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INTRODUCTION

Algebraic properties of configuration spaces frequently
reflect properties of various geometric problems which are
ubiquitous in nature.

These types of structures are directly connected to sev-
eral subjects such as knots, links, homotopy groups as
well as the structure of function spaces. Some of these
connections are illustrated in problems posed at the end
of this lecture.

This lecture is an illustration of some of these connec-
tions as well as a leisurely stroll through various natural
techniques. The mathematics is based on joint work with
Jon Berrick, Yan Loi Wong and Jie Wu.



BRAID GROUPS AGAIN

The section addresses a naive construction for the braid
groups arising as a “cabling” construction.

This construction is interpreted in later sections in terms
of the structure of braid groups as well as Vassiliev in-
variants of pure braids as developed by T. Kohno and
extensions by M. Falk-R. Randell.

Throughout this lecture, Artin’s n-stranded pure braid
group for the plane is denoted

Pn = Pn(R2).

The pure braid groups Pn will be seen to contain a nat-
ural group theoretic ”model“ for the topological space
given by the loop space of the 2-sphere.



FINITELY GENERATED FREE GROUPS

Consider the free group generated by n letters

{y1, · · · , yn}

which is denoted

Fn = Fn[y1, · · · , yn].

Next consider the elements xi for 1 ≤ i ≤ n in Pn+1

given by the naive “cabling” pictured on the board.



The braids xi for 1 ≤ i ≤ n yield homomorphisms from
a free group on n letters Fn = Fn[y1, · · · , yn] to Pn+1

Θn : Fn[y1, · · · , yn] → Pn+1

defined on generators yi in Fn by the formula

Θn(yi) = xi.



ON Θn

The map Θn is faithful ( a monomorphism ).

The next few sections address one reason why this map
is a monomorphism and where this map fits with other
structures.

The method of proof is to appeal to the structure of the
Lie algebras obtained from the descending central series
for both the source and the target of Θn. After, some
connections will be drawn.

The proof yields more information than the fact that
Θn is faithful. The method of proof gives a natural con-
nection of Vassiliev invariants of braids to the homotopy
groups of the 2-sphere.



THE DESCENDING CENTRAL SERIES

The descending central series ( lower central series ) for
a group G is the collection of subgroups of G given by

G = Γ1(G) ≥ Γ2(G) ≥ .... ≥ Γn(G) ≥ · · ·

where Γn(G) is defined by

Γ1(G) = G

and

Γn(G)

is given by the subgroup of G generated by the commu-
tators

[..[g1, g2]g3]...]gt]

where t ≥ n, and [x, y] = x−1y−1xy.



• The group Γn+1(G) is a normal subgroup of Γn(G).

• The quotient group

grn(G) = Γn(G)/Γn+1(G)

is abelian.



• The map of sets induced by the commutator

<,>: G×G → G

with < x, y >= x−1y−1xy induces a bilinear pairing

[−,−] : grn(G)⊗Z grm(G) → grn+m(G)

which satisfies both the antisymmetry law

[a, b] = −[b, a],

and the Jacobi identity

[a[b, c]] = [[a, b]c]− [[a, c]b]

for a Lie algebra.

• Thus

gr∗(G) = ⊕n≥1grn(G)

is a Lie algebra.



EXAMPLE 1

(1) Let G denote the free group generated by a set S,

G = F [S].

Recall that the free Lie algebra generated by a set S
denoted L[S] is the smallest sub-Lie algebra of the tensor
algebra T [S] generated by S.

A classical result due to P. Hall and E. Witt is the next
theorem.

Theorem 0.1.

gr∗(F [S]) = L[S]

Remark: A non-standard, direct proof of this result
follows at once from the theory of Hopf algebras.



EXAMPLE 2

Let

G = Pk(R2) = Pk.

Recall Artin’s generators

Ai,j for Pk

( defined yesterday for the quiz ).

The elements Ai,j project to elements

Bi,j

in

gr1(Pk) = Pk/Γ2(Pk).

Note: If 1 ≤ i < j, there are analogous braids
Aj,i It is the case that Aj,i = Ai,j in Pk.



Artin’s relations imply that the elements Bi,j ∈ gr1(Pk)
satisfy

the ”horizontal 4T relations”

defined as follows:



HORIZONTAL 4T RELATIONS

The ”horizontal 4T relations” or ”infinitesimal braid re-
lations” are as follows:

(1) [Bi,j, Bs,t] = 0 if {i, j} ∩ {s, t} = φ,

(2) [Bi,j, Bi,t + Bt,j] = 0 for 1 ≤ j < t < i ≤ k, and

(3) [Bt,j, Bi,j + Bi,t] = 0 for 1 ≤ j < t < i ≤ k.



Let

Lk

denote the quotient of the free Lie algebra generated by
the elements

Bi,j for 1 ≤ i < j ≤ k

modulo the ”horizontal 4T relations”.

The next theorem was proven by T. Kohno and subse-
quently by M. Falk and R. Randell ( in a context which
also applies to certain other choices of gr∗(G) for a large
family of groups G ).

Theorem 0.2.

gr∗(Pk) = Lk.



A ”HORRIBLE COMPUTATION“

First, the result of a

”horrible computation“

is the following theorem.

