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Preliminaries

Braid group and lattice structure

• Artin presentation of the braid groups;

Bn =

〈

σ1, · · · , σn−1

∣

∣

∣

∣

σjσi = σiσj if |i − j| > 1

σiσjσi = σjσiσj if |i − j| = 1

〉

• B+
n denotes the monoid given by this presentation.

• Partial order on B+
n : x ≺ y if there is z ∈ B+

n such that xz = y

• Meet on B+
n : x ∧ y is the maximal braid z ∈ B+

n such that z ≺ x

and z ≺ y

• Join on B+
n : x ∨ y is the minimal braid z ∈ B+

n such that x ≺ z

and y ≺ z

• There are also the corresponding right versions ≺R,∧R,∨R.
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Preliminaries

Half twist and permutation braids

• Half-twist braid: ∆ = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1

Half-twist braid in B4

• σi ≺ ∆ for each i = 1, · · · , n − 1

• For any braid x ∈ Bn, x∆ = ∆τ(x)

• τ denotes the automorphism of Bn sending σi to σn−i.

• Sn = {x ∈ B+
n | x ≺ ∆} and an element in Sn is called a

permutation braid.
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Preliminaries

Weighted decomposition

• The right complement of a permutation braid a is a permutation

braid a∗ such that aa∗ = ∆

• A product ab of a permutation braid a and a positive braid b is

(left) weighted, written a⌈b, if a∗ ∧ b = e

• Garside-Thurston’s (left) weighted form of a braid x is

x = ∆ux1x2 · · ·xk

where xi are permutation braids and xi⌈xi+1

• This decomposition is unique and so solve the word problem in

O(k2n log n).

• inf(x) = u, sup(x) = u + k and ℓ(x) = k are called the infimum,

the supremum and the canonical length of x, respectively.
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Preliminaries

Cycling and decycling

Given x = ∆ux1x2 · · ·xk in its weighted form, there are two useful

conjugations of x called the cycling c(x) and the decycling d(x)

defined as follows:

c(x) = ∆ux2 · · ·xkτu(x1),

d(x) = ∆uτu(xk)x1 · · ·xk−1 = (c(x−1))−1.

• infc(x) and supc(x) denote the maximum of infimums and the

minimum of supremums of all braids in the conjugacy class C(x)

of x, respectively.

• [Elrifi-Morton, 1994] If inf(x) < infc(x), then an iterated cycling

on x increases the infimum, that is, inf(x) < inf(cN (x)) for some

positive integer N .
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Preliminaries

Invariant subsets of a conjugacy class

• [Garside, 1969] Summit set SS(x) = {y ∈ C(x) | inf(y) = infc(x)}

• [Elrifai-Morton, 1994] Super summit set SSS(x)

= {y ∈ C(x) | inf(y) = infc(x) and sup(y) = supc(x)}

• [S.Lee, 2000] Reduced super summit set RSSS(x)

= {y ∈ C(x) | cM (y) = y = dN (y) for positive integers M, N}

• [Gebhardt, 2005] Ultra summit set USS(x)

= {y ∈ SSS(x) | cM (y) = y for some positive integer M}

• RSSS(x) ⊂ USS(x) ⊂ SSS(x) ⊂ SS(x)

• All of them are finite sets that are invariant under conjugacy and

so provide theoretical solutions for the conjugacy problem.
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Preliminaries

Nielson-Thurston classification

As a homeomorphism of a 2-dimensional disk that preserves n

punctures and fixes the boundary of the disk, an n-braid x is isotopic

to one of the following three dynamic types:

• periodic if xp = ∆2q for some nonnegative integers p, q;

• reducible if x preserves a set of disjointly embedded circles;

• pseudo-Anosov if neither (i) nor (ii).

A pseudo-Anosov fixes a pair of measured foliations.

The dynamic type of a braid remains the same under taking a

conjugation or a power.
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Preliminaries

Special reduction system for detection

• A set of disjointly embedded essential (i.e. separating punctures)

circles preserved by a reducible braid is called a reduction system.

• An essential circle is standard if it intersects the axis containing

all punctures exactly twice. A reduction system is standard if

each circle in the system is standard.

• Standard reduction systems are especially nice in the sense that

they can be recognized in polynomial time.

• Up to conjugacy, every reducible braid has a standard reduction

system.
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Preliminaries

Relevant problems

Concerning Nielson-Thurston classification, we may consider two

problems:

• Reducibility Problem

Given a braid, determine its dynamic type.

• Reduction Problem

Given a reducible braid, find a reduction system.
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History

History - Reducibility and Reduction Problem

• [Humphries, 1991] Showed how to recognize split braids.

• [Bestvina-Handel, 1995] Using the “train track” algorithm, they

solved both problems for any surface automorphism. But this is

a typical exponential algorithm in both word length and braid

index (or genus) and an implementation is rather nontrivial.

