Tutorials: Braid Group Cryptography

Singapore, June 2007

David Garber

Department of Applied Mathematics, School of Sciences Holon Institute of Technology Holon, Israel

Contents

- Basic definitions
- Normal forms
- Cryptosystems based on the braid group
- Attacks on the these cryptosystems
- Future directions

Braid Group B_n

Algebraic Definition

Artin generators: $\sigma_1, \ldots, \sigma_{n-1}$

Relations:

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1},$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \text{ when } |i-j| > 1$$

$$B_2 \cong \mathbb{Z}$$

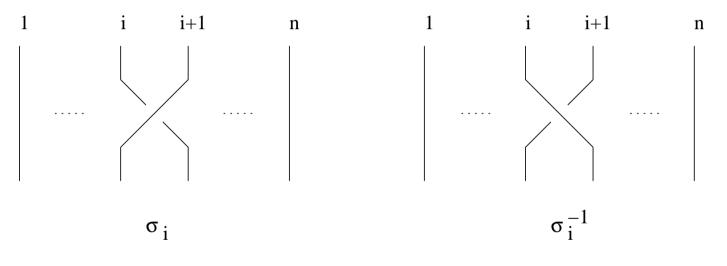
 B_n is not commutative for $n \geq 3$.

$$Z(B_n)\cong\mathbb{Z}$$

Tutorials: Braid Group Cryptography Page 3

Geometric presentation of the braid group:

The elements of B_n can be interpreted as geometric n strand braids.

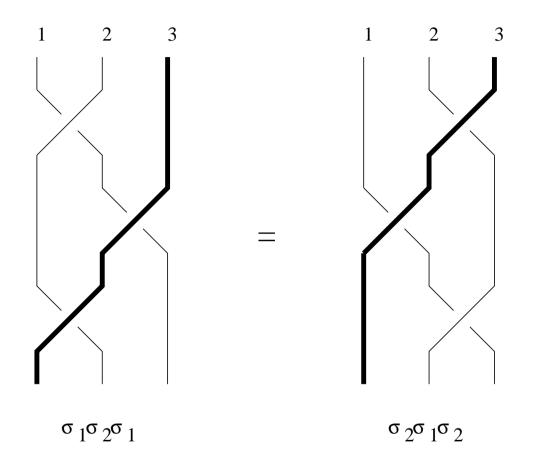


A braid can be seen as induced by a three-dimensional figure consisting on n disjoint curves.

Braid relations in the geometric presentation:

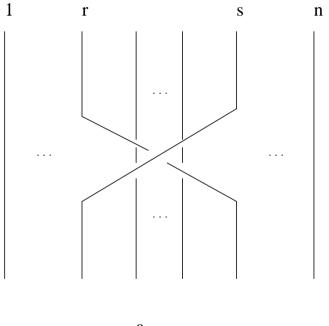
 $\sigma_1 \sigma_3$

 $\sigma_3 \sigma_1$



Birman-Ko-Lee presentation (1998)

Band generators:



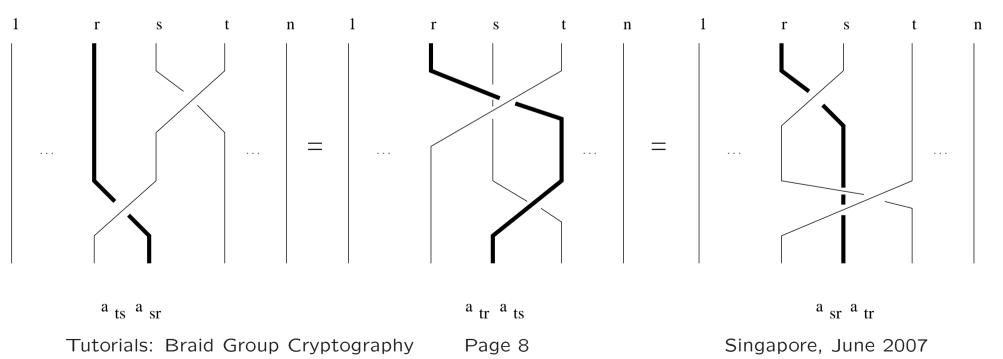
$$\sigma_t = a_{t+1,t}$$

Tutorials: Braid Group Cryptography

The band generators satisfies the following relations:

•
$$a_{ts}a_{rq} = a_{rq}a_{ts}$$
 if $[s,t] \cap [q,r] = \emptyset$ or $[s,t] \subset [q,r]$ or $[q,r] \subset [s,t]$.

