Length-based cryptanalysis of the braid group and its applications

David Garber

Department of Applied Mathematics, School of Sciences
Holon Institute of Technology
Holon, Israel

Singapore, June 2007

Braid Group B_{n}

Artin generators: $\sigma_{1}, \ldots, \sigma_{n-1}$
with the relations:

$$
\begin{aligned}
\sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i} \text { when }|i-j|>1
\end{aligned}
$$

B_{n} has geometric-topological interpretations.
B_{n} is infinite and nonabelian.

The underlying (apparently hard) problems

The Conjugacy Problem: Given $u, w \in B_{n}$, determine whether they are conjugate, i.e., there exists $v \in B_{n}$ such that

$$
w=v^{-1} u v
$$

Conjugacy Search Problem Given conjugate $u, w \in B_{n}$, find $v \in$ B_{n} such that

$$
w=v^{-1} u v
$$

Decomposition Problem. $u \notin G \leq B_{n}$. Find $x, y \in G$ such that $w=x u y$.

Key-agreement protocol

Anshel-Anshel-Goldfeld (1999)

$G=\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle \leq B_{N}$ publicly known.
Secret keys: Alice: $a \in G$. Bob: $b \in G$.
Alice's public key: $a g_{1} a^{-1}, a g_{2} a^{-1}, \ldots, a g_{n} a^{-1}$.
Bob's public key: $b g_{1} b^{-1}, b g_{2} b^{-1}, \ldots, b g_{n} b^{-1}$.
Bob knows $b=g_{k_{1}}^{i_{1}} g_{k_{2}}^{i_{2}} \cdots g_{k_{m}}^{i_{m}} \quad \Rightarrow \quad a b a^{-1} \quad \Rightarrow \quad K=\left(a b a^{-1}\right) b^{-1}$.
Similarly, Alice knows $b a b^{-1} \quad \Rightarrow \quad b a^{-1} b^{-1} \quad \Rightarrow \quad K=a\left(b a^{-1} b^{-1}\right)$.

Parameters: B_{80} with $m=20$ and g_{i} of length 5 or 10 Artin generators.

Diffie-Hellman-type key-exchange protocol Ko-Lee-Cheon-Han-Kang-Park (2000)

$L B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{m-1}\right\rangle ; \quad U B_{n}=\left\langle\sigma_{m+1}, \ldots, \sigma_{n-1}\right\rangle$ where $m=\left\lfloor\frac{n}{2}\right\rfloor$
Public key: a braid $p \in B_{n}$.
Private keys: Alice: $s \in L B_{n}$; Bob: $r \in U B_{n}$.
Alice: Sends Bob publicly: $p^{\prime}=s p s^{-1}$.
Bob: Sends Alice publicly: $p^{\prime \prime}=r p r^{-1}$
Shared secret key: $K=\operatorname{srpr}^{-1} s^{-1}$
K shared: Alice: $K=s p^{\prime \prime} s^{-1}=s r p r^{-1} s^{-1}$.
Bob: $K=r p^{\prime} r^{-1}=r s p s^{-1} r^{-1}$.
Parameters: B_{80}, with braids of canonical length 12.

Length-based attack
 Hughes-Tannenbaum (2002)

Assumption: Exists a length function ℓ defined on B_{n}, such that usually:

$$
\ell\left(a^{-1} b a\right)>\ell(b)
$$

for elements $a, b \in B_{n}$.
Idea: If $b=x^{-1} a x$ and $x=g_{1} \cdot g_{2} \cdots g_{k}$, the following hopefully hold with a non-negligible probability:

$$
\ell\left(g_{k} x^{-1} a x g_{k}^{-1}\right)<\ell\left(g x^{-1} a x g^{-1}\right)
$$

for any generator g.
In this way, we try to reveal x by peeling off generator after generator.

Candidates for length functions G-Kaplan-Teicher-Tsaban-Vishne (2004-5)

Garside normal form of $w \in B_{n}$: The unique presentation:

$$
w=\Delta_{n}^{r} \cdot p_{1} \cdots p_{k}
$$

where r is maximal, $p_{k} \neq \varepsilon$ and p_{1}, \ldots, p_{k} are permutation braids in left canonical form.

