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Abstract. In the last decade, a number of public key cryptosys-
tems based on combinatorial group theoretic problems in braid
groups have been proposed. Our tutorial is aimed at presenting
these cryptosystems and some known attacks on them.

We start with some basic facts on braid groups and on the Gar-
side normal form of its elements. We then present some known
algorithms for solving the word problem in the braid group. After
that, we present the major public-key cryptosystems based on the
braid group. We then discuss some of the known attacks on these
cryptosystems. We finish with a discussion of future directions.
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1. The braid group

1.1. Basic definitions. The braid groups were introduced by Artin
[3]. There are several definitions for these groups (see [71]), and we
need two of them for our purposes.

1.1.1. Algebraic presentation.

Definition 1.1. For n ≥ 2, the braid group Bn is defined by the pre-
sentation

(1.1)

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσj = σjσi for |i − j| ≥ 2
σiσi+1σi = σi+1σiσi+1 for |i − j| = 1

〉

.

This presentation is called the Artin presentation and the generators
are called Artin’s generators.

An element of Bn will be called an n-braid. For each n, the identity
mapping on {σ1, . . . , σn−1} induces an embedding of Bn into Bn+1, so
that we can consider an n-braid as a particular (n + 1)-braid. Using
this, one can define the limit group B∞.

Note that B2 is an infinite cyclic group, and hence it is isomorphic to
the group Z of integers. For n ≥ 3, the group Bn is not commutative
and its center is an infinite cyclic subgroup.

When a group is specified using a presentation, each element of the
group is an equivalence class of words with respect to the congruence
generated by the relations of the presentation. Hence, every n-braid is



BRAID GROUP CRYPTOGRAPHY 3

an equivalence class of n-braid words under the congruence ≡ generated
by the relations in (1.1).

1.1.2. Geometric interpretation. The elements of Bn can be interpreted
as geometric n strand braids. One can associate with every braid the
planar diagram obtained by concatenating the elementary diagrams of
Figure 1 corresponding to the successive letters.

−1
i

1 i i+1 n 1 i i+1 n

σ iσ

Figure 1. The geometric Artin generators

A braid diagram can be seen as induced by a three-dimensional figure
consisting on n disjoint curves connecting the points (1, 0, 0), . . . , (n, 0, 0)
to the points (1, 0, 1), . . . , (n, 0, 1) in R

3. Then, the relations in (1.1)
correspond to ambient isotopy, that is: to continuously moving the
curves without moving their ends and without allowing them to inter-
sect. It is easy to check that each relation in (1.1) corresponds to such
an isotopy (see Figures 2 and 3); the converse implication, i.e. the fact
that the projections of isotopic 3D figures can always be encoded in
words connected by (1.1) was proved by Artin in [3]. Hence, the word
problem in the braid group for the presentation (1.1) is also the braid
isotopy problem, and thus it is closely related to the much more difficult
knot isotopy problem.

41 2

σ 3σ 1

3 4

=

1 2

σ 1σ 3

3

Figure 2. The commutative relation for geometric
Artin generators
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11σ 1σ 2

1 2 31 2 3

=

σ 2σ 2σσ

Figure 3. The triple relation for geometric Artin generators

1.2. Birman-Ko-Lee presentation. Like Artin’s generators, the gen-
erators of Birman-Ko-Lee [11] are braids in which exactly one pair
of strands crosses. The difference is that the new set of generators
includes arbitrary transpositions of strands (i, j) instead of adjacent
transpositions (i, i + 1) in the Artin’s generators. For each t, s with
1 ≤ s < t ≤ n, define the following element of Bn:

ats = (σt−1σt−2 · · ·σs+1)σs(σ
−1
s+1 · · ·σ

−1
t−2σ

−1
t−1)

See figure 4 for an example (note that the braid ats is an elementary
interchange of the tth and sth strands, with all other strands held fixed,
and with the convention that the strands being interchanged pass in
front of all intervening strands). Such an element is called a band
generator.

sr

1 r s n

a

Figure 4. The band generator

Note that the usual Artin generators are the generators at+1,t.
This set of generators satisfies the following relations (see [11, Prop.

2.1] for a proof):

• atsarq = arqats if [s, t] ∩ [q, r] = ∅.
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• atsasr = atrats = asratr for 1 ≤ r < s < t ≤ n.

For a geometric interpretation of the second relation, see Figure 5.

tr

1 ntr s

= =

1 ntr s 1 ntr s

a ts a sr a atr ts a sr a

Figure 5. The second relation of the Birman-Ko-Lee presentation

2. Normal forms of elements in the braid group

A normal form of an element in a group is a unique presentation to
each element in the group.

Having a normal form for elements in the group is very useful, since
it lets us compare two elements, so it gives a solution for the word
problem:

Problem 2.1. Given a braid w, does w ≡ ε hold, i.e., does w represent
the unit braid ε?

Since Bn is a group, the above problem is equivalent to the following
problem:

Problem 2.2. Given two braids w, w′, does w ≡ w′ hold, i.e., do w
and w′ represent the same braid?

Indeed, w ≡ w is equivalent to w−1w′ ≡ ε, where w−1 is the word
obtained from w by reversing the order of the letters and exchanging σi

and σ−1
i everywhere.

Also, the normal form gives a canonical representative of each equiv-
alence class.

We present here some known normal forms of elements in the braid
group. For more normal forms, see Bressaud [13], Dehornoy [22] and
Dynnikov-Wiest [29].
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2.1. Garside normal form. We start by defining a positive braid
which is a braid which can be written as a product of positive powers of
Artin generators. We denote the set of positive braids by B+

n . This set
has a structure of a monoid under the operation of braid concatenation.

An important example of a positive braid, which has a central role
in the Garside normal form is the fundamental braid ∆n ∈ Bn:

∆n = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · ·σ1

Geometrically, ∆n is the braid on n strands, where any two strands
cross positively exactly once (see Figure 6).

4

1

2

3

4

σ 1σ 1σ 2σ 3σ 1σ 2∆ =

Figure 6. The fundamental braid ∆4

The fundamental braid has several important properties:

(1) For any generator σi, we can write ∆n = σiA = Bσi where A, B
are positive braids.

(2) For any generator σi, the following holds: σi∆n = ∆nσn−i.
(3) ∆2

n is the generator of the center of Bn.

Now, we introduce permutation braids. One can define a partial order
on the elements of Bn: for A, B ∈ Bn, we write A � B where B = AC
for some C in B+

n . Its simple properties are:

(1) B ∈ B+
n ⇔ ε � B

(2) A � B ⇔ B−1 � A−1.

P ∈ Bn is a permutation braid (or a simple braid) if it satisfies:
ε � P � ∆n. Its name comes from the fact that there is a bijection
between the set of permutation braids in Bn and the symmetric group
Sn (there is a natural surjective map from Bn to Sn defined by sending
i to the ending place of the strand which starts at position i, and if
we restrict ourselves to permutation braids, this map is a bijection).
Hence, we have n! permutation braids.

Geometrically, a permutation braid is a braid on n strands, where
any two strands cross positively at most once.
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Given a permutation braid P , one can define a starting set S(P ) and
a finishing set F (P ) as follows:

S(P ) = {i|P = σiP
′ for some P ′ ∈ B+

n }

F (P ) = {i|P = P ′σi for some P ′ ∈ B+
n }

The starting set is the indices of the generators which can start a
presentation of P . The finishing set is defined similarly. For example,
S(∆n) = F (∆n) = {1, . . . , n − 1}.

A left-weighted decomposition of a positive braid A ∈ B+
n into a

sequence of permutation braids is:

A = P1P2 · · ·Pk

where Pi are permutation braids, and S(Pi+1) ⊂ F (Pi), i.e. any addi-
tion of a generator from Pi+1 to Pi, will convert Pi into a braid which
is not a permutation braid.

The following theorem introduces the Garside normal form (or left
canonical form or greedy normal form) and states its uniqueness:

Theorem 2.3. For every braid w ∈ Bn, there is a unique presentation
given by:

w = ∆r
nP1P2 · · ·Pk

where r ∈ Z is maximal, Pi are permutation braids, Pk 6= ε and
P1P2 · · ·Pk is a left-weighted decomposition.

For converting a given braid w into its Garside normal form we have
to follow the following steps:

(1) For any negative power of a generator, replace σ−1
i by ∆−1

n Bi

where Bi is a permutation braid.
(2) Move any appearance of ∆n to the left using the relation: σn−i∆n =

∆nσi. So we get: w = ∆r′

n A where A is a positive braid.
(3) Write A as a left-weighted decomposition of permutation braids.

