem. See [71] for a historical account. For n = 3 it is the combination of Alexander’s
theorem [2], and Smale’s theorem [75].

e Whether or not Emb(S3,8%) is connected is called the smooth Schoenflies problem in
dimension 4. Scharlemann [70] and Poenaru [61] have some partial results on this problem.

Observe that an element of Emb(S™~1, S™) is isotopic to the standard inclusion if and only if it
extends to an embedding of D™ in S™. The above observation that moEmb(S"~1, ™) /Diff (S"~1)
is connected for n > 5 allows the extension of the long exact sequence from Theorem 2.1.

T 7"'1’C7L—1,7L—1 - 71-OK:n,n - 7T0,Pn,n - 7TO’Cn—l,n—l - 7TO’Cn,n—l —0
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Thus, for n > 5 mek,, ,—1 is isomorphic to the groups of homotopy n-spheres 6™ [43]. 6™ is
known to be finite, and many of these groups have been computed, for example 6% =0, 6% =0,
07 ~ Zog, 08 ~ Zs, 62 is known to have 8 elements, 010 is known to have 6 elements, 01 ~ Zggs.

Theorem 5.5 [16] P, , is connected for n > 6. So there is an isomorphism of groups
moDiff (D" ) ~ myEmb(S™~1, S™) and an epimorphism m Diff(D"~!) — mDiff(D").

A metric g on S™ is said to be round if for any points z,y € S™ there is an isometry of g carrying
x to y which can also be chosen to send an orthonormal basis in 7,,5™ to any orthonormal basis
in T,,S™. Let M" denote the space of round Riemann metrics on S".

Proposition 5.6 [29] M" has the same homotopy-type as K, , ~ Diff(D").

Proof There is a fibration M" — (0,00) given by taking the volume of the metric. The
fibre of this map is a Diff™(S")-homogeneous space, with isotropy group SO,y;. Theorem
2.1 tells us that KCp,, ~ Diff(D") is also the base-space of such a homotopy-fibre sequence
SO,;1 — Diff 7 (S™) — Diff(D"). O

Smale [75] and Hatcher [29] have proved that Diff(D") is contractible for n = 2 and n = 3
respectively. That Diff(D') is contractible follows from an averaging argument, or equivalently
from the ‘length’ classification of connected closed 1-dimensional Riemann manifolds via Propo-
sition 5.6. The space of Riemann metrics on S™ is contractible since it is an affine space, making
the homotopy-type of Diff(D™) the complete obstruction to M" being a deformation-retract of
the space of all Riemann metrics on S™.

Diff (D™) is an (n + 1)-fold loop space [7, 56, 12] whose (n + 1)-fold delooping is PL(n)/O,
[12, 56]. As of yet, their does not appear to be any direct methods of studying the homotopy-type
of PL(n). In particular, essentially nothing is known about the homotopy-type of Diff(D*).
Farrell and Hsiang computed the rational homotopy of Diff(D™) in a range.

-

Theorem 5.7 [20] Provided 0 < i < min{%z%, 2>

}
Q provided 4|(i + 1)
0

otherwise

M‘

mmmD%®Q:{

The bound i < min{"T_‘l, "7_7} is known as Igusa’s stable range [36]. Roughly this the range
where ;P , can be related to K-theory. Antonelli, Burghelea and Khan had shown earlier that
H,Diff(D™) is not finitely-generated for n > 7 [4].

The spaces K, 12, are in the realm of ‘traditional’ co-dimension 2 knot theory, on which there
is a plethora of literature. The majority of the literature focuses on issues related to isotopy
classification, ie: moKCpi2,. Some good general references are Kawauchi [37], Hillman [32],
Ranicki [62] and Kervaire-Weber [41].

The homotopy-type of K31 is described, component-by-component, as an iterated fibre bundle.

Theorem 5.8 [30, 31, 8, 11, 7] Given a long knot f € K31, let K31(f) denote the path
component in K3 containing f. Then KC31(f) has the homotopy-type of:
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(1) {x} if f is the unknot.
(2) S''x Ks1(g) if f is a cable of g.