• [Bernardete-Nitecki-Gutiérrez, 1995] A standard reduction

system is preserved by cycling and decycling, so for any reducible

braid x, some braid in SSS(x) must have a standard reduction

system.

• [E.Lee-S.Lee, 2005] If the outermost component of a reducible

braid x is simpler up to conjugacy then every braid in RSSS(x)

has a standard reduction system.
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History

Special weighted form for detection

• A weighted form x = ∆ux1 · · ·xk is (left) rigid if xk⌈τ
u(x1).

• If x is rigid, then c2ℓ(x)(x) = x = d2ℓ(x)(x) and so x ∈ RSSS(x)

• If SSS(x) contains at least one rigid braid, then

USS(x) = RSSS(x) is the set of all rigid braid conjugate to x.

• For 1 ≤ i ≤ k, a weighted form x = ∆ux1 · · ·xk is (left) i-rigid if

the first i factors are identical in the weighted forms of x1 · · ·xk

and x1 · · ·xkτu(x1).

• A braid x is rigid iff it is ℓ(x)-rigid.

• We can also consider the corresponding right versions.

• A braid x is tame if inf(xi) = i inf(x) and sup(xi) = i sup(x) for

all i ≥ 1.
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Algorithm

Reducibility Algorithm - Input and Output

• Input:

An n-braid x given as a word in the Artin generators

• Output:

The dynamical type of x, that is, whether x is periodic,

pseudo-Anosov, or reducible.

Moreover, an orbit of reduction circle when x is reducible and

rigid.

Notation: D = n(n−1)
2 = |∆|
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Algorithm

Reducibility Algorithm - Tame Power and SSS

Step I. We choose a positive integer 1 ≤ M ≤ D2 and y ∈ SSS(xM)

such that xM is tame via the following loop:

For 1 ≤ j ≤ D2, we test whether

• inf(dDℓ(x)jDcDℓ(x)jD(xjD)) = D inf(dDℓ(x)jcDℓ(x)j(xj))

• sup(dDℓ(x)jDcDℓ(x)jD(xjD)) = D sup(dDℓ(x)jcDℓ(x)j(xj))

by computing necessary weighted forms, and then return M = j

when the test passes, and set y = dDℓ(x)McDℓ(x)M (xM ).

[E.Lee-S.Lee, 2001] For any n-braid β,

there is 1 ≤ M ≤ D2 such that βM is tame.

[Birman-K-S.Lee, 2001] For any n-braid β,

dDℓ(β)cDℓ(β)(β) ∈ SSS(β).
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Algorithm

Reducibility Algorithm - Periodic and 2-Rigid

Step II. If y = dDℓ(x)McDℓ(x)M (xM ) = ∆2q for some q, then

conclude that x is periodic and halt. Otherwise, set

z = y2D.

Then z is left and right 2-rigid.

Lemma[K-J.LEE] If β is tame and β ∈ SSS(β), then βiD is left and

right i-rigid.
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Algorithm

Reducibility Algorithm - Rigid

Step III. Test whether there exists an integer 0 ≤ N ≤ n!ℓ(z) such

that cN (z) is rigid. If such an N does not exist, then conclude

that x is reducible and halt. Or if cN (z) is rigid, set w = cN (z).

Theorem[K-J.Lee, Birman-González-Gebhardt, 2006]

If a n-braid β is pseudo-Anosov and tame, then every braid in

RSSS(β) is rigid.

Fact: The centralizer of a pseudo-Anosov braid is a free abelian

group generated by a pseudo-Anosov braid and a periodic braid.

Theorem[K-J.LEE] If β is left and right 2-rigid, β ∈ SSS(β), and

is conjugate to a rigid braid, then cN (β) is rigid for some 0 ≤ N ≤

ℓ(β)n!.
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Algorithm

Reducibility Algorithm - Standard Circle

Step IV. Test whether there exists a permutation braid t ∈ Sn such

that t−1wt is rigid and t−1wt has at least one orbit of standard

reduction circles. If such a t exists, conclude that x is reducible.

Otherwise, conclude that x is pseudo-Anosov.

Theorem[K-J.LEE] Let β be a reducible, rigid n-braid. Then there

exists a permutation n-braid t such that t−1βt is rigid and has at

least one orbit of standard reduction circles.

[E.Lee-S.Lee, 2006] It takes O(ℓ(β)n3) to check whether a braid β

has a standard reduction circle.
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Algorithm

Reducibility Algorithm - Complexity

• The complexity in canonical length is dominated by Step I and it

is O(ℓ(x)3).

• The complexity in braid index is dominated by Step III and IV

and it is O(n!).

• The over-all complexity is O(ℓ(x)3n!).
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Proof

Sketchy Proof of Cycling-Bound Theorem

Theorem. If x is left and right 2-rigid, x ∈ SSS(x), and is conjugate

to a rigid braid, then cN (x) is rigid for some 0 ≤ N ≤ ℓ(x)n!.