•
$$a_{ts}a_{sr} = a_{tr}a_{ts} = a_{sr}a_{tr}$$
 for $1 \le r < s < t \le n$.



Normal forms of elements in the braid group

Normal form: a unique presentation to each element in the group.

Let ε be the empty word. Having a normal form, solve the word problem:

Word Problem: Given a braid w, does $w \equiv \varepsilon$ hold?

Equivalently: Problem: Given two braids w, w', does $w \equiv w'$ hold?

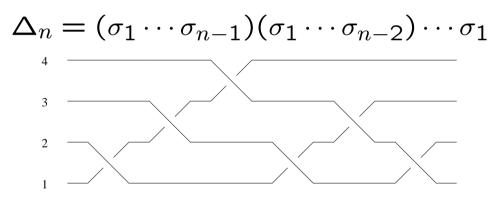
Since: $w \equiv w'$ is equivalent to $w^{-1}w' \equiv \varepsilon$.

Tutorials: Braid Group CryptographyPage 9Singapore, June 2007

Garside normal form

Positive braid: can be written as a product of positive powers. B_n^+ is the monoid of positive braids.

Fundamental braid $\Delta_n \in B_n^+$:



 $\Delta_{\underline{a}} = \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}$

Geometrically, Δ_n is a braid on *n* strands, where any two strands cross positively **exactly** once.

Properties:

• For any generator σ_i , we can write $\Delta_n = \sigma_i A = B\sigma_i$ for $A, B \in B_n^+$.

•
$$\sigma_i \Delta_n = \Delta_n \sigma_{n-i}$$
.

• Δ_n^2 is the generator of the center of B_n .

Partial order on B_n : for $A, B \in B_n$, $A \preceq B$ where B = AC for some $C \in B_n^+$.

Properties:

- $B \in B_n^+ \Leftrightarrow \varepsilon \preceq B$
- $A \preceq B \Leftrightarrow B^{-1} \preceq A^{-1}$.

 \boldsymbol{P} is a permutation braid if

$$\varepsilon \preceq P \preceq \Delta_n$$

Geometrically, a permutation braid is a braid on n strands, where any two strands cross positively **at most** once.

Tutorials: Braid Group Cryptography Page 12

Given a permutation braid P:

$$S(P) = \{i | P = \sigma_i P' \text{ for some } P' \in B_n^+\}$$
$$F(P) = \{i | P = P'\sigma_i \text{ for some } P' \in B_n^+\}$$

Properties:

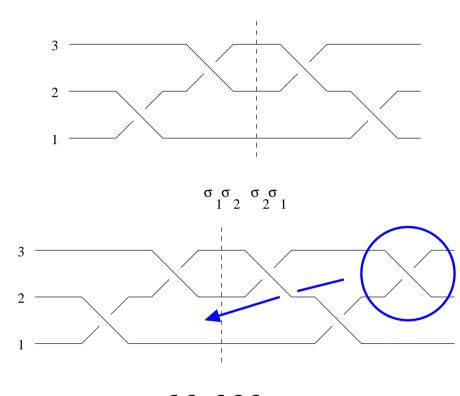
1. $i \in S(P)$ if and only if strands *i* and i + 1 are exchanged in *P*.

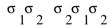
2. F(P) = S(rev(P)) where rev(P) reverses the order of letters in P.

