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The underlying (apparently hard) problems

Conjugacy Decision Problem: Given u, w ∈ Bn, determine whether

they are conjugate, i.e., there exists v ∈ Bn such that

w = v−1uv

Conjugacy Search Problem: Given conjugate elements u, w ∈ Bn,

find v ∈ Bn such that

w = v−1uv

Decomposition Problem: u 6∈ G ≤ Bn. Find x, y ∈ G such that

w = xuy.
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Attacks using Summit Sets

Basic idea: For an element x ∈ Bn, we look for a subset Ix of

the conjugacy class of x satisfying:

1. For every x ∈ Bn, the set Ix is finite, non-empty and only

depends on the conjugacy class of x.

2. For each x ∈ Bn, one can compute efficiently x̃ ∈ Ix and the

conjugator a−1xa = x̃.

3. One can construct the whole set Ix for any representative

x̃ ∈ Ix.
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For solving the Conjugacy Decision Problem and Conjugacy Search
Problem for given x, y ∈ Bn, we have to do:

(a) Find x̃ ∈ Ix and ỹ ∈ Iy.

(b) Using the algorithm from Property (3), compute further el-
ements of Ix (while keeping track of the conjugating ele-
ments), until either:
(i) ỹ ∈ Ix, proving x and y are conjugate and providing a
conjugating element, or
(ii) ỹ 6∈ Ix, proving that x and y are not conjugate.

Garside (1969): Ix = SS(x), the Summit Set of x, which is the
set of conjugates of x having maximal infimum.
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The Super Summit Sets
Elrifai and Morton (1994)

Ix = SSS(x), the Super Summit Set of x, consisting of the
conjugates of x having minimal canonical length len(x) (SSS(x)
is much smaller than SS(x)).

Definition: Let x = ∆px1 · · ·xr ∈ Bn. Cycling of x, c(x), is:

c(x) = ∆px2 · · ·xrτ
−p(x1).

where τ(σi) = σn−i.
Decycling of x, d(x), is:

d(x) = xr∆
px1x2 · · ·xr−1 = ∆pτ−p(xr)x1x2 · · ·xr−1.

Properties: c(x) = (τ−p(x1))
−1x(τ−p(x1)) ; d(x) = xrxx−1

r

inf(x) ≤ inf(c(x)) ; sup(x) ≥ sup(d(x))
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Finding an element in SSS(x): Perform cycling for increasing
the infimum, since:

Elrifai-Morton, Birman-Ko-Lee: There exists a positive inte-
ger k1 such that inf(ck1(x)) > inf(x).

We get: element x̂ of maximal infimum.

Perform decycling for decreasing the supremum, since:

Elrifai-Morton, Birman-Ko-Lee: There exists a positive inte-
ger k2 such that sup(dk2(x̂)) < sup(x̂).

We get: element in SSS(x).

Complexity (Elrifai-Morton, Birman-Ko-Lee): at most rm

(r=length in Artin generators, m=canonical length).
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Example (Elrifai-Morton): Let P = σ1σ2
2σ3σ1σ2

2.

Left canonical form: P = (σ1σ2)(σ2σ3σ1σ2)(σ2);
inf(P ) = 0; sup(P ) = 3.

One cycling:

c(P ) = (σ2σ3σ1σ2)(σ2)(σ1σ2) = (σ2σ3σ1σ2)(σ2σ1σ2) =

= (σ2σ3σ1σ2)(σ1σ2σ1) = (σ2σ3σ1σ2σ1)(σ2σ1);

inf(c(P )) = 0, sup(c(P )) = 2.

One further cycling:

c2(P ) = (σ2σ1)(σ2σ3σ1σ2σ1) = ∆4σ2;

inf(c2(P )) = 1; sup(c2(P )) = 2.
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Exploring the set SSS(x).

Proposition (Elrifai-Morton, 1994): Let x ∈ Bn and V ⊂
SSS(x) be non-empty. If V 6= SSS(x), then there exist y ∈ V

and a permutation braid s such that s−1ys ∈ SSS(x) \ V .