The idea how to do this is as follows: Take A, and break it into
permutation braids (i.e. we take the longest possible sequences
of generators which are still permutation braids). Then we get:
A = Q1Q2 · · ·Qj where each Qi is a permutation braid. For
each i, we compute the finishing set F (Qi) and the starting set
S(Qi+1). In case that the starting set is not contained in the
finishing set, we take a generator σ ∈ S(Qi+1)\F (Qi), and using
the relations of the braid group we move it from Qi+1 to Qi.
Then, we get the decomposition A = Q1Q2 · · ·Q

′
iQ

′
i+1 · · ·Qj.

We continue this process till we have S(Qi+1) ⊆ F (Qi) for every
i, and then we have a left-weighted decomposition as needed.
For more details, see [30].
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Example 2.4. Let us present the braid w = σ1σ
−1
3 σ2 ∈ B4 in Garside

normal form. First, we should replace σ−1
3 by: ∆−1

4 σ3σ2σ1σ3σ2, so we
get:

w = σ1 · ∆
−1
4 σ3σ2σ1σ3σ2 · σ2

Now, moving ∆4 to the left yields:

w = ∆−1
4 · σ3σ3σ2σ1σ3σ2σ2

Decomposing the positive part into a left-weighted decomposition, we
get:

w = ∆−1 · σ2σ1σ3σ2σ1 · σ1σ2

The complexity of transforming a word into a canonical form with
respect to the Artin presentation is O(|W |2n log n) where |W | is the
length of the word in Bn [31, Section 9.5].

In a similar way, one can define a right normal form. A right-weighted
decomposition of a positive braid A ∈ B+

n into a sequence of permuta-
tion braids is:

A = Pk · · ·P2P1

where Pi are permutation braids, and F (Pi+1) ⊂ S(Pi), i.e. any addi-
tion of a generator from Pi+1 to Pi, will convert Pi into a braid which
is not a permutation braid.

Now, one has the following theorem about the right normal form and
its uniqueness:

Theorem 2.5. For every braid w ∈ Bn, there is a unique presentation
given by:

w = Pk · · ·P2P1∆
r
n

where r ∈ Z, Pi are permutation braids, and Pk · · ·P2P1 is a right-
weighted decomposition.

For converting a given braid w into its right normal form we have to
follow three steps, similar to those of the Garside normal form: We first
replace σ−1

i by Bi∆
−1
n . Then, we move any appearance of ∆n to the

right side. Then, we get: w = A∆r′

n where A is a positive braid. The
last step is to write A as a right-weighted decomposition of permutation
braids.

Now we define the infimum and the supremum of a braid w: For w ∈
Bn, set inf(w) = max{r : ∆r � w} and sup(w) = min{s : w � ∆s}.

One can easily see that if w = ∆m
n P1P2 · · ·Pk is the Garside normal

form of w, then: inf(w) = m, sup(w) = m + k.
The canonical length of w (or complexity of w), denoted by len(w),

is given by len(w) = sup(w)− inf(w). Hence, if w is given in its normal
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form, the canonical length is the number of permutation braids in the
form.

2.2. Birman-Ko-Lee canonical form. Based on the presentation of
Birman, Ko and Lee [11], they give a new canonical form for elements
in the braid group.

They define a new fundamental word:

δn = an,n−1an−1,n−2 · · ·a2,1 = σn−1σn−2 · · ·σ1

See Figure 7 for an example for n = 4.

4

1σ 3σ 2δ =
4

1

2

3

σ

Figure 7. The fundamental braid δ4

One can easily see the connection between the new fundamental word
and Garside’s fundamental word ∆n:

∆2
n = δn

n

The new fundamental word δn has important properties, similar to
∆n:

(1) For any generator asr, we can write δn = asrA = Basr where
A, B are positive braids (with respect to the Birman-Ko-Lee
generators)

(2) For any generator asr, the following holds: asrδn = δnas+1,r+1.

Similar to Garside’s normal form of braids, each element of Bn has
the following unique form in terms of the band generators:

w = δj
nA1A2 · · ·Ak,

where A = A1A2 · · ·Ak is positive, j is maximal and k is minimal for
all such representations, also the Ai’s are positive braids which are
determined uniquely by their associated permutations (see [11, Lemma
3.1]. We will refer to Garside’s braids Pi as permutation braids, and to
the Birman-Ko-Lee braids Ai as canonical factors.
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Note that there are Cn = (2n)!
n!(n+1)!

(the nth Catalan number) different

canonical factors for the band-generator presentation [11, Corollary
3.5], whence there are n! different permutation braids for the Artin
presentation. Since Cn is much smaller than n!, it is sometimes com-
putationally easier to work with the band-generator presentation than
the Artin presentation (see also Section 8.3.2).

As in Garside’s normal form, there is an algorithmic way to convert
any braid to this canonical form: we first convert any negative power
of a generator to δ−1

n A where A is positive. Then, we move all the δn

to the left, and finally we organize the positive word in a left-weighted
decomposition of canonical factors.

The complexity of transforming a word into a canonical form with
respect to the Birman-Ko-Lee presentation is O(|W |2n), where |W | is
the length of the word in Bn [11].

As in Garside normal form, one can define infimum, supremum and
canonical length for the canonical form of Birman-Ko-Lee presentation.

3. Algorithms for solving the word problem in braid

group

Using ε for the empty word, the word problem is the following algo-
rithmic problem:

Given one braid word w, does w ≡ ε hold, i.e., does w
represent the unit braid ε?

In this section, we will concentrate on some solutions for the word
problem in the braid group.

3.1. Dehornoy’s handles reduction. The process of handle reduc-
tion was introduced by Dehornoy [19], and one can see it as an extension
of the free reduction process for free groups. Free reduction consists of
iteratively deleting all patterns of the form xx−1 or x−1x: starting with
an arbitrary word w of length ℓ, and no matter on how the reductions
are performed, one finishes in at most ℓ/2 steps with a unique reduced
word, i.e., a word that contains no xx−1 or x−1x.

Free reduction is possible for any group presentation, and in partic-
ular for Bn, but it does not solve the word problem: there exist words
that represent ε ∈ Bn, but do not freely reduce to the empty word. For
example, the word σ1σ2σ1σ

−1
2 σ−1

1 σ−1
2 represents the empty word, but

free reductions can not reduce it any more.
The handle reduction process generalizes free reduction and involves

not only patterns of the form xx−1 or x−1x, but also more general
patterns of the form σi · · ·σ

−1
i or σ−1

i · · ·σi:
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Definition 3.1. A σi-handle is a braid word of the form

w = σe
i w0σ

d
i+1w1σ

d
i+1 · · ·σ

d
i+1wmσ−e

i ,

with e, d = ±1, m ≥ 0, and w0, . . . , wm containing no σ±1
j with j ≤ i+1.

The reduction of w is defined as follows:

w′ = w0σ
−e
i+1σ

d
i σ

e
i+1w1σ

−e
i+1σ

d
i σ

e
i+1 · · ·σ

−e
i+1σ

d
i σ

e
i+1wm,

i.e., we delete the initial and final letters σ±1
i , and we replace each letter

σ±1
i+1 with σ−e

i+1σ
±1
i σe

i+1 (see Figure 8, taken from [20]).

reduction
handle

Figure 8. An example for a handle reduction (for σ1)

Note that a braid of the form σiσ
−1
i or σ−1

i σi is a handle, and hence
we see that handle reduction generalizes free reduction.

Reducing a braid yields an equivalent braid: as illustrated in Figure
8, the (i + 1)th strand in a σi-handle forms a sort of handle, and the
reduction consists of pushing that strand so that it passes above the
next crossings instead of below. So, as in the case of free reduction,
if there is a reduction sequence from a braid w to ε, i.e., a sequence
w = w0, w1, . . . , wN = ε such that, for each k, wk+1 is obtained from wk

by replacing some handle of wk by its reduction, then w is equivalent
to ε, i.e., it represents the empty word ε.

The following result of Dehornoy [19] shows the converse implication
and the termination of the process of handle reductions:

Proposition 3.2. Assume that w ∈ Bn has a length ℓ. Then every
reduction sequence starting from w leads in at most 2ℓ4n steps to an
irreducible braid (with respect to Dehornoy’s reductions). Moreover,
the empty word ε is the only irreducible word in its equivalence class,
hence w represents the empty braid if and only if any reduction sequence
starting from w finishes with the empty word.