Garside length $\ell_{\mathrm{G}}(w)$: number of Artin generators in Garside normal form of w.

Reduced length function: For each permutation braid $p, \tilde{p}:=$ $p^{-1} \Delta_{n}$ is a permutation braid. So replace: $\Delta_{n}^{-1} p_{1}$ with \tilde{p}_{1}^{-1}.

$$
\begin{aligned}
w & =\Delta_{n}^{-r} \cdot p_{1} \cdots p_{k}=\Delta_{n}^{-(r-1)} \cdot \tilde{p}_{1}^{-1} p_{2} \cdots p_{k}= \\
& =\Delta_{n}^{-(r-2)} \cdot\left(\tilde{p}_{1}^{\prime}\right)^{-1} \Delta_{n}^{-1} p_{2} \cdots p_{k}=\cdots
\end{aligned}
$$

Reduced Garside Iength (or Mixed Garside Iength) of w :

$$
\ell_{\mathrm{RG}}(w)=\ell_{\mathrm{G}}(w)-2 \sum_{i=1}^{\min \{r, k\}}\left|p_{i}\right|
$$

Comparison between length functions

More candidates for length functions Hock-Tsaban (2007)

Idea: Use the Birman-Ko-Lee presentation (1998) instead of the Artin presentation.

Band generators:

The band generators satisfies the following relations:

- $a_{t s} a_{r q}=a_{r q} a_{t s}$ if $[s, t] \cap[q, r]=\emptyset$ or $[s, t] \subset[q, r]$ or $[q, r] \subset[s, t]$.
- $a_{t s} a_{s r}=a_{t r} a_{t s}=a_{s r} a_{t r}$ for $1 \leq r<s<t \leq n$.

Birman-Ko-Lee normal form:

$$
w=\delta_{n}^{j} A_{1} A_{2} \cdots A_{k},
$$

where $A=A_{1} A_{2} \cdots A_{k}$ is positive, j is maximal and k is minimal.

BKL length / Reduced BKL length: Similar to Garside.

Reduced BKL is better than Reduced Garside

In $G=\left\langle g_{1}, \ldots, g_{60}\right\rangle \leq B_{80}$, one conjugate, $|x|=60:$

P

Length-based Cryptanalysis
Page 13
Singapore, June 2007

Improved length-based approach G-Kaplan-Teicher-Tsaban-Vishne (2004-5)

The general problem:
G : A noncommutative group.
D : Distribution on G, with finite support $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq G$.
w : Unknown element of G.
x : Product of $\leq n D$-random elements x_{i}.
$a=x w$ is given.
Problem. Find a short list of elements of $\left\langle x_{1}, \ldots, x_{k}\right\rangle \leq G$ (with their presentation), containing x with nontrivial probability.

Can be generalized to a system of equations, etc.

The algorithm

- First step:
- For each $j=1, \ldots, m, \quad \sigma \in\{1,-1\}$, compute

$$
a_{j}^{-\sigma} b_{i}=a_{j}^{-\sigma} X W_{i}, \quad i=1, \ldots, k
$$

- Give (j, σ) the score

$$
\sum_{i=1}^{k} \ell\left(a_{j}^{-\sigma} b_{i}\right)
$$

- Keep in memory the M elements with the least scores.
- Step $s>1$:
- For each sequence out of the M sequences, compute:

$$
a_{j_{s}}^{-\sigma_{s}}\left(a_{j_{s-1}}^{-\sigma_{s-1}} \cdots a_{j_{1}}^{-\sigma_{1}} b_{i}\right)=a_{j_{s}}^{-\sigma_{s}} a_{j_{s-1}}^{-\sigma_{s-1}} \cdots a_{j_{1}}^{-\sigma_{1}} X W_{i}
$$

over $i=1, \ldots, k$.

- Assign the resulting score to the longer sequence.
- Keep in memory the M sequence with the least scores.

Halting condition:

- Length n - step n, or
- The sum of the M scores increases rather than decreases.

