Tutorials:

Braid Group Cryptography

Singapore, June 2007

David Garber

Department of Applied Mathematics, School of Sciences Holon Institute of Technology

Holon, Israel

Contents

- Basic definitions
- Normal forms
- Cryptosystems based on the braid group
- Attacks on the these cryptosystems
- Future directions

Braid Group B_{n}

Algebraic Definition

Artin generators: $\sigma_{1}, \ldots, \sigma_{n-1}$
Relations:

$$
\begin{aligned}
\sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i} \text { when }|i-j|>1
\end{aligned}
$$

$$
B_{2} \cong \mathbb{Z}
$$

B_{n} is not commutative for $n \geq 3$.

$$
Z\left(B_{n}\right) \cong \mathbb{Z}
$$

Geometric presentation of the braid group:

The elements of B_{n} can be interpreted as geometric n strand braids.

A braid can be seen as induced by a three-dimensional figure consisting on n disjoint curves.

Braid relations in the geometric presentation:

Birman-Ko-Lee presentation (1998)

Band generators:

$$
\sigma_{t}=a_{t+1, t}
$$

The band generators satisfies the following relations:

- $a_{t s} a_{r q}=a_{r q} a_{t s}$ if $[s, t] \cap[q, r]=\emptyset$ or $[s, t] \subset[q, r]$ or $[q, r] \subset[s, t]$.
- $a_{t s} a_{s r}=a_{t r} a_{t s}=a_{s r} a_{t r}$ for $1 \leq r<s<t \leq n$.

Normal forms of elements in the braid group

Normal form: a unique presentation to each element in the group.

Let ε be the empty word. Having a normal form, solve the word problem:

Word Problem: Given a braid w, does $w \equiv \varepsilon$ hold?

Equivalently:
Problem: Given two braids w, w^{\prime}, does $w \equiv w^{\prime}$ hold?

Since: $w \equiv w^{\prime}$ is equivalent to $w^{-1} w^{\prime} \equiv \varepsilon$.

Garside normal form

Positive braid: can be written as a product of positive powers. B_{n}^{+}is the monoid of positive braids.

Fundamental braid $\Delta_{n} \in B_{n}^{+}$:
$\Delta_{n}=\left(\sigma_{1} \cdots \sigma_{n-1}\right)\left(\sigma_{1} \cdots \sigma_{n-2}\right) \cdots \sigma_{1}$

$$
\Delta_{4}=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}
$$

Geometrically, Δ_{n} is a braid on n strands, where any two strands cross positively exactly once.

Properties:

- For any generator σ_{i}, we can write $\Delta_{n}=\sigma_{i} A=B \sigma_{i}$ for $A, B \in B_{n}^{+}$.
- $\sigma_{i} \Delta_{n}=\Delta_{n} \sigma_{n-i}$.
- Δ_{n}^{2} is the generator of the center of B_{n}.

Partial order on B_{n} : for $A, B \in B_{n}, A \preceq B$ where $B=A C$ for some $C \in B_{n}^{+}$.

Properties:

- $B \in B_{n}^{+} \Leftrightarrow \varepsilon \preceq B$
- $A \preceq B \Leftrightarrow B^{-1} \preceq A^{-1}$.
P is a permutation braid if

$$
\varepsilon \preceq P \preceq \Delta_{n}
$$

Geometrically, a permutation braid is a braid on n strands, where any two strands cross positively at most once.

Given a permutation braid P :

$$
\begin{aligned}
& S(P)=\left\{i \mid P=\sigma_{i} P^{\prime} \text { for some } P^{\prime} \in B_{n}^{+}\right\} \\
& F(P)=\left\{i \mid P=P^{\prime} \sigma_{i} \text { for some } P^{\prime} \in B_{n}^{+}\right\}
\end{aligned}
$$

Properties:

1. $i \in S(P)$ if and only if strands i and $i+1$ are exchanged in P.
2. $F(P)=S(\operatorname{rev}(P))$ where $\operatorname{rev}(P)$ reverses the order of letters in P.