Proposition (Franco, Gonzales-Meneses, 2003): Let x ∈ Bn

and V ⊂ SSS(x) be non-empty. If V 6= SSS(x), then there exist

y ∈ V such that σ−1
i yσi ∈ SSS(x) \ V .

This exploring algorithm computes a directed graph:

Vertices: the set SSS(x).

Edges: for y, z ∈ SSS(x), y
σi→ z if σ−1

i yσi = z.

Problem: The size of SSS(x) is very big.
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The Ultra Summit Sets
Gebhardt (2005)

Ix = USS(x), the Ultra Summit Set of x, consisting of the con-

jugates of x in SSS(x), which satisfy cm(y) = y for some m > 0

(USS(x) is smaller than SSS(x)).

USS(x) consists of a finite set of disjoint orbits, closed under

cycling, decycling and the operator τ .
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Examples (Birman, Gebhardt, Gonzales-Meneses, 2006):
• USS(σ1) = SSS(σ1) = SS(σ1) = {σ1, . . . , σn−1}, and each ele-
ment is an orbit under cycling, since c(σi) = σi for i = 1, . . . , n−1.

• x = σ1σ3σ2σ1 · σ1σ2 · σ2σ1σ3 ∈ B4.

|USS(x)| = 6 while |SSS(x)| = 22.

USS(x) consists of 2 closed orbits under cycling: USS(x) =
O1 ∪O2, each one containing 3 rigid elements:

O1 = {σ1σ3σ2σ1 · σ1σ2 · σ2σ1σ3, σ1σ2 · σ2σ1σ3 · σ1σ3σ2σ1,

σ2σ1σ3 · σ1σ3σ2σ1 · σ1σ2},

O2 = {σ3σ1σ2σ3 · σ3σ2 · σ2σ3σ1, σ3σ2 · σ2σ3σ1 · σ3σ1σ2σ3,

σ2σ3σ1 · σ3σ1σ2σ3 · σ3σ2}.
Note that O2 = τ(O1).
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Remark: In generic case, |USS(x)| is either ` or 2` (` = len(x))

(depends on whether τ(O1) = O1) containing rigid braids

(Gebhardt). There are exceptions in non-generic case: for

E ∈ B12:

E = (σ2σ1σ7σ6σ5σ4σ3σ8σ7σ11σ10) · (σ1σ2σ3σ2σ1σ4σ3σ10) ·
·(σ1σ3σ4σ10) · (σ1σ10) · (σ1σ10σ9σ8σ7σ11) · (σ1σ2σ7σ11)

has an Ultra Summit Set of size 264, instead of the expected

size 12 (Birman, Gebhardt, Gonzales-Meneses).

The size and structure of the USS(x) depends on its Nielsen-

Thurston type: periodic, reducible or Pseudo-Anosov (Birman,

Gebhardt, Gonzales-Meneses).
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Finding an element in USS(x): First, perform cycling and

decycling for getting an element in x̃ ∈ SSS(x).

Then start cycling it. We get two integers m1, m2 (m1 < m2),

which satisfy:

cm1(x̃) = cm2(x̃)

x̂ = cm1(x̃) ∈ USS(x), since cm2−m1(x̂) = x̂.
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Exploring USS(x) from x̂ ∈ USS(x):

Definition: Given x ∈ Bn, y ∈ USS(x). A permutation braid

s 6= 1 is a minimal for y with respect to USS(x) if s−1ys ∈ USS(x),

and no proper prefix of s satisfies this property.

Proposition (Gebhardt): Let x ∈ Bn and V ⊆ USS(x) be non-

empty. If V 6= USS(x), then there exist y ∈ V and a generator

σi such that cy(σi) is a minimal permutation braid for y, and

(cy(σi))
−1y(cy(σi)) ∈ USS(X) \ V .

Birman, Gebhardt, Gonzales-Meneses (2006): if x ∈ USS(x)

with len(x) = k > 0 and s be a minimal simple element for x.

Then s is a prefix of either ι(x) or ι(x−1), or both, where ι(x) is

the first factor of the Garside normal form.
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As in Super Summit Sets, the algorithm for USS(x), compute a

graph:

Vertices: elements of USS(x).