A braid may contain many handles, so building an actual algorithm
requires to fix a strategy prescribing in which order the handles will be
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reduced. Several variants have been considered; as can be expected,
the most efficient ones use a Divide-And-Conquer trick.

For our current purpose, the important fact is that, although the
proved complexity upper bound of above proposition is very high, han-
dle reduction is extremely efficient in practice, even more than the
reduction to a normal form, see [20].

Remark 3.3. In [24], Dehornoy gives an alternative proof for the con-
vergence of the handle reduction algorithm of braids which is both more
simple and more precise than the one in his original paper on handle
reductions [19].

For more solutions for the word problem for the braid groups, see
[28] and [33].

4. What is Public Key Cryptography?

The idea of Public Key Cryptography (PKC) was invented by Diffie
and Hellman [27]. At the heart of this concept is the idea of using a
one-way function for encryption (see the survey paper of Koblitz and
Menezes [49]).

The functions used for encryption belong to a special class of one-way
functions that remain one-way only if some information (the decryption
key) is kept secret. If we use informal terminology, we can define a
public-key encryption function as a map from plain text message units
to ciphertext message units that can be feasibly computed by anyone
having the public key, but whose inverse function (which deciphers the
ciphertext message units) cannot be computed in a reasonable amount
of time without some additional information, called the private key.

This means that everyone can send a message to a given person using
the same enciphering key, which can simply be looked up in a public
directory whose contents can be authenticated by some means. There
is no need for the sender to have made any secret arrangement with the
recipient; indeed, the recipient need never have had any prior contact
with the sender at all.

Some of the purposes for which public-key cryptography has been
applied are:

• Confidential message transmission: Two people want to
exchange messages in the open airwaves, in such a way that an
intruder observing the communication cannot understand the
messages.
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• Key exchange: Two people using the open airwaves want to
agree upon a secret key for use in some symmetric-key cryp-
tosystem. The agreement should be in such a way that an in-
truder observing the communication cannot deduce any useful
information about the common secret.

• Authentication: The prover wishes to convince the verifier
that he knows the private key without enabling an intruder
watching the communication to deduce anything about his pri-
vate key.

• Signature: The target in this part is: The sender of the mes-
sage has to send the receiver a (clear or ciphered) message to-
gether with a signature proving the origin of the message. Each
signature scheme may lead to an authentication scheme: in or-
der to authenticate the sender, the receiver can send a message
to the sender, and require that the sender signs this message.

Now, we give some examples of the most famous and well-known
public-key cryptosystems.

4.1. Diffie-Hellman. In 1976, Diffie and Hellamn [27] introduced a
key-exchange protocol which is based on the apparent difficulty of com-
puting logarithms over a finite field GF (q) with a one number q of
elements and on some commutative property of the exponent.

Their key-exchange protocol works as follows:

Protocol 4.1.

Public keys: q and a primitive element α.
Private keys: Alice: Xi; Bob: Xj.

Alice: Sends Bob Yi = αXi (mod q).
Bob: Sends Alice Yj = αXj (mod q)

Shared secret key: Kij = αXiXj (mod q)

Kij is indeed a shared key since Alice can compute Kij = Y Xi

j

(mod q) and Bob can compute Kij = Y
Xj

i (mod q).
This method is secured due to the hardness of the Discrete Logarithm

Problem.

4.2. RSA. Rivest, Shamir and Adleman [70] introduced one of the
most famous and common cryptosystem, which is called RSA. This
method is widely used in commerce.

Find two large prime numbers p and q, each about 100 decimal digits
long. Let n = pq and φ = φ(n) = (p − 1)(q − 1) (the Euler number).
Choose a random integer E between 3 and φ that has no common
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factors with φ. It is easy to find an integer D that is the ”inverse” of
E modulo φ, that is, D · E differs from 1 by a multiple of φ.

Alice makes E and n public. All the other quantities here are kept
secret.

The encryption is done as follows: Bob, who wants to send a plain
text message P to Alice, that is an integer between 0 and n − 1, com-
putes the ciphertext integer C = P E (mod n). (In other words, raise
P to the power E, divide the result by n, and let C be the remainder).
Then, Bob sends C to Alice.

For decrypting the message, Alice uses the secret decryption number
D for finding the plain text P by computing: P = CD (mod n).

This method is currently secure, since in order to determine the
secret decryption key D (for decrypting the message), the intruder
should factor the 200 or so digit number n, which is a very hard task.

5. Key-exchange protocols based on the braid group

In this section, we present some key-exchange protocols which are
based on apparently hard problems in the braid group. After the trans-
mitter and receiver agree on a shared secret key, they can use a sym-
metric cryptosystem for transmitting messages in the insecure channel.

5.1. Anshel-Anshel-Goldfeld key-exchange protocol. The follow-
ing scheme was proposed theoretically by Anshel, Anshel and Goldfeld
[2], and implemented in the braid group by Anshel, Anshel, Fisher and
Goldfeld [1].

This scheme assumed that the Conjugator Search Problem is difficult
enough (so this scheme, as well as the other schemes described below,
would keep its interest, even if it turned out that braid groups are not
relevant). The Conjugator Search Problem is:

Problem 5.1. Given two braids p, p′ which are conjugate. Find an
element s which satisfies: p′ = s−1ps.

We start with two public sets of braids, p1, . . . , pk and q1, . . . , qm in
Bn. The secret key of Alice is a word u on alphabet of size k and their
inverses, and the secret key of Bob is a word v on a different alphabet of
size m and their inverses. We denote by u(p1, . . . , pk) the substitution
of the ith letter of the alphabet by pi (for all 1 ≤ i ≤ k).

The key-exchange protocol is as follows:

Protocol 5.2.

Public keys: p1, . . . , pk and q1, . . . , qm in Bn.
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Private keys: Alice: u; Bob: v.

Alice: computes s = u(p1, . . . , pk), and sends Bob the conjugates
q′1 = sq1s

−1, . . . , q′m = sqms−1.
Bob: computes r = v(q1, . . . , qm), and sends Alice the conjugates

p′1 = rp1r
−1, . . . , p′k = rpkr

−1.

Shared secret key: K = E(su(p′1, . . . , p
′
k)

−1) = E(v(q′1, . . . , q
′
m)r−1)

where E is the colored Burau representation of the braid group defined
by Morton [66] (see Section 8.4.1 below).

K is indeed a shared key since Alice can compute KA = su(p′1, . . . , p
′
k)

−1

and Bob can compute KB = v(q′1, . . . , q
′
m)r−1, and they are equal since:

KA = su(p′1, . . . , p
′
k)

−1 = sru(p1, . . . , pk)
−1r−1 =

= srs−1r−1 = sv(q1, . . . , qm)s−1r−1 = v(q′1, . . . , q
′
m)r−1 = KB,

so both of them can compute K = E(KA) = E(KB)
The security is based on the difficulty of a variant to the Conjugator

Search Problem in Bn, namely the Multiple Conjugator Search Problem,
in which one tries to find a conjugating braid starting not from one
single pair of conjugate braids (p, p′), but from a finite family of such
pairs (p1, p

′
1), . . . , (pk, p

′
k) obtained using the same conjugating braid.

It should be noted that the Multiple Conjugator Search Problem may
be easier than the original Conjugator Search Problem.

In [1], it is suggested to work in B80 with k = m = 20 and short
initial braids pi, qj of length 5 or 10 Artin generators.

5.2. Diffie-Hellman-type key-exchange protocol. Following the
commutative idea for achieving a shared secret key of Diffie-Hellman,
Ko et al. [48] proposed a key-exchange protocol based on the braid
group and some commutative property of some of its elements. Al-
though braid groups are not commutative, we can find large subgroups
such that each element of the first subgroup commutes with each el-
ement of the second. Indeed, braids involving disjoint sets of strands
commute (see also [80]).

Denote by LBn (resp. UBn) the subgroup of Bn generated by
σ1, . . . , σm−1 (resp. σm+1, . . . , σn−1) with m = ⌊n

2
⌋. Then, every braid

in LBn commutes with every braid in UBn.
Here is Ko et al. key-exchange protocol:

Protocol 5.3.

Public key: one braid p in Bn.
Private keys: Alice: s ∈ LBn; Bob: r ∈ UBn.

Alice: Sends Bob p′ = sps−1.
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Bob: Sends Alice p′′ = rpr−1

Shared secret key: K = srpr−1s−1

K is a shared key since Alice can compute K = sp′′s−1 and Bob can
compute K = rp′r−1, and both are equal to K since s and r commute.