Example: $S\left(\Delta_{n}\right)=F\left(\Delta_{n}\right)=\{1, \ldots, n-1\}$.
Left-weighted decomposition of a positive braid $A \in B_{n}^{+}$:

$$
A=P_{1} P_{2} \cdots P_{k} \text { where } S\left(P_{i+1}\right) \subset F\left(P_{i}\right)
$$

Example:

$$
\sigma_{1} \sigma_{2} \cdot \sigma_{2} \sigma_{1} \sigma_{2}=\sigma_{1} \sigma_{2} \cdot \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{1} \sigma_{2} \sigma_{1} \cdot \sigma_{2} \sigma_{1}
$$

Theorem (Garside): For every braid $w \in B_{n}$, there is a unique presentation (called Garside normal form) given by:

$$
w=\Delta_{n}^{r} P_{1} P_{2} \cdots P_{k}
$$

where $r \in \mathbb{Z}$ is maximal, P_{i} are permutation braids, $P_{k} \neq \varepsilon$ and $P_{1} P_{2} \cdots P_{k}$ is a left-weighted decomposition.

Converting a given braid w into its Garside normal form:

1. Replace σ_{i}^{-1} by $\Delta_{n}^{-1} B_{i}$ where B_{i} is a permutation braid.
2. Move any appearance of Δ_{n} to the left. So we get: $w=\Delta_{n}^{r^{\prime}} A$ where A is a positive braid.
3. Write A as a left-weighted decomposition of permutation braids, by computing the starting sets and finishing sets.

Complexity: $O\left(|W|^{2} n \log n\right)$ where $|W|$ is the length of the word in B_{n}.

Example:

$$
w=\sigma_{1} \sigma_{3}^{-1} \sigma_{2} \in B_{4}
$$

Since $\Delta_{4}=\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \cdot \sigma_{3}$, replace σ_{3}^{-1} by: $\Delta_{4}^{-1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}$. So:

$$
\begin{aligned}
w & =\sigma_{1} \cdot \Delta_{4}^{-1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \cdot \sigma_{2} \\
w & =\Delta_{4}^{-1} \cdot \sigma_{3} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{2}
\end{aligned}
$$

Left-weighted decomposition:

$$
w=\Delta^{-1} \cdot \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1} \cdot \sigma_{1} \sigma_{2}
$$

Infimum and Supremum:

$$
\begin{aligned}
& \inf (w)=\max \left\{r: \Delta^{r} \preceq w\right\} \\
& \sup (w)=\min \left\{s: w \preceq \Delta^{s}\right\}
\end{aligned}
$$

If

$$
w=\Delta_{n}^{m} P_{1} P_{2} \cdots P_{k}
$$

then:

$$
\inf (w)=m, \sup (w)=m+k
$$

Canonical length of w (or Complexity):

$$
\operatorname{len}(w)=\sup (w)-\inf (w)=\# \text { permutation braids }
$$

Birman-Ko-Lee's normal form

Fundamental word:

$$
\delta_{n}=a_{n, n-1} a_{n-1, n-2} \cdots a_{2,1}=\sigma_{n-1} \sigma_{n-2} \cdots \sigma_{1}
$$

$$
\delta_{4}=\sigma_{3} \sigma_{2} \sigma_{1}
$$

Properties: $\delta_{n}=a_{s r} A=B a_{s r}$ for A, B positive;

$$
a_{s r} \delta_{n}=\delta_{n} a_{s+1, r+1} \quad ; \quad \Delta_{n}^{2}=\delta_{n}^{n}
$$

Theorem (Birman-Ko-Lee): $w \in B_{n}$ has the following unique form:

$$
w=\delta_{n}^{j} A_{1} A_{2} \cdots A_{k}
$$

where $A=A_{1} A_{2} \cdots A_{k}$ is positive, j is maximal and k is minimal.

There are $C_{n}=\frac{(2 n)!}{n!(n+1)!}$ (the nth Catalan number) different canonical factors.

Complexity: $O\left(|W|^{2} n\right)$, where $|W|$ is the length of the word.

More normal forms: Bressaud, Dehornoy, Dynnikov-Wiest.

Public Key Cryptography (Diffie-Hellman 1976)

Idea: use a one-way function for encryption, which remains oneway only if some information is kept secret.

Purposes for applications of public-key cryptography:

- Confidential message transmission.
- Key exchange.
- Authentication.
- Digital signature.