(3) Cn(R?) xs, [lizy Ksa(fi) if f = fi# - - - # fn is the prime decomposition of f, with n > 2.
¥ ¢ is the subgroup of ¥, corresponding to the partition of {1,2,--- ,n} defined by the
equivalence relation i ~ j if and only if K31(f;) = Ks1(f;)-

(4) S'x (502 XAy I, ’Cg’l(fi)) if f=1(f1, -, fn)=L is hyperbolically-spliced. Here L is
some hyperbolic link L = (Lo, L1,--- , Ly,) in S with the Ly component ‘long’. Define
By, to be the group of orientation-preserving hyperbolic isometries of S\ L which extend
to L, preserving Lo and its orientation. By — Diff(S3, Lg) is a faithful representation,
giving an embedding of By, in Diff (Lg) (thus conjugate to a subgroup of SO ). Similarly,
there is a homomorphism By, — moDiff (L1 U---U L,) = X the signed symmetric group
of {1,2,--- ,n}. X}t acts on K%, by permutation of the factors and knot inversion. Let
Ay be the subgroup of By, C X} that preserves [} K3 1(fi).

Case (2) above is considered to apply to torus knots — think of a torus knot as a cable of the
unknot, thus the component of a torus knot has the homotopy-type of S'. A hyperbolic knot
is thought of as a hyperbolically-spliced knot where L is a 1-component hyperbolic link, thus
such a component has the homotopy-type of S' x S. Since every knot can be obtained from
the unknot by iterated cabling, connect-sum and hyperbolic splicing operations [11], the above
result describes the homotopy-type of K3 1(f) for any f € K31. To be clear, if the knot f has j
tori in the JSJ-decomposition of its complement, to obtain an answer for the homotopy-type of
IC3,1(f), one would have to apply Theorem 5.8 j+1 times. A detailed justification for the above
theorem is given in the reference [8]. The homotopy-equivalence in part (3) of Theorem 5.8 is
induced by the action of the operad of 2-cubes on K3 ;. Another way to state (3) is that K3 is
a free 2-cubes object, with generating space P U {*}, P C K3 the space of prime long knots.
By the work of May [49], the group-completion QBKj3; of the knot space has a particularly
simple structure, QBK3 1 ~ Q?%2 (P U {*}). Fred Cohen and the author have used these results
to compute the homology of many components of K31 [10]. In the process it became clear that
the homotopy-type and homology of Ks3; would likely have a more elegant description if one
could prove that K31 had an action of the operad of framed little 2-discs.

Question 5.9 Can one define an action of the operad of framed (n + 1)-discs on the spaces
ED(n, D), in a ‘natural geometric manner’ similar to Definition 4.3? ED(n, D*) refers to the
comments preceding Definition 4.6.

The topic of m9K42 has a few new references. Carter and Saito have constructed an analogue
of Reidermeister theory [14]. Kamada has constructed an analogue of the Alexander-Markov
theorem from dimension 3 [38]. It is possible that there are other types of Alexander-Markov
theorems in dimension four. For example, at present not known if every element of mokCs o is
Litherland spun. As an additional advertisement for Litherland spinning, a statement of the
Zeeman-Litherland theorem is given.

Theorem 5.10 [88, 47] (Zeeman-Litherland Theorem) Let g € QKC,,12,(f) be such that § €
moDiff (I"+2, f) preserves a Seifert surface for f. Let G € moDiff(I"*2, f) denote the Gramain
element (a meridional Dehn twist). If k € Z\ {0} then the complement of gr(G*g) € Kp43n+1
fibres over S'.
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For n = 1 Litherland went on to identify the fibre in several cases. From a practical point of
view, the Zeeman-Litherland theorem is a useful tool for constructing embeddings of 3-manifolds
into S, as fibres of fibred knot complements [65]. The possible types of Litherland-spun knots
is parametrised by moL/Cs3;. By the results in [7, 8], the group m/Cs51(f) can be computed
directly from the JSJ-decomposition of C'y, perhaps allowing one to answer the questions:

Question 5.11 e Does every 2-knot in S* have the Alexander polynomial of a Litherland-
spun knot?

o Is gr:myLK31 — mK42 onto?