Example: $S(\Delta_n) = F(\Delta_n) = \{1, ..., n-1\}.$

Left-weighted decomposition of a positive braid $A \in B_n^+$:

$$A = P_1 P_2 \cdots P_k$$
 where $S(P_{i+1}) \subset F(P_i)$.





$$\sigma_1 \sigma_2 \cdot \sigma_2 \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \cdot \sigma_1 \sigma_2 \sigma_1 = \sigma_1 \sigma_2 \sigma_1 \cdot \sigma_2 \sigma_1$$

Tutorials: Braid Group Cryptography Page 14

Theorem (Garside): For every braid $w \in B_n$, there is a unique presentation (called Garside normal form) given by:

$$w = \Delta_n^r P_1 P_2 \cdots P_k$$

where $r \in \mathbb{Z}$ is maximal, P_i are permutation braids, $P_k \neq \varepsilon$ and $P_1P_2 \cdots P_k$ is a left-weighted decomposition.

Converting a given braid w into its Garside normal form: 1. Replace σ_i^{-1} by $\Delta_n^{-1}B_i$ where B_i is a permutation braid. 2. Move any appearance of Δ_n to the left. So we get: $w = \Delta_n^{r'}A$ where A is a positive braid.

3. Write A as a left-weighted decomposition of permutation braids, by computing the starting sets and finishing sets.

Complexity: $O(|W|^2 n \log n)$ where |W| is the length of the word in B_n .

Example:

$$w = \sigma_1 \sigma_3^{-1} \sigma_2 \in B_4$$

Since $\Delta_4 = \sigma_3 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \cdot \sigma_3$, replace σ_3^{-1} by: $\Delta_4^{-1} \sigma_3 \sigma_2 \sigma_1 \sigma_3 \sigma_2$.
So:

$$w = \sigma_1 \cdot \Delta_4^{-1} \sigma_3 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \cdot \sigma_2$$
$$w = \Delta_4^{-1} \cdot \sigma_3 \sigma_3 \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_2$$

Left-weighted decomposition:

$$w = \Delta^{-1} \cdot \sigma_2 \sigma_1 \sigma_3 \sigma_2 \sigma_1 \cdot \sigma_1 \sigma_2$$

Infimum and Supremum:

$$\inf(w) = \max\{r : \Delta^r \leq w\}$$
$$\sup(w) = \min\{s : w \leq \Delta^s\}$$

If

$$w = \Delta_n^m P_1 P_2 \cdots P_k$$

then:

$$\inf(w) = m, \sup(w) = m + k$$

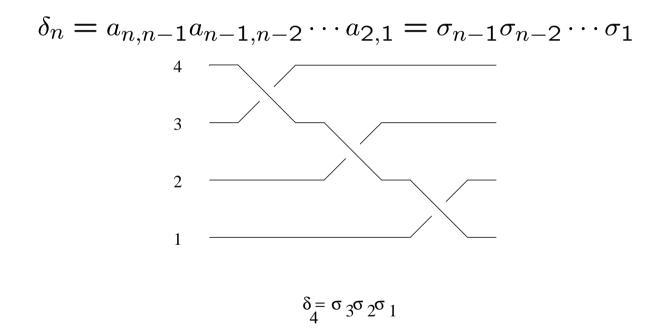
Canonical length of w (or Complexity):

len(w) = sup(w) - inf(w) = #permutation braids

Tutorials: Braid Group Cryptography Page 17

Birman-Ko-Lee's normal form

Fundamental word:



Properties: $\delta_n = a_{sr}A = Ba_{sr}$ for A, B positive; $a_{sr}\delta_n = \delta_n a_{s+1,r+1}$; $\Delta_n^2 = \delta_n^n$

Tutorials: Braid Group Cryptography Page 18

Theorem (Birman-Ko-Lee): $w \in B_n$ has the following unique form:

$$w = \delta_n^j A_1 A_2 \cdots A_k,$$

where $A = A_1 A_2 \cdots A_k$ is positive, j is maximal and k is minimal.

There are $C_n = \frac{(2n)!}{n!(n+1)!}$ (the *n*th Catalan number) different canonical factors.

Complexity: $O(|W|^2n)$, where |W| is the length of the word.

More normal forms: Bressaud, Dehornoy, Dynnikov-Wiest.

