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1. Introduction

(a) A braid is a set of n strings stretching between two paral-

lel planes. Berger (2002) observed that many invariants of

knots and links have their counterparts in braid theory. His

review demonstrated how integrals over the braid path can

yield topological invariants.

(b) Braids can be organised into groups, this group is denoted

by Bn.
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(c) When α is the plane, the braid can be closed, say, α̂ i.e.

corresponding ends can be connected in pairs, to form a link,

i.e. a possibly intertwined union of possibly knotted loops in

three dimensions. The number of components of the links

can be anything from 1 to n, depending on the permutation

of strands determined by the link.

(d) Alexander (1928) observed that every link can be obtained

in this way from a braid. Different braids can give rise to

the same link, just as different crossing diagrams can give

rise to the same knot. Birman (1976) defined a link to be

the union of α ≥ 1 mutually disjoint simple closed polygonal

curves, embedded in E3 . The case α = 1 is referred to as a

knot.
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The Jones polynomial which was discovered by Jones in 1985 is

defined, a priori, as a braid invariant and then shown to depend

on the class of the closed braid (1987). Therefore, the closure

of a braid α ∈ Bn is the oriented link α̂ obtained by tying the top

end of each string to the same position on the bottom of the

braid.

(e) Consider n strings, each oriented vertically from a lower to

an upper “bar”. If this is the least number of strings needed

to make a closed braid representation of a link, n is called the

braid index. That is, the braid index is the fewest number of

strings required to represent the link by a braid. The braid

index is equal to the least number of Seirfet circles in any

projection of a knot, (Yamada 1987).
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Jones(1987) gave a table of braid word and polynomials for knots

up to 10 crossings. Jones polynomials for knots are given in

Adams (1994) and for oriented links up to nine crosings by Doll

and Hoste(1991).
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2. The Global Index
von Neumann algebra is a branch of algebra directly related to

quantum theory and to statistical mechanics. In the work of

Murray and von Neumann, the dimensions of certain geometric

hilbert spaces are measured by a von Neumann algebra. This

notion is used in this work. A W*-algebra is a weakly closed

self-adjoint unital algebra of operators on a hilbert space, H. A

von Neumann algebra is a factor if its centre consists only of the

scalar multiples of the identity.
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The factor is type 111 if it admits a linear functional, called a

trace, tr : M → C, which satisfies the following conditions:

i tr(xy) = tr(yx)∀x, y ∈ M

ii tr(1) = 1

iii tr(xx∗) > 0, where x∗ is the adjoint of x.

The type 111 has a trace and each projection e can be written

as the sum of two projections e1, e2.
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If N is a subfactor of M , the number dimN(H)
dimM(H) is called the

(global) index of N in M and written [M:N]. The index is

defined in general as dimN(L2(M, tr)) where N is the subfactor

of M and tr is the trace of M. Let N ⊆ M be a 111 factor and

let p ∈ N ′⋂M be a projection. The index of N at p is

[Mp : Np] = [M : N ]p.

Before giving the propositions, we recall the rules of calculation

associated with dimM ′ [see Dixmier (1969), Jones (1983)]
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Rules

i dimM(H) ≥ 0

ii dimM(H) = (dimM ′(H))−1

iii If e is a projection in M ′, dimMe(eH) = trM ′(e)dimM(H)

iv If e is a projection in M , dimMe(eH) = (trM(e))−1dimM(H))

v If M ⊗ 1 is the amplification of M on H ⊗H,

dimM(H ⊗H) = dimC(H)dimM(H)
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vi dimM(H) = 1 iff M is standard on H i.e. there is a cyclic

trace vector for M, dimM = ∞ if Ḿ is infinite.

Proposition 2.1: Let N1 and N2 be subfactors of the finite

factors M1 and M2 respectively. Then N1 ⊗N2 is a subfactor of

M1 ⊗M2 and [M1 ⊗M2 : N1 ⊗N2] = [M1 : N1][M2 : N2].
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Proof: M1 ⊗M2 is standard on H1 ⊗H2

and by commutation theorem for tensor products

(N1 ⊗N2)
′ = N1

′ ⊗N2
′.

Supposing e1, e2 are projections,

tr(e1 ⊗ e2)(N1⊗N2) ′ = trN1
′(e1)trN2

′(e2).

Therefore, [M1 ⊗M2 : N1 ⊗N2]

= dimN1⊗N2
(L2(M1 ⊗M2)tr(N1⊗N2) ′(e1 ⊗ e2)

= [dimN1
(L2(M1, trN1

′(e1)))][dimN2
(L2(M2, trN2

′(e2)))]

= [M1 : N1][M2 : N2].
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Proposition 2.2 : The index at p and the global index are re-

lated by the formula

[M1⊗M2 : N1⊗N2]p = [M1 : N1][M2 : N2]trM1(p)
trN ′

1
(p)trM2(p)

trN ′
2
(p).

Proof: By (iv), dimMp(pH) = trM1
(p)−1.

By definition,

dimN1
(H) = [M1 : N1].