Theorem 0.3. If n ≥ 1, then the homomorphism

Θn : Fn[y1, · · · , yn] → Pn+1

is injective.



The following natural questions arise:

Why is the theorem correct ?

Why is the theorem (possibly) useful ?

Where and how do these fit ? / Problems

These three questions give natural connections between
several structures.



WHY IS THE THEOREM CORRECT ?

The following is a horrible computation.

Theorem 0.4.

The induced map of Lie algebras

gr∗(Θn) : gr∗(Fn) → gr∗(Pn+1)

is a monomorphism.

Remark: Since Fn is residually nilpotent, the map

Θn : Fn → Pn+1

is a monomorphism.



WHY IS THE THEOREM USEFUL ?

Yesterday, Jie defined a simplicial group. That is a col-
lection of groups

{Γ0, Γ1, Γ2, · · · }

denoted Γ∗ with homomorphisms called face operations

di : Γn → Γn−1, 0 ≤ i ≤ n,

together with homomorphisms called degeneracy opera-
tions

sj : Γn → Γn+1, 0 ≤ j ≤ n,

which satisfy the simplicial identities. ( These identities
are ones which many of you have been using for standard
computations with the classical braid groups. )



AN EXAMPLE OF A SIMPLICIAL GROUP

One basic example of a simplicial group given by setting

Γn = Pn+1

for n = 0, 1, 2, 3, · · · .



The face operations for 0 ≤ i ≤ n are induced by the
(n + 1)-projection maps

di = pi+1 : Conf(R2, n + 1) → Conf(R2, n)

on the level of fundamental groups.

The j-th degeneracy operation for 0 ≤ j ≤ n ( with
1 ≤ j+1 ≤ n+1 ) is induced by the map on fundamental
groups obtained by ”doubling the j + 1-st strand”

sj : Conf(R2, n + 1) → Conf(R2, n + 2).

Call this simplicial group ( which is obtained from the
pure braid groups by ”projections“ and ”doubling“ )

AP∗.



That

Θn : Fn → Pn+1

is a monomorphism admits the following interpretation.

Theorem 0.5. The collections of groups AP∗ is nat-
urally a simplicial groups.

Furthermore, the smallest simplicial subgroup of AP∗
which contains the braid A1,2 is Milnor’s free group
model for ΩS2.



Remark: The embedding Θn is providing a
group theoretic ”picture” for the loop space of
the 2-sphere ΩS2.



WHERE AND HOW TO THESE FIT ?

PROBLEMS

(Problem 1) The braid groups appear to be ”encoding”
combinatorics for the homotopy groups of the 2-sphere as
well as other spheres. Please see Jie’s lectures for more
information.

How can these properties be made more explicit as well
as computationally effective ?

For example, is there a natural way in which the struc-
ture of the braid groups imply that

(i) the order of 2-torsion in π∗(S
2) is bounded above by

4 and

(ii) the p-torsion is bounded above by p for an odd prime
p ?



(Problem 2) The proof above using Lie algebras ad-
mits an interpretation in terms of the Adams/Bousfield-
Kan spectral sequence on the level of classical homotopy
groups.

That is the Lie algebra obtained from the descending
central series of the pure braid groups is the E0-term of
the associated spectral sequence.

Do these structures inform on invariants of braids or
possibly knots and/or vice versa ? Find a ”sensible“ ex-
planation for this fact.



(Problem 3) Ryan Budney analyzed much of the stuc-
ture of the space of

”long knots in R3”.

The homotopy groups as well as much of the homology
groups for this space are understood.

Dev Sinha, Ismar Volic, Pascal Lambrechts, Viktor Turchin
and others have exhibited related structure for the space
of ”long knots in Rn” for n > 3, however, the homotopy
and homology groups are still not well-understood.

The Lie algebra

gr∗(Pk)

is basic in their work on the homotopy groups of

”long knots in Rn“ for n > 3.



It seems natural to try to identify the connection to AP∗
more closely as well as to find the homology and homo-
topy of the space of ”long knots in Rn.



(Problem 4) The proof that Θn is a monomorphism ad-
mits another interpretation:

There is a natural morphism of Lie algebras

D : gr∗(Pn+1) → Der(L[Vn])

where

Der(L[Vn])

denotes the Lie algebra of derivations of the free Lie al-
gebra L[Vn] generated by n elements.

The map D arises from the fact that the sub-Lie algebra
of gr∗(Pn+1) generated by the elements

Bi,n for 1 ≤ i ≤ n

is a Lie ideal.



Theorem 0.6. The composite

gr∗(Fn)
gr∗(Θn)−−−−→ gr∗(Pn+1)

D−→ Der(L[Vn])

is an embedding.



Earlier, Y. Ihara constructed an embedding

Λ : gr∗(Gal(Q̄/Q)) → Der(L[Vn⊗Z(
∏

p is prime Zp)]).

Coincidentally, the images of the two maps

Λ and D ◦ gr∗(Θn)

are not equal but have an interesting overlap ( and in-
duce non-trivial intersections with the group theoretic
analogue of ΩS2 given by Θn(Fn) ).

Is this connection an ”accident“ ?

Find a computationally useful ”explanation“ for this
fact.