Up to a homotopy-equivalence, the spaces ED(j, D"~7) and EC(j, D"~7) admit an action of the
operad of framed little (j 4 1)-discs, provided n — j > 2. This is because they are (j + 1)-fold
loop spaces. This argument does not apply when n — j = 2 since moEC(n, D?) is never a group.
This will be explained in the next proposition.

Proposition 5.12 o moKpt2, is not a group for all n > 1.

e The map 7oKyt1n — T0Knt2n induced by inclusion R — R"*2 js injective and maps
onto the maximal subgroup of moK,, 2, provided n > 4.

Proof To prove the first point, non-invertible elements are constructed. Start with f; € K31
a trefoil knot. Then mCy is the braid group on 3 strands. Let g1 = 0 € mK31(f1) be the
constant loop, and observe that the complement of fo = gri(g1) € K42 also has the braid
group on 3 strands as its fundamental group. Continuing, this constructs for all n > 1 a knot
fn € Kyt2,n whose complement has the braid group on 3 strands as its fundamental group. f, is
non-invertible in the monoid 7o/Cy, 12, by Proposition 2.3.4 of [86]. This is because if h € Kp42,p
then the complement of the connect-sum f,#h, Cy, 4, has the homotopy-type of the union of
Cy, and Cj, where Cy, and C}, intersect along a meridional circle, so by the canonical form for
amalgamated free products, m1CY, 45, contains mCy, .

By the above argument, if f € mokCp 42, is invertible, mCy ~ Z. By a Mayer-Vietoris sequence
argument, H;Cy = 0 for all 7 > 1. Thus, C; has the homotopy-type of a circle. By Levigne’s
unknotting theorem [46] (provided n > 4) or Wall’s unknotting theorem [82] (for n = 3), f is
in the image of mo/Cp11,p -

The last item to prove is that the map mo/KCp41,, — moKy42,, is injective. Consider S™ C Sntl ¢
S"+2. Let f : S™ — S™2 be an embedding with f(S™) = S™. By Theorem 2.1 we could
equivalently prove that if f extends to an embedding F : D"t — S§"+2 then there is another
extension of f, F': D"*! — 8"+l Identify the complement of an open tubular neighbourhood
of 8™ in S"*? with S' x D"+, Thus, F, if it exists, is an embedding F : D"t! — St x Dnt!
such that F(0D"!) = {1} x 9D"*!1. By Farrell’s proof of the relative Browder-Livesay-Leving-
Farrell fibration theorem [21], there is a diffeomorphism G : S' x D" — §! x D"+ guch that
G(F(D™)) = {1} x D" and G|g1xgpn+1 is the identity on S' x 9D"*1. Farrell’s theorem
requires n > 4. D

I would like to thank Larry Siebenmann for suggesting the Browder-Livesay-Leving-Farrell fi-
bration theorem.
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The above proposition implies that EC(n, D?) is not a free (n -+ 1)-cubes object provided there
exists exotic (n + 1)-spheres, so no direct analogue of [7] is true in high dimensions. Of course,
EC(1, D?) is not a free object, either, as it splits as a product of Z with the free object Ks3,1. One
might hope that for n > 1, EC(n, D?) ~ K, 42, is closely related to a free (n -+ 1)-cubes object,
but there are yet further obstructions. Provided n > 3, moKp42.5/m0/Kn+1,n (this is the isotopy
classes of the images of the elements of K, 2, ) is not a free commutative monoid. Kearton
proved this in the n = 3 case, which has since been generalised to all n > 3. Bayer-Fluckiger
went on to prove the non-existence of a ‘cancellation law’ ie: one can satisfy a + b = a + ¢ with
b # c. See Kearton’s survey [39] for details.

Question 5.13 e What is the group-completion of the monoid moKp42, 7
e Can one characterise the monoid structure on moK, 42, for n > 27

o If f € Kyyo2, Is a connect-sum of two non-trivial knots, the action of the operad of
(n+ 1)-cubes on K42, gives a map S™ — K12, (f). Is this map a non-trivial element
of T Kyyon(f)?

