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Twist knots

n-crossings n-crossings

Figure: Twist knots J(2, n) and J(−2, n), n > 0.

Example

In D. Rolfsen’s table the trefoil knot is 31 = J(2, 2), the figure
eight knot is 41 = J(2,−2), 52 = J(2, 4), 61 = J(2,−4).
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Properties of twist knots

I are two-bridge knots (i.e. rational knots).

I the fundamental group has two generators and one relation.

π1(J(2, 2m)) = 〈x , y |wmx = ywm〉

where w is the word [y , x−1] = yx−1y−1x .

π1(J(2, 2m + 1)) = 〈x , y |wmx = ywm〉

where w is the word [x , y−1] = xy−1x−1y .

I except the trefoil, are hyperbolic.

I except the trefoil and the figure-eight, are not fibered, but
virtually fibered.

I representations of the fundamental group to SL2(C) are
described by Riley’s method.
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Reidemeister torsion

I Reidemeister torsion is a classical topological invariant,
studied since 1930s.

I Twisted Reidemeister torsion associated with a representation
of the fundamental group to GL(n, F) has been studied since
the early 1990’s.
Here we are interested in the adjoints of representations to
SL2(C), in connections with hyperbolic structures and the
theory of character varieties (as well as Chern-Simons theory).

I Alexander polynomial = Reidemeister torsion (J. Milnor,
1962); twisted Alexander polynomial = twisted Reidemeister
torsion (T. Kitano, 1996, Kirk-Livingston 1999).

I twisted Alexander polynomial detects the unknot, decides
fiberness for some classes of knots (2006, 2007).

I Sign-refined twisted torsion (in analog to V. Turaev’s
sign-refined torsion) was proposed by J. Dubois (2005).
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Torsion of a chain complex

Let C∗ = (0 → Cn
dn→ Cn−1

dn−1→ · · · d1→ C0 → 0) be a chain complex
of finite dimensional vector spaces over C.
Choose a basis ci for Ci , and a basis hi for Hi = Hi (C∗).
Let bi be a sequence of vectors in Ci such that di (b

i ) is a basis of
Bi−1 = im(di ).
Let h̃i be a lift of hi in Zi = ker(di ).
The sign-determined Reidemeister torsion of C∗ is

Tor(C∗, c∗,h∗) = (−1)|C∗| ·
n∏

i=0

[di+1(b
i+1)h̃ibi/ci ](−1)i+1 ∈ C∗.

where |C∗| =
∑

k>0 αk(C∗)βk(C∗), αi (C∗) =
∑i

k=0 dim Ck ,

βi (C∗) =
∑i

k=0 dim Hk .
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Torsion of a CW-complex

Let W be a finite CW-complex and ρ be an SL2(C)-representation
of π1(W ).
Define

C∗(W ; sl2(C)ρ) = C∗(W̃ ; Z)⊗Z[π1(W )] sl2(C)ρ.

Here:
C∗(W̃ ; Z) is the complex of the universal cover with integer
coefficients which is a Z[π1(W )]-module,
Ad : SL2(C) → Aut(sl2(C)),A 7→ AdA is the adjoint
representation,
sl2(C)ρ is the Z[π1(W )]-module via the composition Ad ◦ ρ.
Let

τ0 = sgn (Tor(C∗(W ; R), c∗, h∗)) ∈ {±1}.

Define the twisted Reidemeister torsion of W to be

TOR(W ; sl2(C)ρ,h
∗, o) = τ0 · Tor(C∗(W ; sl2(C)ρ), c

∗
B,h∗) ∈ C∗.
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Regularity for representations

Let Ek be the exterior of the knot K .
Roughly, with a notion of regularity there is a canonical way to
choose bases for homologies.
We say that ρ ∈ R irr(π1(K );SL2(C)) is regular if dim Hρ

1 (EK ) = 1.
For a regular representation ρ, we have

dim Hρ
1 (EK ) = 1, dim Hρ

2 (EK ) = 1 and Hρ
j (EK ) = 0 for all j 6= 1, 2.

Let λ be the longitude of K . We say that an irreducible
representation ρ : π1(K ) → SL2(C) is λ-regular, if (J. Porti 1997):

1. the inclusion ι : λ ↪→ EK induces a surjective map

ι∗ : Hρ
1 (λ) → Hρ

1 (EK ),

2. if trace(ρ(π1(∂EK ))) ⊂ {±2}, then ρ(λ) 6= ±1.
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The Reidemeister torsion for knot exteriors

Let ρ : π1(K ) → SL2(C) be a λ-regular representation. There is a
canonical way to choose a basis o for the homology with real
coefficients, and a basis {hρ

(1)(λ), hρ
(2)} for the twisted homology.

The Reidemeister torsion TK
λ at ρ is defined to be

TK
λ (ρ) = TOR

(
EK ; sl2(C)ρ, {hρ

(1)(λ), hρ
(2)}, o

)
∈ C∗.

This torsion (defined by Porti, Dubois) is a numerical invariant,
associated with not necessary acyclic (i.e. exact) chain complexes,
generally not easy to compute. It has role in the asymptotic
expansions of the colored Jones polynomial (Dubois-Kashaev,
2007).
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Twisted Reidemeister torsion polynomial

We study another torsion which is a function of one variable,
associated to acyclic chain complex, which is easier to compute.
Let the CW–complex W be EK and the homomorphism
α : π1(K ) → Z = 〈t〉 be the abelianization.
Define the s̃l2(C)ρ-twisted chain complex of W to be

C∗(W ; s̃l2(C)ρ) = C∗(W̃ ; Z)⊗Ad◦ρ⊗α (sl2(C)⊗ C(t)) .
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Theorem (Yamaguchi (2005))

The derivative with respect to t of T K
λ (ρ) at t = 1 is equal to

−TK
λ (ρ).