Complexity:

$$
\sum_{s=1}^{n} k M(s+2 m)=n(n+4 m+1) k M / 2
$$

where:
$M=$ length of the final list.
$m=$ number of the generators of the group.
$k=$ number of equations.

Applications of the improved approach

- Parametric equations.
- The Conjugacy Problem and its variants.
- Shifted conjugacy problem.
- Group Membership and Shortest Presentation problems.

Experimental results

Position of correct prefix in successful runs

Parameters: $B_{8},(2,64,8,8,128)-2$ generators for the subgroup, length of X

- 64, 8 equations, length of $W_{i}-8$, size of memory - 128.

Position of correct prefix in unsuccessful runs

Parameters: $B_{8},(2,64,8,8,128)$

Public-key Cryptosystem on the Thompson group Shpilrain-Ushakov (2005)

Thompson's group

$$
F=\left\langle\quad x_{0}, x_{1}, x_{2}, \ldots \quad \mid \quad x_{k} x_{i}=x_{i} x_{k+1} \quad(k>i)\right\rangle
$$

Fix $s \in\{3,4, \ldots\}$.
The following subgroups commute elementwise:
$A=\left\langle x_{0} x_{1}^{-1}, \ldots, x_{0} x_{s}^{-1}\right\rangle \leq F ; B=\left\langle x_{s+1}, x_{s+2}, \ldots, x_{2 s}\right\rangle \leq F$
Public: s (thus also A, B); $w \in F$.
Private: Alice: $a_{1} \in A, b_{1} \in B$. Bob: $a_{2} \in A, b_{2} \in B$.
They send publicly. $u_{1}=a_{1} w b_{1}$ (Alice), $u_{2}=b_{2} w a_{2}$ (Bob).
Shared Key. (Alice) $a_{1} u_{2} b_{1}=a_{1} b_{2} w a_{2} b_{1}=K=b_{2} a_{1} w b_{1} a_{2}=$ $b_{2} u_{1} a_{2}$ (Bob).
$\forall w \in F$, there exists (efficient) normal form NF (w).

$$
\ell_{N F}(w):=|N F(w)| .
$$

Generating the key. Fix a length parameter $L \in\{256,258, \ldots\}$. Multiply random generators (possibly inverted) until $\ell_{\mathrm{NF}}(x)=L$.
F is far from free: Any nontrivial relation added makes it abelian.

Preliminary length-based attack (Shpilrain-Ushakov): 0\% success rate.

Matucci (2006): Special attack to Shpilrain-Ushakov cryptosystem.

Improved Length-based attack Ruinskiy-Shamir-Tsaban (2007)

Using memory:

$|M| \leq 64-0 \%$ success rate.
$|M|=1024-11 \%$ success rate.
Why? Probably due to the similarity to abelian groups.

Reasons for improving:

1. Make length-based algorithms applicable to more cases.
2. Deal with iterated systems (Agree on k independent keys in parallel, and XOR them all to obtain the shared key (Shpilrain)).

Main improvements

Avoiding repetitions: Do not consider again a candidate tested beforehand (using a hash list). Note that it is a generalization of avoiding loops for the case of no memory.

Finding equivalent solutions: suffice to find $\tilde{a} w \tilde{b}=u=a w b$.

Results:

$|M|=64-62 \%$ success rate.
$|M|=1024-80 \%$ success rate.

Subgroup distance based cryptanalysis Ruinskiy-Shamir-Tsaban (2007)

Idea: Instead of looking for shorter words, look for distance from target.

Application: We are given $w \in G$ and $u=a w b$ where $a \in A$ and $b \in B$. We look for $\tilde{a} \in A$ and $\tilde{b} \in B$, such that $\tilde{a} w \tilde{b}=a w b$.

Given a candidate $\tilde{a} \in A$, its score will be: $d\left(w^{-1} \tilde{a}^{-1} u, B\right)$ for $d(x, B)$ a distance function of x to B (Example: $d(x, B)$ is the number of generators in x which are not in B).

Results:

$|M|=1-48 \%$ success rate.