Edges: for y, z ∈ USS(x), y
s→ z if s−1ys = z, where s is a

minimal permutation braid.

Complexity: Although the number of cycling m2 for finding

an element in USS(x) is not known in general, in practice, the

algorithm based on the Ultra Summit Sets is substantially

better for braid groups.

More results: Talk of Gonzales-Meneses in the conference ...
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A heuristic algorithm using the Super Summit Sets
Hofheinz-Steinwandt (2002)

Idea: we hope that the representatives in SSS of two conjugated

elements will not be too far away (one is a conjugation of the

other by a permutation braid).

So, given a pair (x, x′) of braids, where x′ = s−1xs, we do:

1. By a variant of cycling and decycling, we find x̃ ∈ SSS(x) and

x̃′ ∈ SSS(x′).
2. Try to find a permutation braid P , such that x̃′ = P−1x̃P .

(using the symmetric group).
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Remark: In such cases, we can find also the conjugator.

Actually, one can find any s̃ (commuted with r) which satisfies

x′ = s̃−1xs̃ which will do the job, since after r−1pr is known:

s̃−1r−1prs̃ = r−1s̃−1ps̃r = r−1x′r

which is the shared key.

Success rate: Almost 100% of the cases in the Anshel-Anshel-

Goldfeld protocol, and about 80% of the cases in the Diffie-

Hellman-type protocol.
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Attacks based on linear representations

Idea: map the braid groups into groups of matrices, in which

the Conjugacy Search Problem is easy, and lift up the result to

the braid group.

Two main representations:

1. Burau representation - for n ≥ 5 is not faithful, but since its

kernel is very small - it still might be possible (Hughes, 2002).

Some variant was broken by Lee-Lee (2002).

2. Lawrence-Krammer representation - it is faithful (Bigelow

(2001), Krammer (2002)), and hence can be used as an attack

to Diffie-Hellman-type protocol (Cheon-Jun, 2003).
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Length-based attack
Hughes-Tannenbaum (2002)

Property: For a length function ` defined on Bn, usually

`(a−1ba) > `(b)

for elements a, b ∈ Bn.

Idea: If b = x−1ax and x = g1 · g2 · · · gk, the following hopefully
holds with a non-negligible probability:

`(gkx−1axg−1
k ) < `(gx−1axg−1)

for any generator g 6= gk.

In this way, we try to reveal x by peeling off generator after
generator.
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Improvements:

• Generalization to solution of equations (G-Kaplan-Teicher-

Tsaban-Vishne, 2005)

• Memory approach (G-Kaplan-Teicher-Tsaban-Vishne, 2005)

• Better length functions (Hock-Tsaban, 2006)

• Application to other groups (Ruinskiy-Shamir-Tsaban, 2007)

Will be discussed in my conference talk ...
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Cycling problem as a potential hard problem

Ko-Lee-Cheon-Han-Kang-Park (2000): Cycling Problem
might be hard.
Cycling Problem: Given a braid y and a positive integer t such
that y is in the image of the operator ct. Find a braid x such
that ct(x) = y.

Not so hard!

Maffre (2005): Given y, one can find x such that c(x) = y very
fast.

Gebhardt and Gonzales-Meneses (2007): General Cycling
Problem has a polynomial solution, since the cycling operation
is surjective, so apply Maffre’s algorithm t times.
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Future directions

1. A cryptosystem based on the Shifted Conjugacy Search Problem

Dehornoy (2006)

Let x, y ∈ B∞. We define:

x ∗ y = x · dy · σ1 · dx−1

where dx is the shift of x in B∞, i.e. d(σi) = σi+1 for each i ≥ 1.

Shifted Conjugacy Search Problem: Let s, p ∈ B∞ and p′ = s ∗ p.

Find a braid s̃ satisfying p′ = s̃ ∗ p.
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Fiat-Shamir authentication scheme:
S is a set and (Fs)s∈S : S → S is a family of functions satisfying:

Fr(Fs(p)) = FFr(s)(Fr(p)), r, s, p ∈ S

Alice is the prover who wants to convince Bob that she knows
the secret key s:

Private key: Alice: s ∈ S.
Public keys: Two elements p, p′ ∈ S such that p′ = Fs(p).