The remainder of the survey will focus on the high co-dimension case: K, ; for n — j > 2. For
references, Adachi’s survey has been around for a few years [1]. It focuses on topics such as the
Whitney trick, and the Smale-Hirsch immersion theorem. Skopenkov has a recent survey article
[74] which is concerned with mo/Cp, ;. Goodwillie, Klein and Weiss have recently put put together
a survey of what is known about embedding spaces from the point of view of disjunction [23].

There have been computations of some of the groups mokC,, ;. From Proposition 3.9, the first
non-trivial homotopy-group of I, ; is in dimension 2n — 3j — 3 (provided 2n — 3j — 3 > 0).
Along the 2n — 3j — 3 = 0 line there is moK3 1 which is the free commutative monoid on P,
the isotopy-classes of prime long knots [68]. Provided ;7 > 1 and 2n — 3j — 3 = 0, there are
Haefliger’s computations [27]:

_JzZ j=3(mod 4)
moknj = { Zs j=1(mod 4)

The generator being Haefliger’s Borromean rings construction [26], also sometimes called the
‘trefoil’ [74]. The generator has also been described (Theorem 3.13) as an iterated graphing
construction applied to r, the resolution of an immersion of R in Euclidean space, corresponding
to the @) chord-diagram. More recently, another spinning construction involving r has recently
been developed by Roseman and Takase [64].

The work of Haefliger [27], Milgram [53], Kreck and Skopenkov [44] gives my/C,, ; along the
n — j > 2 part of the 2n — 3j — 3 = —1 line. Their computations are:

0 Jj =2 or 6(mod 4)
.~ Zl2 (Tl,j) = (77 4)
70K, = Zy j =4(mod 8),j > 12

Zo ®7Zs j=0(mod 8)

The above results give the next corollary as a direct analogue to Theorem 3.9.

Corollary 5.14 o T6nK3nt4a,2 is non-trivial and has Zy @ Zo as a quotient for all n > 1.

o Ten+2Kant5,2 is non-trivial and has Z4 as a quotient for all n > 0 (Zjp for n =10).
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Question 5.15 What is the structure of the groups mKso and mgKr7 2. Further, find explicit
geometric representatives for the embeddings, in analogy to Theorem 3.13.

The technique of Haefliger [27] involves two main steps. The first step is the construction of an
isomorphism mo/C,, ;j C;L_j where C;.L_j is the group of concordance classes of embeddings of
S7 in S™. This step is formally analogous to Proposition 3.1. Using a Thom-type construction,
Haefliger constructs an isomorphism between C;L_j and a multi-relative homotopy group CJ” ~
Tj+1(G; SO, G—j) where SO = lim (SO1 — SOz — SO3 — -+ ) is the stable special-orthogonal
group, G,, is the space of degree 1 self-maps of S”~!, with G the analogous stable object, defined
via suspensions G = h_H)l (Gi = Gy — G3 — ---). This reduces the computation of 1ok, ; to
rather traditional difficult problems common to surgery theory [62]: homotopy groups of spheres
and orthogonal groups.

Takase [77] has recently proved that any embedding of S*~! — S%% can be extended to an

embedding of (S%¢ x §2%)\ D* — S Takase gives a rather explicit formula for determining
the isotopy class of an element of Emb(S*~1, S6%) that simplifies Haefliger’s characteristic class
computations [26].

The work of Volic, Lambrechts and Turchin [45] gives the homology H.(IC,, 1;Q) for n > 4 as
the homology of a differential graded algebra, by showing the collapse of the rational Vassiliev
spectral sequence. Turchin has found a Poisson algebra structure for this DGA [79, 78|, which
motivated the author’s construction of the 2-cubes action on K3 ;. Salvatore [67], building
on the work of Sinha [73] has recently constructed a 2-cubes action on /C,,; for n > 4. The
structure of K, 1 and EC(1, D"~1) as 2-cubes objects for n > 4 remains mysterious. One would
hope that constructions having the flavour of Mostovoy’s [57] ‘short rope’ spaces, or Anderson
and Hsiang’s ‘bounded embedding spaces’ [3] could give useful geometric models that one could
use to get homotopy-theoretic information on B/, ;, B*K, 1, B’T'EC(j,M). Not only is
there a lack of proofs that these spaces are the appropriate iterated classifying spaces, but, even
if they were, its not clear how one could use such results to study the spaces K, ;.
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