The security is based on the difficulty of the Conjugator Search Prob-
lem in Bn, or, more exactly, on the difficulty of the following variant,
which can be called the Diffie-Hellman-like Conjugacy Problem:

Problem 5.4. Given a braid p in Bn, and the braids p′ = sps−1 and
p′′ = rpr−1, where s ∈ LBn and r ∈ UBn, find the braid rp′r−1, which
is also sp′′s−1.

The suggested parameters are n = 80, i.e. to work in B80, with
braids specified using (normal) sequences of length 12, i.e., sequences
of 12 permutations (see [16]).

6. More cryptology based on the braid group

6.1. Encryption and decryption. The following scheme is proposed
by Ko et al. [48]. We continue with the same notation of Ko et al.
Assume that h is a collision-free one-way hash function of Bn to {0, 1}N,
i.e., a computable function such that the probability of having h(b2) =
h(b1) for b2 6= b1 is negligible (collision-free), and retrieving b from h(b)
is infeasible (one-way) (for some examples see Dehornoy [20, Section
4.4]).

We start with p ∈ Bn and s ∈ LBn. Alice’s public key is the pair
(p, p′), with p′ = sps−1 where s is Alice’s private key. For sending the
message mB, which we assume lies in {0, 1}N, Bob chooses a random
braid r in UBn and he sends the encrypted text m′′

B = mB ⊕ h(rp′r−1)
(using ⊕ for the Boolean operation ”exclusive-or”, i.e. the sum in
Z/2Z), together with the additional datum p′′ = rpr−1. Now, Alice
computes mA = m′′ ⊕ h(sp′′s−1), and we have mA = mB, which means
that Alice retrieves Bob’s original message.

Indeed, because the braids r and s commute, we have (as before):

sp′′s−1 = srpr−1s−1 = rsps−1r−1 = rp′r−1,

and, therefore, mA = mB ⊕ h(rp′r−1) ⊕ h(rp′r−1) = mB.
The security is based on the difficulty of the Diffie-Hellmann-like

Conjugacy Problem in Bn. The recommended parameters are as in Ko
et al’s exchange-key protocol (see Section 5.2).
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6.2. Authentication schemes. Three authentication schemes were
introduced by Sibert, Dehornoy and Girault [79], which are based on
the Conjugacy Search problem and Root Extraction Problem. Con-
cerning the cryptanalysis of the Root Extraction Problem, see [41].

Two more authentication schemes were suggested by Lal and Chaturvedi
[51]. Their cryptanalysis were discussed in [81] and [41].

7. Attacks on the conjugacy search problem using

Summit Sets

In this section, we explain the algorithms for solving the conjugacy
decision and search problems (CDP/CSP) in braid groups that were
given in [37, 31, 32, 38] (actually, these algorithms works also in Garside
groups, but for our current purposes it suffices).

We follow here the excellent presentation of Birman, Gebhardt and
Gonzalez-Meneses [8]. For more details, see their paper.

7.1. The basic idea. Given an element x ∈ Bn, the algorithm com-
putes a finite subset Ix of the conjugacy class of x which has the fol-
lowing properties:

(1) For every x ∈ Bn, the set Ix is finite, non-empty and only
depends on the conjugacy class of X. It means that two elements
x, y ∈ Bn are conjugate if and only if Ix = Iy.

(2) For each x ∈ Bn, one can compute efficiently a representative
x̃ ∈ Ix and an element a ∈ Bn such that a−1xa = x̃.

(3) There is a finite algorithm which can construct the whole set
Ix for any representative x̃ ∈ Ix.

Now, for solving the CDP/CSP for given x, y ∈ Bn we have to per-
form the following steps.

(a) Find representatives x̃ ∈ Ix and ỹ ∈ Iy.
(b) Using the algorithm from property (3), compute further ele-

ments of Ix (while keeping track of he conjugating elements),
until either:
(i) ỹ is found as an element of Ix, proving x and y to be

conjugate and providing a conjugating element, or
(ii) the entire set Ix has been constructed without encountering

ỹ, proving that x and y are not conjugate.

We now survey the different algorithms based on this approach.
In Garside’s original algorithm [37], the set Ix is the Summit Set of

x, denoted SS(x), which is the set of conjugates of x having maximal
infimum.
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Remark 7.1. All the algorithms presented below for the Super Summit
Sets and the Ultra Summit Sets work also for Garside groups, which are
a generalization of the braid groups. In our survey, for simplification,
we present them in the language of braid groups. For more details on
the Garside groups and the generalized algorithms, see [8].

7.2. The Super Summit Sets. The Summit Sets are improved by
Elrifai and Morton [30], who considered Ix = SSS(x), the Super Summit
Set of x, consisting of the conjugates of x having minimal canonical
length len(x). They also show that SSS(x) is the set of conjugates of
x having maximal infimum and minimal supremum, at the same time.
In general SSS(x) is much smaller than SS(x).

Starting by a given element x, one can find an element x̃ ∈ SSS(x)
by a sequence of special conjugations, called cyclings and decyclings:

Definition 7.2. Let x = ∆px1 · · ·xr ∈ Bn be given in Garside normal
form and assume r > 0.

The cycling of x, denoted by c(x) is:

c(x) = ∆px2 · · ·xrτ
−p(x1).

where τ is the involution which maps σi to σn−i, for all 1 ≤ i ≤ n.
The decycling of x, denoted by d(x) is:

d(x) = xr∆
px1x2 · · ·xr−1 = ∆pτ−p(xr)x1x2 · · ·xr−1.

If r = 0, we have c(x) = d(x) = x.

Note that c(x) = (τ−p(x1))
−1x(τ−p(x1)) and d(x) = x−1

r xxr. This
means that for an element of positive canonical length, the cycling of
x is computed by moving the first permutation braid of x to the end,
while the decycling of x is computed by moving the last permutation
braid of x to the front. Moreover, for every x ∈ Bn, inf(x) ≤ inf(c(x))
and sup(x) ≥ sup(d(x)).

Note that the above decompositions of c(x) and d(x) are not, in
general, Garside normal forms. Hence, if one wants to perform iterated
cyclings or decyclings, one needs to compute the left normal form of
the resulting element at each iteration.

Given x, one can use cyclings and decyclings to find an element in
SSS(x) in the following way: Suppose that we have an element x ∈ Bn

such that inf(x) is not equal to the maximal infimum in the conjugacy
class of x. Then we can increase the infimum by repeated cycling
(due to [30] and [12]): there exists a positive integer k1 such that
inf(ck1(x)) > inf(x). Therefore, by repeated cycling, we can conjugate
x to another element x̂ of maximal infimum. Once x̂ is obtained, if the
supremum is not minimal in the conjugacy class, we can decrease its
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supremum by repeated decycling. Again, due to [30] and [12], there
exists an integer k2 such that sup(dk2(x̂)) < sup(x̂). Hence, using
repeated cycling and decycling a finite number of times, one obtains
an element in SSS(x).

If we denote by m the length of x in Artin generators and r is the
canonical length of x, then we have (see [30] and [12]):

Proposition 7.3. A sequence of at most rm cyclings and decyclings
applied to x produces a representative x̃ ∈ SSS(x).

Now, we have to explore all the set SSS(x). We have the following
result (see [30]):

Proposition 7.4. Let x ∈ Bn and V ⊂ SSS(x) be non-empty. If
V 6= SSS(x), then there exist y ∈ V and a permutation braid s such
that s−1ys ∈ SSS(x) \ V .

Since SSS(x) is a finite set, the above proposition allows to compute
the whole SSS(x). More precisely, if one knows a subset V ⊂ SSS(x)
(we start with: V = {x̃}), one conjugates each element in V by all
permutation braids (n! elements). If one encounters a new element z
with the same canonical length as x̃ (which is a new element in SSS(x)),
then add z to V and start again. If no new element is found, this means
that V = SSS(x), and we are done.

One important remark is that this algorithm not only computes the
set SSS(x), but it also provides conjugating elements joining the ele-
ments in SSS(x).

Now the checking if x and y are conjugate, is done as follows: Com-
pute representatives x̃ ∈ SSS(x) and ỹ ∈ SSS(y). If inf(x̃) 6= inf(ỹ)
or sup(x̃) 6= sup(ỹ), then x and y are not conjugate. Otherwise, start
computing SSS(x) as described above. The elements x and y are con-
jugate if and only if ỹ ∈ SSS(x). Note that if x and y are conjugate, an
element conjugating x to y can be found by keeping track of the con-
jugations during the computations of x̃, ỹ and SSS(x). Hence it solves
the Conjugacy Decision Problem and the Conjugacy Search Problem
simultaneously.