By (iii), dimN1p(pH) = trN ′
1
(p)dimN1

(H) = [M1 : N1]trN ′
1
(p).
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Similar result follows for [M2 : N2].

Thus by proposition 2.1

[M1 ⊗M2 : N1 ⊗N2]p = [M1 : N1]p[M2 : N2]p

=
dimN1p(pH)dimN2p(pH)

dimM1p(pH)dimM2p(pH)
,

hence the desired result.
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3. The Braid Index

The question immediately arose by Jones, what posible values

can the index take? The answer is
(
4cos2π

k |k = 3,4, . . .
)
. He

represents M on L2 (M, tr) and considers the extension eN to

L2 (M, tr). He defines 〈M, eN〉 to be 111 factor generated by M

and eN on L2 (M, tr). The index of M in 〈M, eN〉 is the same

as that of N in M . Thus he iterated this extension process and

obtained a sequence of 111 factors, each one obtained from the

previous one by adding a projection. The inductive limit gives a

111 factor and the projections in the construction are numbered

e1, e2, . . .
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Lemma 3.1 [Jones, 1983] : Let M be a von Neumann

algebra with faithful normal normalised trace, tr. Let

[ei|, i = 1,2, . . . , ] be a projection in M satisfying

a. eiei±1ei = τei for some τ ≤ 1

b. eiej = ejei for |i− j| ≥ 2

c. tr(wei) = τtr(w) if w is a word on 1, e1, e2, . . . , ei−1
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Then if P denotes the von Neumann algebra generated by the

e′is

i P ∼= R (the hyperfinite II1 factor)

ii Pτ = {e2, e3, . . . , }′′ is a subfactor of P with [P : Pτ ] = τ−1

iii τ ≤ 1
4 or τ =

1

4

sec2π

k
, k = 3,4, . . . .
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Remarks:

The index for a subfactor [M : N ] = τ−1, that is [M : N ]−1 =

τ =
1

4
sec2

π

k
, where τ is tr(eN), the trace turn into the new knot

polynomials.

Jones, while investigating the index of a subfactor of a type

II1 factor, he analysed certain finite dimensional von Neumann

algebra An generated by an identity 1 and n projections which

he call e1, e2, . . . en.
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satisfying

i e2i = ei, e∗i = ei

ii eiei+1ei = t
(1+t)2

ei

iii eiej = ejei if |i− j| ≥ 2

iv tr(ab) = tr(ba), tr(1) = 1

v tr(wen+1) = t
(1+t)2

tr(w) if w is in An,

vi tr(a∗a) > 0 if a 6= 0.
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Here, t
(1+t)2

= τ. Putting τ = 1, t = 1 + 2t + t2 and dividing

through by t we have, 1 = t−1 + 2 + t that is 2 + t + t−1 = 1.

We claim that 2 + e
2πi
3 + e

−2πi
3 = 1, t is a complex number and

is equal to e
2πi
3 . An arbitrarily large family of such projections

can only exist if t is either real and positive or t = e
±2πi

k for some

k = 3,4,5, ... .

This t now replaces the index τ .
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The similarity between relations (ii) and (iii) and Artin’s repre-

sentation of the n-string braid group,{
s1, s2, . . . , sn : sisi+1si = si+1sisi+1, sisj = sjsi; |i− j| ≥ 2

}
was first pointed out by Hatt and de la Harpe. It transpires that

if one defines g =
√

t[tei − (1− ei)], the gi satisfies the relations,

and one obtains representations rt of Bn by sending si to gi .

If L is a tame oriented classical link, the trace invariant VL is

defined by

VL(t) =

(
−

(t + 1)√
t

)n−1

tr(rt(α)) ,

for any (α, n) such that α̂ = L.
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Theorem 3.1: For t = e
2πi
k , k = 3, 4, 5, . . .

vα̂(t) = (−2cosπ
k)

n−1, if and only if α ∈ kerrt (for α ∈ Bn ).

Furthermore, for t = eiθ, vα̂(θ) = (−2cosθ
2)

n−1

Proof: α̂ = L.

By definition, Vα̂(t) =
(
−(t+1)√

t

)n−1
tr(rt(α)) and since α ∈ kerrt

it implies that Vα̂(t) =
(
−(t+1)√

t

)n−1
.

We note that τ = t
(1+t)2

or τ−1 = (1+t)2

t , ⇒
√

τ−1 = (1+t)√
t

.

Also by lemma 3.1 (iii), we have τ = 1
4sec2π

k , k = 3, 4, . . . and

τ−1 = 4cos2π
k , k = 3, 4, . . . ⇒

√
τ−1 = 2cosπ

k = (1+t)√
t

.
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Hence,

VL(t) =
(
−2cos

π

k

)n−1
. (1)

Suppose t = eiθ, it implies that θ = 2π
k ⇒ π

k = θ
2. Substituting θ

in (1) we have

VL(θ) =
(
−2cos

θ

2

)n−1
. (2)
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4. Conclusions

We give a formula to calculate the least number of strings needed

to form a braid via von Neumann algebra. Also the index at p

and the global index are related by a formula.
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