How to compute T K
λ (ρ) from Fox free differential calculus

Choose and fix a Wirtinger presentation

π1(K ) = 〈x1, . . . , xk | r1, . . . , rk−1〉

Let WK be the 2-dimensional CW–complex constructed from the
presentation.
F. Waldhausen proved that the Whitehead group of a knot group is
trivial. As a result, WK has the same simple homotopy type as EK .
So, the CW–complex WK can be used to compute the twisted
Reidemeister torsion polynomial.
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The twisted complex C∗(WK ; s̃l2(C)ρ) becomes:

0 → (sl2(C)⊗ C(t))k−1 ∂2→ (sl2(C)⊗ C(t))k
∂1→ sl2(C)⊗C(t) → 0.

Where, writing Φ for (Ad ◦ ρ)⊗ α:

∂1 = (Φ(x1 − 1),Φ(x2 − 1), . . . ,Φ(xk − 1)) .

and ∂2 is expressed using the Fox’s free differential calculus

∂2 =


Φ( ∂r1

∂x1
) . . . Φ(

∂rk−1

∂x1
)

...
. . .

...

Φ( ∂r1
∂xk

) . . . Φ(
∂rk−1

∂xk
)


Let A1

K ,Ad◦ρ denote the 3(k − 1)× 3(k − 1)–matrix obtained from
the matrix of ∂2 by deleting its first row.
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The torsion polynomial T K
λ (ρ) can be described, up to a factor tm

(m ∈ Z) as:

T K
λ (ρ) = τ0 ·

det A1
K ,Ad◦ρ

det(Φ(x1 − 1))
.

This rational function has the first order zero at t = 1. The
twisted Reidemeister torsion TK

λ (ρ) is expressed as

TK
λ (ρ) = − lim

t→1

T K
λ (ρ)

(t − 1)
= − lim

t→1

(
τ0 ·

det A1
K ,Ad◦ρ

(t − 1) det(Φ(x1 − 1))

)
.
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Formulas for the torsion of twist knots

Using Riley’s method we can parametrize a non–abelian
SL2(C)-representation ρ by two parameters u and s as follows:

ρ(x) =

( √
s 1/

√
s

0 1/
√

s

)
, ρ(y) =

( √
s 0

−
√

su 1/
√

s

)
.

Let W = ρ(w). Then s and u satisfy Riley’s equation
φJ(2,2m)(s, u) = W1,1 + (1− s)W1,2 = 0.
Let ξ± are the eigenvalues of W , given by explicit expressions in
terms of s and u.
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Theorem
Let m be a positive integer.

1. The Reidemeister torsion TJ(2,2m)
λ (ρ) is:

τ0

s + s−1 − 2

[
C1(m)ξm−1

+ tm + C2(m)ξm−1
− tm + C3(m)

]
.

2. Similarly, TJ(2,−2m)
λ (ρ) is

τ0

s + s−1 − 2

[
−C1(−m)ξ−m−1

+ tm − C2(−m)ξ−m−1
− tm + C3(−m)

]
.

Where C1(m),C2(m),C3(m), tm, ξ+, ξ− are explicit expressions
in terms of s, u,m (the formulas are available in our paper).



Torsion at the holonomy representation

Formulas of the twisted Reidemeister torsion associated to twist
knots are complicated.
But formulas for the twisted Reidemeister torsion at holonomy
representations are simpler (could be efficiently computed using
computer) .
Every twist knots except the trefoil knot are hyperbolic.
The exterior of a hyperbolic knot admits a hyperbolic structure
which determines a unique discrete faithful representation of the
knot group in PSL2(C), called the holonomy representation.
Such a representation lifts to SL2(C) and determines two
representations in SL2(C).
Such lifts are λ-regular representations.
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Lemma
Let K be a hyperbolic two–bridge knot and suppose that its knot
group admits a presentation π1(K ) = 〈x , y |wx = yw〉.
If ρ0 denotes a lift in SL2(C) of the holonomy representation, then
ρ0 is given by, up to conjugation,

x 7→ ±
(

1 1
0 1

)
, y 7→ ±

(
1 0

−u 1

)
,

where u is a root of Riley’s equation φK (1, u) = 0 of K.



Theorem
Let m > 0, then

1.

TJ(2,2m)
λ (ρu) =

−τ0

u2 + 4

[(
4 + m(u2 − 4u + 8)

)
tm(ξm

+ + ξm
− )

+
(
tm(ξm−1

+ + ξm−1
− )− 1

)
(u2 − 4)m

+(−5u2 − 8u + 4)t2
m

]
,

2.

TJ(2,−2m)
λ (ρu) =

−τ0

u2 + 4

[(
−4 + m(u2 − 4u + 8)

)
tm(ξm

+ + ξm
− )

+
(
tm(ξm+1

+ + ξm+1
− ) + 1

)
(u2 − 4)m

+(−5u2 − 8u + 4)t2
m

]
.



Asymptotic behavior of torsion at the holonomy

Figure: Graph of |TJ(2,−2m)
λ (ρ0)| and f (m) = C (]J(2,−2m))3, where ]K

is the number of crossings of K .



Asymptotic behavior of torsion at the holonomy

Figure: Graph of |TJ(2,−2m)
λ (ρ0)| and f (m) = C (]J(2,−2m))3, where ]K

is the number of crossings of K .



Observation
The sequence

(
|TJ(2,−2m)

λ (ρ0)|
)

m>1
has the same behavior as the

sequence
(
C (]J(2,−2m))3

)
m>1

, for some constant C .

Twist knots can be obtained by surgery on the Whitehead link.
The above observation can be justifed by using the Product
Formula for Reidemeister torsion.
We do not know yet the precise value of the constant C .

Thank you!
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