Alice: Chooses a random r ∈ S and sends Bob x = Fr(p) and
x′ = Fr(p′).
Bob: Chooses a random bit c and sends it to Alice.
Alice:
If c = 0, sends y = r (then Bob checks: x = Fy(p) and x′ =
Fy(p′));
If c = 1, sends y = Fr(s) (then Bob checks: x′ = Fy(x)).
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Dehornoy (2006): A LD-system is a set S with a binary op-
eration which satisfies: r ∗ (s ∗ p) = (r ∗ s) ∗ (r ∗ p).

The Fiat-Shamir-type authentication scheme on LD-systems:

Private key: Alice: s ∈ S.
Public keys: Two elements p, p′ ∈ S such that p′ = s ∗ p.

Alice: Chooses a random r ∈ S and sends Bob x = r ∗ p and
x′ = r ∗ p′.
Bob: Chooses a bit c and sends it to Alice.
Alice:
If c = 0, sends y = r (then Bob checks: x = y ∗ p and x′ = y ∗ p′);
If c = 1, sends y = r ∗ s (then Bob checks: x′ = y ∗ x).

LD-system on braid group: B∞ with the shifted conjugacy
operation.
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Further research:

1. Cryptanalysis direction: What is the success rate of a

length-based attack on this scheme?

2. Cryptanalysis direction: Can one develop any theory (like

Summit Sets) for the Shifted Conjugacy Search Problem?

3. Cryptosystem direction: Can one suggest a LD-system on

the braid group, which will be secure for the length-based attack?

4. Cryptosystem direction: Can one suggest a LD-system on

a different noncommutative group, which will be secure?
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2. A cryptosystem based on the shortest braid problem

Settings: B∞, Generators {σ1, σ2, . . . } subject to the usual braid
relations.

Minimal Length Problem (or Shortest Word Problem): Starting
with a word w in the σ±1

i ’s, find the shortest word w′ which is
equivalent to w, i.e., that satisfies w′ ≡ w.

Paterson and Razborov (1991): The Minimal Length Problem
is co-NP-complete.

Hardness for Bn for fixed n is not known.

From the point of view of cryptography, we are interested to
construct relatively large families of provably difficult instances
in which the keys may be randomly chosen.
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Dehornoy (2004): Braids of the form w(σe1
1 , σ

e2
2 , . . . , σen

n ) with

ei = ±1, i.e., braids in which, for each i, at least one of σi or

σ−1
i does not occur, could be relevant.

Possible problem: The shortest word problem in Bn for a fixed

n might be not so hard.

Some indications:

For B3: Berger (Artin), Wiest (Artin), Xu (BKL).

For B4: Kang-Ko-Lee (BKL).

For Bn, n fixed (small): Conjecture: Wiest (Artin), G-Kaplan-

Tsaban (Artin).
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Further research:

1. Cryptosystem direction: Suggest a cryptosystem based on

the shortest word problem in B∞, using the hardness result

of Paterson-Razborov?

2. Cryptanalysis direction: What is the final status of the

shortest word problem in Bn for a fixed n?
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3. Alternative distributions

Idea: Try to change the distribution of the generators.

Markov walk: the distribution of the choice of the next gener-

ator depends on the choice of the current chosen generator.

Maffre (2006): Proposes a new random generator of key which

is secure against his attack and the one of Hofheinz-Steinwandt.

Further research: Is it secure from the other attacks too?
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4. Cryptosystems based on different non-commutative groups

Further Research: Can one suggest a different non-commutative

group where the suggested protocols on the braid group can be

applied, and the cryptosystem will be secure?

For applying Diffie-Hellman, one needs two subgroups which

commutes element-wise.

Some possibilities:

1. Thompson group (Shpilrain-Ushakov, 2006).

2. Miller groups (groups with an abelian automorphism group)

(Mahalanobis, 2005).
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