From the algorithm, we see that the computational cost of computing
SSS(x) depends mainly in two ingredients: the size of SSS(x) and the
number of permutation braids. In Bn, all known upper bounds for the
size of SSS(x) are exponential in n, although it is conjectured that for
fixed n, a polynomial bound in the canonical length of x exists [31].

Franco and Meneses [32] reduce the size of the set we have to conju-
gate with, by the following observation:
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Proposition 7.5. Let x ∈ Bn and V ⊂ SSS(x) be non-empty. If
V 6= SSS(x) then there exist y ∈ V such that σ−1

i yσi ∈ SSS(x) \ V for
some 1 ≤ i ≤ n − 1.

Using this proposition, the SSS(x) can be computed as in [30], but
instead of conjugating each element y ∈ SSS(X) by all permutation
braids, it suffices to conjugate y by the Artin generators σi (1 ≤ i ≤
n − 1).

Note that the algorithm computes a directed graph whose vertices
are the elements in SSS(x), and whose arrows are defined as follows:
for any two elements y, z ∈ SSS(x), there is an arrow labeled by σi

starting at y and ending at z if σ−1
i yσi = z.

Hence, the size of the set of permutation braids is no longer a prob-
lem for the complexity of the algorithm (since we can use the Artin
generators instead), but there is still a big problem to handle: The size
of SSS(x) is, in general, very big. The next improvement tries to deal
with this.

7.3. The Ultra Summit Sets. Gebhardt [38] defines a small subset
of SSS(x) satisfying all the good properties described above, so that a
similar algorithm can be used to compute it. The definition of this new
subset appeared after observing that the cycling function maps SSS(x)
to itself. As SSS(x) is finite, iterated cycling of any representative of
SSS(x) must eventually become periodic. Hence it is natural to define
the following:

Definition 7.6. Given x ∈ Bn, we define the Ultra Summit Set of x,
USS(x), to be the set of elements y ∈ SSS(x) such that cm(y) = y, for
some m > 0.

Hence, the Ultra Summit Set USS(x) consists of a finite set of disjoint
orbits, closed under cycling.

Example 7.7. [8] One has USS(σ1) = SSS(σ1) = SS(σ1) = {σ1, . . . , σn−1},
and each element corresponds to an orbit under cycling, since c(σi) = σi

for i = 1, . . . , n − 1.
A more interesting example is given by the element

x = σ1σ3σ2σ1 · σ1σ2 · σ2σ1σ3 ∈ B4.

In this example, USS(x) has 6 elements, while SSS(x) has 22 ele-
ments. More precisely, USS(x) consists of 2 closed orbits under cy-
cling: USS(x) = O1 ∪ O2, each one containing 3 elements:

O1 = {σ1σ3σ2σ1·σ1σ2·σ2σ1σ3, σ1σ2·σ2σ1σ3·σ1σ3σ2σ1, σ2σ1σ3·σ1σ3σ2σ1·σ1σ2},

O2 = {σ3σ1σ2σ3·σ3σ2·σ2σ3σ1, σ3σ2·σ2σ3σ1·σ3σ1σ2σ3, σ2σ3σ1·σ3σ1σ2σ3·σ3σ2}.
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Notice that O2 = τ(O1).
Notice also that the cycling of every element in USS(x) gives another

element which is already in left normal form, hence iterated cyclings
corresponds to cyclic permutations of the factors in the left normal
form. Elements which satisfies this property are called rigid (see [8]).

Remark 7.8. The size of the Ultra Summit Set of a generic braid of
canonical length ℓ is either ℓ or 2ℓ [38]. This means that, in the generic
case, Ultra Summit Sets consist of one or two orbits (depending on
whether τ(O1) = O1 or not), containing rigid braids. But, there are
exceptions: for example, the following braid in B12:

E = (σ2σ1σ7σ6σ5σ4σ3σ8σ7σ11σ10) · (σ1σ2σ3σ2σ1σ4σ3σ10) ·

·(σ1σ3σ4σ10) · (σ1σ10) · (σ1σ10σ9σ8σ7σ11) · (σ1σ2σ7σ11)

has an Ultra Summit Set of size 264, instead of the expected size 12
(see [9, Example 5.1]).

In the case of braid groups, the size and structure of the Ultra Summit
Sets happen to depend very much on the geometrical properties of the
braid, more precisely, on its Nielsen-Thurston type: periodic, reducible
or Pseudo-Anosov (see [8, 9]).

The algorithm given in [38] to solve the CDP/CSP in braid groups
(using Ultra Summit Sets) is analogous to the previous ones, but this
time one needs to compute USS(x) instead of SSS(x). In order to do
this, we first have to obtain an element x̂ ∈ USS(x). This we do as
follows: take an element x̃ ∈ SSS(x). Now, start cycling it. Due to the
facts that cycling an element is SSS(x) will result in another element
in SSS(x) and that the Super Summit Set of x is finite, we will have
two integers m1, m2 (m1 < m2), which satisfy:

cm1(x̃) = cm2(x̃)

When having this, the element x̂ = cm1(x̃) is in USS(x), since cm2−m1(x̂) =
x̂.

After finding a representative x̂ ∈ USS(x), we have to explore all the
set USS(x). This we do using the following results of Gebhardt [38].

Proposition 7.9. Let x ∈ Bn and y ∈ USS(x). For every positive
braid u there is a unique �-minimal element cy(u) satisfying u � cy(u)
and (cy(u))−1y(cy(u)) ∈ USS(x).

Definition 7.10. Given x ∈ Bn and y ∈ USS(x), we say that a per-
mutation braid s 6= 1 is a minimal for y with respect to USS(x) if
s−1ys ∈ USS(x), and no proper prefix of s satisfies this property.
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It is easy to see that the number of minimal permutation braids for
y is bounded by the number of Artin’s generators.

Now, we have:

Proposition 7.11. Let x ∈ Bn and V ⊆ USS(x) be non-empty. If
V 6= USS(x), then there exist y ∈ V and a generator σi such that
cy(σi) is a minimal permutation braid for y, and (cy(σi))

−1y(cy(σi)) ∈
USS(X) \ V .

In [38], it is shown how to compute the minimal permutation braids
(they are called there minimal simple elements in the Garside group’s
language) corresponding to a given y ∈ USS(x) (a further discussion
on the minimal simple elements with some examples can be found in
[9]). Hence, one can compute the whole USS(x) starting by a single
element x̂ ∈ USS(x), and then we are done.

As the case of the Super Summit Sets, the algorithm of Gebhardt
[38] not only computes USS(x), but also a graph Γx, which determines
the conjugating elements. This graph is defined as follows.

Definition 7.12. Given x ∈ Bn, the directed graph Γx is defined by
the following data:

(1) The set of vertices is USS(x).
(2) For every y ∈ USS(x) and every minimal permutation braid s

for y with respect to USS(x), there is an arrow labeled by s going
from y to s−1ys.

Concerning the complexity of this algorithm for solving the Con-
jugacy Search Problem, the number m2 of times one needs to apply
cycling for finding an element in USS(x) is not known in general. Nev-
ertheless, in practice, the algorithm based on the Ultra Summit Sets
is substantially better for braid groups (see [8]). For more information
on the Ultra Summit Sets and its structure, see [9].

Remark 7.13. One might think that for a given element x ∈ Bn, it is
possible that its Ultra Summit Set with respect to the Garside normal
form will be different from its Ultra Summit Set with respect to the right
normal form (see Section 2.1). If this happens, it is possible that even
though one of the Ultra Summit Sets is large, the other will be small.

Gebhardt and Meneses [39] shows that at least for rigid braids, the
size of the above two Ultra Summit Sets is equal, and their associated
graphs are isomorphic. A braid w is called rigid, if the cycling of w,
c(w) is already given in Garside normal form, with no need for chang-
ing the permutation braids (see also [8, Section 3] and Example 7.7
here). They conjecture that this is the situation for any braid.
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More information about this sorts of Summit sets can be found in
the series of papers [8, 9, 10] and [53, 54, 55].

8. More attacks on the conjugacy search problem

There are some more ways to attack the Conjugacy Search Problem,
apart of solving it completely. In this section, we present some tech-
niques to attack the conjugacy search problem without actually solving
it.

8.1. A heuristic algorithm using the Super Summit Sets. Hofheinz
and Steinwandt [43] use a heuristic algorithm for attacking the Conju-
gacy Search Problem which is the basis of the cryptosystems of Anshel-
Anshel-Goldfeld [1] and Ko et al. [48].