Public Key Cryptography (Diffie-Hellman 1976)

Idea: use a one-way function for encryption, which remains oneway only if some information is kept secret.

Purposes for applications of public-key cryptography:

- Confidential message transmission.
- Key exchange.
- Authentication.
- Digital signature.

Diffie-Hellman key-exchange protocol (1976)

Discrete Logarithm Problem: Given α and α^X (mod q), find X.

Protocol: *Public keys:* prime q and a primitive element α . *Private keys:* Alice: a; Bob: b.

Alice: Sends Bob publicly: $a' = \alpha^a \pmod{q}$. Bob: Sends Alice publicly: $b' = \alpha^b \pmod{q}$

Shared secret key: $K_{ab} = \alpha^{ab} \pmod{q}$

 K_{ab} is shared key: Alice computes $K_{ab} = (b')^a \pmod{q}$. Bob computes $K_{ab} = (a')^b \pmod{q}$.

An additional famous Public-Key Cryptosystem: **RSA**.

Tutorials: Braid Group CryptographyPage 21Singapore, June 2007

The underlying (apparently hard) problems

The Conjugacy Problem: Given $u, w \in B_n$, determine whether they are conjugate, i.e., there exists $v \in B_n$ such that

$$w = v^{-1}uv$$

Conjugacy Search Problem: Given conjugate elements $u, w \in B_n$, find $v \in B_n$ such that

$$w = v^{-1}uv$$

Decomposition Problem: $u \notin G \leq B_n$. Find $x, y \in G$ such that w = xuy.

Key-agreement protocol Anshel-Anshel-Goldfeld (1999)

 $G = \langle g_1, g_2, \dots, g_n \rangle \leq B_N$ publicly known.

Secret keys: Alice: $a \in G$. Bob: $b \in G$.

Alice's public key: $ag_1a^{-1}, ag_2a^{-1}, \dots, ag_na^{-1}$. Bob's public key: $bg_1b^{-1}, bg_2b^{-1}, \dots, bg_nb^{-1}$.

Bob knows $b = g_{k_1}^{i_1} g_{k_2}^{i_2} \cdots g_{k_m}^{i_m} \Rightarrow aba^{-1} \Rightarrow K = (aba^{-1})b^{-1}.$

Similarly, Alice knows $bab^{-1} \Rightarrow ba^{-1}b^{-1} \Rightarrow K = a(ba^{-1}b^{-1}).$

Parameters: B_{80} with m = 20 and g_i of length 5 or 10 Artin generators.

Diffie-Hellman-type key-exchange protocol Ko-Lee-Cheon-Han-Kang-Park (2000)

 $LB_n = \langle \sigma_1, \dots, \sigma_{m-1} \rangle; \quad UB_n = \langle \sigma_{m+1}, \dots, \sigma_{n-1} \rangle \text{ where } m = \lfloor \frac{n}{2} \rfloor$

Protocol: *Public key:* one braid $p \in B_n$. *Private keys:* Alice: $s \in LB_n$; Bob: $r \in UB_n$.

Alice: Sends Bob publicly: $p' = sps^{-1}$. Bob: Sends Alice publicly: $p'' = rpr^{-1}$

Shared secret key: $K = srpr^{-1}s^{-1}$

K shared: Alice: $K = sp''s^{-1} = srpr^{-1}s^{-1}$. Bob: $K = rp'r^{-1} = rsps^{-1}r^{-1}$.

Parameters: B_{80} , with braids of canonical length 12.

Tutorials: Braid Group Cryptography Page 24

Encryption and decryption Ko-Lee-Cheon-Han-Kang-Park (2000)

 $h: B_n \to \{0,1\}^{\mathbb{N}}$ is a collision-free one-way hash function.

K is a shared secret key.

Bob has a message $m_B \in \{0,1\}^{\mathbb{N}}$:

Bob: sends Alice publicly: $m''_B = m_B \oplus h(K)$.

Alice: computes $m_A = m''_B \oplus h(K)$, and we have $m_A = m_B$, since: $m_A = m_B \oplus h(K) \oplus h(K) = m_B$.