• Since USS(x) = RSSS(x) contains a rigid braid, iterated

cyclings on x must produce a rigid braid. Let y = cN (x) be the

rigid braid obtained from x by the minimal number of iterated

cyclings.
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Proof

Proof of Cycling-Bound Theorem (cont.)

Theorem. If x is left and right 2-rigid, x ∈ SSS(x), and is conjugate

to a rigid braid, then cN (x) is rigid for some 0 ≤ N ≤ ℓ(x)n!.

• Assume inf y = 0 for simplicity. Let y = y1y2 · · · yk be the

weighted form.

• By induction on i, one can prove that for all 1 ≤ i ≤ N

cN−i(x) = aiy[1−i]zi

for a permutation braid ai with y[2−k−i] · · · y[−1−i]y[−i] ≻R ai and

a positive braid zi = y[2−k−i] · · · y[−1−i]y[−i]a
−1
i where [m]

denotes the integer between 1 and k that equals m mod k.

• cN−i(x) is completely determined by a nontrivial permutation

braid ai. For each 1 ≤ i ≤ ℓ(x), there are at most n! distinct ai’s.

Thus N ≤ ℓ(x)n!.
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Proof

An Alternative to Standard-Circle Theorem

Theorem. Let x be a reducible, rigid n-braid. Then there exists a

permutation n-braid t such that t−1xt is rigid and has at least one

orbit of standard reduction circles.

In RSSS(x) of a reducible, rigid braid x, every braid has a braid

with standard reduction circle near by (i.e. conjugation by a

permutation braid). From the view point of a reducible, rigid braid

with standard circle, an equivalent statement is:

Theorem′. Suppose that a reducible n-braid x is rigid and has an

orbit of standard circles starting with a standard circle C. If β is a

positive n-braid such that β−1xβ is rigid and α(C) is not standard

for any e � α ≺ β such that α−1xα is rigid, then ℓ(β) ≤ 1.
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Proof

Decomposition of reducible braids

If a reducible n-braid x has an orbit of standard reduction circles,

then xj has a standard reduction circle for some 1 ≤ j ≤ n.

Assume x preserves a standard circle. Then C uniquely determines a

decomposition x = ẋx̂ = x̂ẋ.
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Proof

Ingredients for Standard-Circle Theorem′

For a standard circle C, a permutation n-

braid β is called a destroyer of C if α(C)

is not standard for all e � α ≺ β.

Destroyer Lemma. Suppose that a reducible n-braid x is rigid and

has a standard circle C. If β is a permutation n-braid such that

β−1xβ is rigid and α(C) is not standard for any e � α ≺ β such

that α−1xα is rigid, then β is a destroyer of C.

Subword Lemma. Suppose that an n-braid x is rigid and ℓ(x) ≥ 2.

If γ is a positive n-braid such that γ−1xγ is rigid and ℓ(γ) ≥ 2

then there is a positive braid β such that β−1xβ is also rigid,

ℓ(β) ≥ 2, and moreover β is a left subword of either γ ∧ xi or

γ ∧ x−i for some i ≥ 1, where assuming inf(x) = 0 for simplicity.
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Proof

Sketchy proof of Standard-Circle Theorem′

• We assume that inf(x) = 0 and x(C) = C for simplicity.

• Suppose ℓ(γ) ≥ 2. By Subword Lemma, we may assume that

γ ≺ xi for some i ≥ 1. The case γ ≺ (x−1)i is similar since

xi(C) = C = (x−1)i(C).

• Let γ1γ2 be the first two factors in the weighted form of γ. By

Destroyer Lemma, γ1 must be a destroyer of C.

• Since γ1γ2 is left weighted, γ2 must start with one of two types of

crossings given in Figure Type I and Type II.

TypeI TypeII
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Proof

Proof of Standard-Circle Theorem′ (cont.)

• Two components of the link obtained from γ1γ2 of type I via the

plat closing for two inner strands and Markov closing for an

outer stand has the linking number 1.

• Two components of the link obtained from γ1γ2 of type II via

plat closings for two pairs of inner and outer strands has the

linking number 2.

• This is a contradiction since a positive braid xi preserve the

circle C and the two component links must split.

Type I Type II
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Remark

Two Smmarizing Theorems

The results that were needed for our reducibility algorithm can be

summarized as two theorems:

Theorem. Every pseudo-Anosov braid is “virtually” rigid, that is, it

is rigid up to taking powers, iterated cycling and decycling.

Furthermore powers and numbers of iterations have upper

bounds prescribed by canonical length and braid index.

Theorem. Every reducible, rigid braid is at most one conjugation

by a permutation braid away from another reducible, rigid braid

with an orbit of standard circles.
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Remark

Comment on Reduction Problem

• Rigidity is inherited to ẋ or x̂.

• By inductively applying Step 4 of our algorithm to ẋ or x̂, one

can find a whole reduction system for a reducible braid that is

virtually rigid.
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