Their algorithm is based on the idea that it is probable that if we
start with two elements in the same conjugacy class, their represen-
tatives in the Super Summit Set will not be too far away, i.e. one
representative is a conjugation of the other by a permutation braid.

So, given a pair (x, x′) of braids, where x′ = s−1xs, we do the fol-
lowing steps:

(1) By a variant of cycling (adding a multiplication by ∆ to the
first permutation braid, based on Proposition 1 in [52]) and
decycling, we find x̃ ∈ SSS(x) and x̃′ ∈ SSS(x′).

(2) Try to find a permutation braid P , such that x̃′ = P−1x̃P .

In case we find such a permutation braid P , since we can follow
after the conjugators in the cycling/decycling process, at the end of
the algorithm we will have at hand the needed conjugator for breaking
the cryptosystem. Note that we do not really need to find exactly s,
since each s̃ which satisfies x′ = s̃−1xs̃ will do the job as well and reveal
the shared secret key.

Their experiments show that they succeed to reveal the shared secret
key in almost 100% of the cases in the Anshel-Anshel-Goldfeld protocol
(where the cryptosystem is based on the Multiple Simultaneous Conju-
gacy Problem) and in about 80% of the cases in the Diffie-Hellman-type
protocol.

Note that their attack is special to cryptosystems which are based
on the conjugacy problem, since it depends very much on the fact that
x and x′ are conjugate.

8.2. Reduction of the Conjugacy Search Problem. Maffre [58,
59] presents a deterministic, polynomial algorithm that reduces the
conjugacy search problem in braid group.
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The algorithm is based on the decomposition of braids into products
of canonical factors and gives a partial factorization of the secret: a
divisor and a multiple. The tests which were performed on different
keys of existing protocols showed that many protocols in their current
form are broken and that the efficiency of their attack depends on the
random generator used to create the key.

8.3. Length-based attacks. A different probabilistic attack on the
braid group cryptosystems is the length-based attack. In this section,
we will sketch its basic idea, and different variants of this attack on the
braid group cryptosystems.

8.3.1. The basic idea. The basic idea was introduced by Hughes and
Tannenbaum [45].

Let ℓ be a length function on the braid group Bn. In the Conjugacy
Search Problem, we have an instance of (p, p′) where p′ = s−1ps, and
we look for s. The idea of a probabilistic length-based attack to this
problem is: if we can write s = s′σi for a given i, then the length
ℓ(σis

−1psσ−1
i ) should be strictly smaller than the length ℓ(σjs

−1psσ−1
j )

for j 6= i.
Thus, for using such an attack, one should choose a good length

function on Bn and run it iteratively till we get the correct conjugator.

8.3.2. Choosing a length function. In [35], we suggest some length func-
tions for this purposes. The first option is the Garside length, which
is the length of the Garside normal form by means of Artin generators
(i.e. if w = ∆r

nP1P2 · · ·Pk, then ℓGar(w) = r|∆|+ |P1|+ |P2|+ · · ·+ |Pk|).
A better length function is the Reduced Garside length (which is

called Mixed Garside length in [31]). The motivation for this length
function is that a part of the negative powers of ∆n can be canceled
with the positive permutation braids. Hence, it is defined as follows:
if w = ∆−r

n P1P2 · · ·Pk, then:

ℓRedGar(w) = ℓGar(w) −

min{r,k}
∑

i=1

|Pi|.

This length function is much more well-behaved, and hence it gives
better performances. But even this length function did not give a
break of the cryptosystems (by the basic length-based attack).

In [42], Hock and Tsaban checked the corresponding length functions
for the Birman-Ko-Lee presentation, and they found out that the re-
duced length with respect to the Birman-Ko-Lee presentation is even
better than the reduced Garside length.
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8.3.3. The memory approach. The main contribution of [34] is new
improvements to the length-based attack.

First, it introduces a new approach which uses memory: In the basic
length-based attack, we hold each time only the best conjugator so
far. The problem with this is that sometimes a prefix of the correct
conjugator is not the best conjugator at some iteration and hence it is
thrown out. In such a situation, we just miss the correct conjugator in
the way, and hence the length-based algorithm fails. Moreover, even if
we use a ’look ahead’ approach, which means that instead of adding one
generator in each iteration we add several generators in each iteration,
we still get total failure for the suggested parameters, and some success
for small parameters [35].

In the memory approach, we hold each time a given number (which
is the size of the memory) of possible conjugators which are the best
among all the other conjugators of this length. In the next step, we
conjugate all the conjugators in the memory by one more generator,
and we choose again only the best ones among all the possibilities. In
this approach, in a successful search, we will often have the correct
conjugator in the first place of the memory.

The results of [34] show that the length-based attack with memory
is applicable to the cryptosystems of Anshel-Anshel-Goldfeld and Ko
et al, and hence their cryptosystems are not secure. Moreover, the
experiments show that if we increase the size of the memory, the success
rate of the length-based attack with memory becomes higher.

8.3.4. Applicability of the length-based approach. One interesting point
about the length-based approach is that it is applicable not only for the
Conjugacy Search Problem, but also for solving equations in groups.
Hence, it is a threat also to the Decomposition Problem and for the
Shifted Conjugacy Problem which was introduced by Dehornoy (see
[21] and Section 10.1.1 here).

Moreover, the length-based approach is applicable in any group which
has a reasonable length function, e.g. the Thompson group, as indeed
was done by Ruinskiy, Shamir and Tsaban (see [72] and Section 9.2.1
here).

8.4. Attacks based on linear representations. A different way to
attack these cryptographical schemes is by using linear representations
of the braid groups. The basic idea is to map the braid groups into
groups of matrices, in which the Conjugacy Search Problem is easy. In
this way, we might solve the Conjugacy Search Problem of Bn.
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8.4.1. The Burau representations. The best known linear representa-
tion of the braid group Bn is the Burau representation [14]. We present
it here (we partially follow [52]).

The Burau representation is defined as follows. Let Z[t±1] be the ring
of Laurent polynomials f(t) = akt

k +ak+1t
k+1 + · · ·+amtm with integer

coefficients (and possibly with negative degree terms). Let GLn(Z[t±1])
be the group of n × n invertible matrices over Z[t±1]. The Burau
representation is a homomorphism Bn → GLn(Z[t±1]) which sends a
generator σi ∈ Bn to the matrix:



















1
. . .

1 − t t
1 0

. . .
1



















∈ GLn(Z[t±1])

where 1 − t occurs in row and column i of the matrix.
This representation is reducible, since it can be decomposed into the

trivial representation of dimension 1 and an irreducible representation
Bn → GLn−1(Z[t±1]) of dimension n − 1, called the reduced Burau
representation, which sends a generator σi ∈ Bn to the matrix:

Ci(t) =























1
. . .

1
t −t 1

1
. . .

1























∈ GLn−1(Z[t±1])

where t occurs in row i of the matrix. If i = 1 or i = n− 1, the matrix
is truncated accordingly (see [52]).

Note that these matrices satisfy the braid group’s relations:

Ci(t)Cj(t) = Cj(t)Ci(t) for |i − j| > 2

Ci(t)Ci+1(t)Ci(t) = Ci+1(t)Ci(t)Ci+1(t) for i = 1, . . . , n − 1

The Burau representation of Bn is faithful for n = 3 and it is known
to be unfaithful for n ≥ 5 [64, 65, 56, 5] (i.e. the map from Bn to the
matrices is not injective). The case of n = 4 remains unknown. In the
case of n ≥ 5, the kernel is very small [82], and the probability that
different braids admit the same Burau image is negligible.
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Here is a variant of the Burau representation introduced by Morton
[66]. The colored Burau matrix is a refinement of the Burau matrix
by assigning σi to Ci(ti+1), so that the entries of the resulting matrix
have several variables. This naive construction does not give a group
homomorphism. Thus the induced permutations are considered simul-
taneously. We label the strands of an n-braid by t1, . . . , tn, putting the
label tj on the strand which starts from the jth point on the right.

Now we define:

Definition 8.1. Let a ∈ Bn be given by a word σe1

i1
· · ·σek

ik
, ej = ±1.

Let tjr
be the label of the under-crossing strand at the rth crossing.

Then the colored Burau matrix Ma(t1, . . . , tn) of a is defined by

Ma(t1, . . . , tn) =

k
∏

r=1

(Cir(tjr
))er .