Diffie-Hellman key-exchange protocol (1976)

Discrete Logarithm Problem: Given α and $\alpha^{X}(\bmod q)$, find X.

Protocol:
Public keys: prime q and a primitive element α.
Private keys: Alice: a; Bob: b.
Alice: Sends Bob publicly: $a^{\prime}=\alpha^{a}(\bmod q)$. Bob: Sends Alice publicly: $b^{\prime}=\alpha^{b}(\bmod q)$

Shared secret key: $K_{a b}=\alpha^{a b}(\bmod q)$
$K_{a b}$ is shared key: Alice computes $K_{a b}=\left(b^{\prime}\right)^{a}(\bmod q)$. Bob computes $K_{a b}=\left(a^{\prime}\right)^{b}(\bmod q)$.

An additional famous Public-Key Cryptosystem: RSA.

The underlying (apparently hard) problems

The Conjugacy Problem: Given $u, w \in B_{n}$, determine whether they are conjugate, i.e., there exists $v \in B_{n}$ such that

$$
w=v^{-1} u v
$$

Conjugacy Search Problem: Given conjugate elements $u, w \in B_{n}$, find $v \in B_{n}$ such that

$$
w=v^{-1} u v
$$

Decomposition Problem: $u \notin G \leq B_{n}$. Find $x, y \in G$ such that $w=x u y$.

Key-agreement protocol

Anshel-Anshel-Goldfeld (1999)

$G=\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle \leq B_{N}$ publicly known.
Secret keys: Alice: $a \in G$. Bob: $b \in G$.
Alice's public key: $a g_{1} a^{-1}, a g_{2} a^{-1}, \ldots, a g_{n} a^{-1}$.
Bob's public key: $b g_{1} b^{-1}, b g_{2} b^{-1}, \ldots, b g_{n} b^{-1}$.
Bob knows $b=g_{k_{1}}^{i_{1}} g_{k_{2}}^{i_{2}} \cdots g_{k_{m}}^{i_{m}} \quad \Rightarrow \quad a b a^{-1} \quad \Rightarrow \quad K=\left(a b a^{-1}\right) b^{-1}$.
Similarly, Alice knows $b a b^{-1} \quad \Rightarrow \quad b a^{-1} b^{-1} \quad \Rightarrow \quad K=a\left(b a^{-1} b^{-1}\right)$.
Parameters: B_{80} with $m=20$ and g_{i} of length 5 or 10 Artin generators.

Diffie-Hellman-type key-exchange protocol Ko-Lee-Cheon-Han-Kang-Park (2000)
$L B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{m-1}\right\rangle ; \quad U B_{n}=\left\langle\sigma_{m+1}, \ldots, \sigma_{n-1}\right\rangle$ where $m=\left\lfloor\frac{n}{2}\right\rfloor$
Protocol:
Public key: one braid $p \in B_{n}$.
Private keys: Alice: $s \in L B_{n}$; Bob: $r \in U B_{n}$.
Alice: Sends Bob publicly: $p^{\prime}=s p s^{-1}$.
Bob: Sends Alice publicly: $p^{\prime \prime}=r p r^{-1}$
Shared secret key: $K=\operatorname{srpr}^{-1}{ }^{-1}$
K shared: Alice: $K=s p^{\prime \prime} s^{-1}=s r p r^{-1} s^{-1}$.
Bob: $K=r p^{\prime} r^{-1}=r s p s^{-1} r^{-1}$.
Parameters: B_{80}, with braids of canonical length 12 .

Encryption and decryption Ko-Lee-Cheon-Han-Kang-Park (2000)

$h: B_{n} \rightarrow\{0,1\}^{\mathbb{N}}$ is a collision-free one-way hash function.
K is a shared secret key.
Bob has a message $m_{B} \in\{0,1\}^{\mathbb{N}}$:
Bob: sends Alice publicly: $m_{B}^{\prime \prime}=m_{B} \oplus h(K)$.
Alice: computes $m_{A}=m_{B}^{\prime \prime} \oplus h(K)$, and we have $m_{A}=m_{B}$, since:

$$
m_{A}=m_{B} \oplus h(K) \oplus h(K)=m_{B}
$$