The permutation group Sn acts on Z[t±1
1 , . . . , t±1

n−1] from left by chang-
ing variables: for α ∈ Sn, α(f(t1, . . . , tn)) = f(tα(1), . . . , tα(n)). Then

Sn also acts on the matrix group GLn−1(Z[t±1
1 , . . . , t±1

n ]) entry-wise: for
α ∈ Sn and M = (fij), then α(M) = (α(fij)). Then we have

Definition 8.2. The colored Burau group CBn is:

Sn × GLn−1(Z[t±1
1 , . . . , t±1

n ])

with multiplication (α1, M1) · (α2, M2) = (α1α2, (α
−1
2 M1)M2). The col-

ored Burau representation C : Bn → CBn is defined by C(σi) =
((i, i + 1), Ci(ti+1)).

Then it is easy to see the following:

(1) CBn is a group, with identity element (e, In−1) and (α, M)−1 =
(α−1, αM−1),

(2) C(σi)’s satisfy the braid relations and so C : Bn → CBn is a
group homomorphism.

(3) for a ∈ Bn, C(a) = (πa, Ma), where πa is the induced permuta-
tion and Ma is the colored Burau matrix.

Using the Burau representation, the idea of Hughes [44] to attack the
Anshel-Anshel-Goldfeld scheme [2, 1] is as follows: take one or several
pairs of conjugate braids (p, p′) associated with the same conjugating
braids. Now, it is easy to compute their classical Burau image and to
solve the Conjugator Search Problem in the linear group.

In general, this is not enough for solving the Conjugator Search Prob-
lem in Bn, because there is no reason for the conjugating matrix that
has been found to belong to the image of the Burau representation, or
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that one can find a possible preimage. Since the kernel of the classical
Burau representation is small [82], there is a non-negligible probabil-
ity that we will find the correct conjugator and hence we break the
cryptosystem.

In a different direction, Lee and Lee [52] indicate a weakness in the
Anshel-Anshel-Goldfeld protocol in a different point. Their shared key
is the colored Burau representation of a commutator element.

The motivation for this attack is that despite the change of variables
in the colored Burau matrix by permutations, the matrix in the final
output, which is the shared key, is more manageable than braids. They
show that the security of the key-exchange protocol is based on the
problems of listing all solutions to some Multiple Simultaneous Con-
jugacy Problems in a permutation group and in a matrix group over
a finite field. So if both of the two listing problems are feasible, then
we can guess correctly the shared key, without solving the Multiple
Simultaneous Conjugacy Problem in braid groups.

Note that Lee-Lee attack is special to this protocol, since it uses
the colored Burau representation of a commutator element, instead of
using the element itself. In case we change the representation in the
protocol, this attack is useless.

8.4.2. The Lawrence-Krammer representation. The Lawrence-Krammer
representation is another linear representation of Bn, which is faithful
[6, 50]. It associates with every braid in Bn a matrix of size

(

n

2

)

with
entries in a 2-variable Laurent polynomial ring Z[t±1, q±1].

Cheon and Jun [17] develop an attack against the scheme of Diffie-
Hellman-type protocol based on the Lawrence-Krammer representa-
tion: as in the case of the Burau representation, it is easy to compute
the images of the involved braids in the linear group and to solve the
Conjugacy Problem there, but in general, there is no way to lift the
solution back to the braid groups.

But, since we only have to find a solution to the derived Diffie-
Hellman-like Conjugacy Problem:

Problem 8.3. Given p, sps−1, and rpr−1, with r ∈ LBn and s ∈ UBn,
find (rs)p(rs)−1.

Taking advantage of the particular form of the Lawrence-Krammer
matrices, which contain many 0’s, Cheon and Jun obtain a solution
with a polynomial complexity and they show that, for the parame-
ters suggested by Ko et al. [48], the procedure is doable, and so the
cryptosystem is not secure.
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9. Public-Key cryptography in the Thompson group

When some of the cryptosystems on the braid groups were attacked,
it was natural to look for different groups, with a hope that a similar
cryptosystem on a different group will be more secure and more suc-
cessful. The Thompson group is a natural candidate for such a group:
there is a normal form which can computed efficiently, but the decom-
position problem seems difficult. On this base, Shpilrain and Ushakov
[75] suggest a cryptosystem.

In this section, we will define the Thompson group, the Shpilrain-
Ushakov cryptosystem, and we discuss its cryptanalysis.

9.1. Definitions and the Shpilrain-Ushakov cryptosystem.

Thompson’s group F is the infinite noncommutative group defined by
the following generators and relations:

F = 〈 x0, x1, x2, . . . | x−1
i xkxi = xk+1 (k > i) 〉

Each w ∈ F admits a unique normal form [15]:

w = xi1 · · ·xirx
−1
jt

· · ·x−1
j1

,

where i1 ≤ · · · ≤ ir, j1 ≤ · · · ≤ jt, and if xi and x−1
i both occur in this

form, then either xi+1 or x−1
i+1 occurs as well. The transformation of an

element of F into its normal form is very efficient [75].
We define here a natural length function on the Thompson group:

Definition 9.1. The normal form length of an element w ∈ F , LNF(w),
is the number of generators in its normal form: If w = xi1 · · ·xirx

−1
jt

· · ·x−1
j1

is in normal form, then LNF(w) = r + t.

Shpilrain and Ushakov [75] suggest the following key-exchange pro-
tocol based on the Thompson group:

Protocol 9.2.

Public subgroups: A, B, W of F , where ab = ba for all a ∈ A, b ∈ B
Public key: a braid w ∈ W .
Private keys: Alice: a1 ∈ A, b1 ∈ B; Bob: a2 ∈ A, b2 ∈ B.

Alice: Sends Bob u1 = a1wb1.
Bob: Sends Alice u2 = b2wa2

Shared secret key: K = a1b2wa2b1

K is a shared key since Alice can compute K = a1u2b1 and Bob can
compute K = b2u1a2, and both are equal to K since a1, a2 commute
with b1, b2.

Here is a suggestion for implementing the cryptosystem [75]: Fix a
natural number s ≥ 2. Let SA = {x0x

−1
1 , . . . , x0x

−1
s }, SB = {xs+1, . . . , x2s}
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and SW = {x0, . . . , xs+2}. Denote by A, B and W the subgroups of
F generated by SA, SB, and SW , respectively. A and B commute
elementwise, as required.

The keys a1, a2 ∈ A, b1, b2 ∈ B and w ∈ W are all chosen of normal
form length L, where L is a fixed integer, as follows: Let X be A, B
or W . Start with the empty word, and multiply it on the right by a
(uniformly) randomly selected generator, inversed with probability 1

2
,

from the set SX . Continue this procedure until the normal form of the
word has length L.

For practical implementation of the protocol, it is suggested in [75]
to use s ∈ {3, 4, . . . , 8} and L ∈ {256, 258, . . . , 320}.

9.2. Attacks on the cryptosystem. In this section, we present some
attacks on the Ushakov-Shpilrain cryptosystem.

9.2.1. Length-based attack. As mentioned before, the length-based at-
tack is applicable for any group with a reasonable length function. Ru-
inskiy, Shamir and Tsaban [72] applied this attack to the Thompson
group.

As before, the basic length-based attack without memory always fails
for the suggested parameters. If we add the memory approach, there
is some improvement: for a memory of size 1024, there is 11% success.
But if the memory is small (up to 64), even the memory approach
always fails. They suggest that the reason for this phenomenon (in
contrast to a significant success for the length-based attack with mem-
ory on the braid group) is that the braid group is much closer to the
free group than the Thompson group, which is relatively close to an
abelian group.

Their improvement is trying to avoid repetitions. The problem is
that many elements return over and over again, and hence the algo-
rithm goes into loops which make its way to the solution much difficult.
The solution of this is holding a list of the already-checked conjugators,
and when we generate a new conjugator, we check in the list if it has
already appeared (this part is implemented by a hash table). In case of
appearance, we just ignore it. This improvement increases significantly
the success rate of the algorithm: instead of 11% for a memory of size
1024, we now have 49.8%, and instead of 0% for a memory of size 64,
we now have 24%.

In the same paper [72], they suggest some more improvements for the
length-based algorithm. One of their reasons for continuing with the
improvements is the following interesting fact which was pointed out
by Shpilrain [74]: there is a very simple fix for key-agreement protocols
that are broken in probability less than p: Agree on k independent keys



BRAID GROUP CRYPTOGRAPHY 31

in parallel, and XOR them all to obtain the shared key. The probability
of breaking the shared key is at most pk, which is much smaller.

In a different paper, Ruinskiy, Shamir and Tsaban [78] attack the key
agreement protocols based on noncommutative groups from a different
direction: by using functions that estimate the distance of a group ele-
ment to a given subgroup. It is known that in general the Membership
Problem is hard, but one can use some heuristic approaches for deter-
mining the distance of an element to a given subgroup, e.g., to count
the number of generators which are not in the subgroup.

They test it against the Shpilrain-Ushakov protocol, which is based
on Thompson’s group F , and show that it can break about half the
keys within a few seconds.

9.2.2. Special attack by Matucci. Some interesting special attack for
the Ushakov-Shpilrain cryptosystem can be found in Kassabov and
Matucci [62] and Mattuci [61].

10. Future directions

In this section, we will present some future directions for the cryp-
tography based on the braid group.

10.1. Recent cryptosystems based on the braid group. In this
part, we present recent updates on some problems in the braid group,
on which one can construct a cryptosystem.

10.1.1. A cryptosystem based on the Shifted Conjugacy Search Problem.
Recently, Dehornoy [21] suggested an authentication scheme which is
based on the Shifted Conjugacy Search Problem.

Before we describe the scheme, let us define the Shifted Conjugacy
Search Problem. Let x, y ∈ B∞. We define:

x ∗ y = x · dy · σ1 · dx−1

where dx is the shift of x in B∞, i.e. d is the injective function on B∞

which sends the generator σi to the generator σi+1 for each i ≥ 1. In
this context, the Shifted Conjugacy Search Problem is:

Problem 10.1. Let s, p ∈ B∞ and p′ = s∗p. Find a braid s̃ satisfying
p′ = s̃ ∗ p.

Now, the suggested scheme is based on the Fiat-Shamir authenti-
cation scheme: We assume that S is a set and (Fs)s∈S is a family of
functions of S to itself that satisfies the following condition:

Fr(Fs(p)) = FFr(s)(Fr(p)), r, s, p ∈ S
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Alice is the prover who wants to convince Bob that she knows the secret
key s. Then the scheme works as follows:

Protocol 10.2.

Public key: Two elements p, p′ ∈ S such that p′ = Fs(p).
Private keys: Alice: s ∈ S.

Alice: Chooses a random r ∈ S and sends Bob x = Fr(p) and x′ =
Fr(p

′).
Bob: Chooses a random bit c and sends it to Alice.
Alice: If c = 0, sends y = r (then Bob checks: x = Fy(p) and

x′ = Fy(p
′));

If c = 1, sends y = Fr(s) (then Bob checks: x′ = Fy(x)).

Dehornoy [21] suggests to implement this scheme on LD-systems. A
LD-system is a set S with a binary operation which satisfies:

r ∗ (s ∗ p) = (r ∗ s) ∗ (r ∗ p).

The Fiat-Shamir-type scheme on LD-systems works as follows:

Protocol 10.3.

Public key: Two elements p, p′ ∈ S such that p′ = s ∗ p.
Private keys: Alice: s ∈ S.

Alice: Chooses a random r ∈ S and sends Bob x = r ∗ p and x′ =
r ∗ p′.

Bob: Chooses a random bit c and sends it to Alice.
Alice: If c = 0, sends y = r (then Bob checks: x = y ∗ p and

x′ = y ∗ p′);
If c = 1, sends y = r ∗ s (then Bob checks: x′ = y ∗ x).

Now, one can use the shifted conjugacy operation as the ∗ operation
on B∞ in order to get a LD-system. So, in this way, one can achieve an
authentication scheme on the braid group with a non-trivial operation
[21].

Remark 10.4. For attacking the Shifted Conjugacy Search Problem,
one cannot use the Summit Sets theory, since it is not a conjugation
problem anymore. Nevertheless, one still can apply on it the length-
based attack, since it is still an equation with x. So it is interesting to
check (see also [21]):

(1) Cryptanalysis direction: What is the success rate of a length-
based attack on this scheme?

(2) Cryptanalysis direction: Can one develop a theory for the
Shifted Conjugacy Search Problem which will be parallel to the
Summit Sets theory?
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(3) Cryptosystem direction: Can one suggest a LD-system on
the braid group, which will be secure for the length-based attack?

(4) Cryptosystem direction: Can one suggest a LD-system on
a different group, which will be secure?

10.1.2. A cryptosystem based on the shortest braid problem. A different
type of problem consists in finding the shortest words representing a
given braid (see Dehornoy [20, Section 4.5.2]). This problem depends
on a given choice of a distinguished family of generators for Bn, e.g.,
the σi’s or the band generators of Birman-Ko-Lee.

We consider this problem in B∞ which is the group generated by an
infinite sequences of generators {σ1, σ2, . . . } subject to the usual braid
relations.

The Minimal Length Problem (or Shortest Word Problem) is:

Problem 10.5. Starting with a word w in the σ±1
i ’s, find the shortest

word w′ which is equivalent to w, i.e., that satisfies w′ ≡ w.

This problem is considered to be hard due to the following result of
Paterson and Razborov [69]:

Proposition 10.6. The Minimal Length Problem is co-NP-complete.

This suggests introducing new schemes in which the secret key is a
short braid word, and the public key is another longer equivalent braid
word. It must be noted that the NP-hardness result holds in B∞ only,
but it is not known in Bn for fixed n.

The advantage of using an NP-complete problem lies in the possibil-
ity of proving that some instances are difficult; however, from the point
of view of cryptography, the problem is not to prove that some specific
instances are difficult (worst-case complexity), but rather to construct
relatively large families of provably difficult instances in which the keys
may be randomly chosen.

Based on some experiments, Dehornoy [20] suggests that braids of
the form w(σe1

1 , σe2

2 , . . . , σen
n ) with ei = ±1, i.e., braids in which, for

each i, at least one of σi or σ−1
i does not occur, could be relevant.

The possible problem of this approach is that the shortest word prob-
lem in Bn for a fixed n is not so hard. In B3, there is polynomial-time
algorithms for the shortest word problem (see [4] and [83] for the pre-
sentation by the Artin generators and [84] for the presentation by band
generators). Also, this problem was solved in polynomial time in B4 for
the presentation by the band generators [46]. For small fixed n, Wiest
[83] conjectures for an efficient algorithm for finding shortest represen-
tatives in Bn. Also, an unpublished work [36] indicates that a heuristic
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algorithm based on a random walk on the Cayley graph of the braid
group might give good results in solving the shortest word problem.

In any case, a further research is needed here in several directions:

(1) Cryptosystem direction: Can one suggest a cryptosystem
based on the shortest word problem in B∞, for using its hard-
ness due to Paterson-Razborov?

(2) Cryptanalysis direction: What is the final status of the
shortest word problem in Bn for a fixed n?

10.1.3. Cycling problem as a potential hard problem. In their funda-
mental paper, Ko et al. [48] suggested some problems which can be
considered as hard problems, on which one can construct a cryptosys-
tem. One of the problems is the Cycling Problem:

Problem 10.7. Given a braid y and a positive integer t such that y is
in the image of the operator ct. Find a braid x such that ct(x) = y.

Maffre, in his thesis [57], shows that the Cycling Problem for t = 1
has a very efficient solution. That is, if y is the cycling of some braid,
then one can find x such that c(x) = y very fast.

Following this result, Gebhardt and Gonzales-Meneses [39] has shown
that the general Cycling Problem has a polynomial solution. The rea-
son for that is the following result: The cycling operation is surjective
on the braid group [39]. Hence, one can easily find the tth preimage of
y under this operation.

10.2. Alternative distributions. For overcoming some of the at-
tacks, one can try to change the distribution of the generators. For
example, one can require that if the generator σi appears, then in the
next place we give more probability for the appearance of σi±1. In gen-
eral, such a situation is called a Markov walk, i.e. the distribution of
the choice of the next generator depends on the choice of the current
chosen generator.

A work in this direction is the paper of Maffre [59]. After suggesting a
deterministic polynomial algorithm that reduces the Conjugacy Search
Problem in braid group (by a partial factorization of the secret), he
proposes a new random generator of key which is secure against his
attack and the one of Hofheinz and Steinwandt [43].

10.3. Cryptosystems based on different non-commutative groups.

The protocols presented here for the braid groups can be applied to
other non-commutative groups, so the natural question here is:
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Problem 10.8. Can one suggest a different non-commutative group
where the existing protocols on the braid group can be applied, and the
cryptosystem will be secure?

Some suggestions were given in this direction. As we already saw
in the previous section, some cryptosystems and cryptanalysis is based
on the Thompson group.

We survey here some more suggestions.

10.3.1. Miller groups. For example, Mahalanobis [60] suggested some
Diffie-Hellman-type exchange key on Miller Groups [63], which are
groups with an abelian automorphism group.
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