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1 Hypergeometric functions

The hypergeometric series

F (a, b; c; z) =
∞∑

n=0

(a, n)(b, n)
(c, n)

zn

n!
, |z| < 1

where (a, n) =
∏n−1

i=0 (a + i) was introduced by

Euler in 1778 as a solution of the differential

equation

z(z − 1)u′′ + {c − (a + b + 1)z}u′ − abu = 0



There is an integral representation

Γ(b)Γ(c − b)
Γ(c)

F (a, b; c; z)

=
∫ 1

0

ub−1(1 − u)c−b−1(1 − uz)−a du.

By change of variable u = t−1 we have

u(z) =
∫ ∞

1

ta−c(t − 1)c−b−1(t − z)−a dt



Basis of solutions of the hypergeometric

differential equation is given by the integrals:

u1(z) =
∫ z

0

ta−c(1 − t)c−b−1(t − z)−a dt

u2(z) =
∫ ∞

1

ta−c(t − 1)c−b−1(t − z)−a dt

0       z    1          



A B
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• Describe the monodromy representations of

(u1(z), u2(z)) w.r.t.analytic continuation for the

above braids.

• This gives linear representations of the pure

braid group P3 modulo the full twist ∆2.



By putting t = uz, we have

u1(z) = z1−c

∫ 1

0

ua−c(1−u)−a(1−uz)c−b−1 du.

This implies that the monodromy matrix A

w.r.t. the basis u1(x), u2(x) is expressed as

A =
(

e2πi(1−c) 0
0 1

)
The matrix B is more complicated.



Braid action on the integrals

uj(z) =
∫

Cj

(t − z1)−µ1 · · · (t − zn)−µn dt

is described as follows.
z        z         z        zi           i+1        i+1       i

ui 7→ ũi+1, ui+1 7→ (1 − ξi)ũi+1 + ξiũi,

(ξi = e−2πiµi) Gassner representation



The monodromy of hypergeometric differential

equation is Gassner representation

P3 → GL(Z[t±1
1 , t±1

2 , t±1
3 ])

at special values. Suppose

(1− c)−1 = p, (c− a− b)−1 = q, (b− a)−1 = r

are positive integers or ∞. The monodromy

matrices have relations (with C monodromy

around ∞): Ap = Bq = Cr = ABC = I.



2 Uniformization of orbifolds

p        q       r

Gauss-Schwarz theory. Hypergeometric

differential equation uniformaizes the orbifold

S(p, q, r). The universal branched covering is

isomorphic to :



Sphere, Euclidean plane, Hyperbolic plane

according as

1
p

+
1
q
+

1
r

> 1,
1
p

+
1
q
+

1
r

= 1,
1
p

+
1
q
+

1
r

< 1

• The monodromy group (image of Gassner

representation) is identified with orientation

preserving Schwarz triangle group Γ+(p, q, r).



• This describes the kernel of Gassner

representations at these special values.

The kernel is the normal subgroup generated by

γp
12, γq

23, (γ12γ23)r, ∆2



3 Deligne-Mostow and P4

Generalization of hypergeometric functions due to

Picard, Appell, ...

F (z) =

Z

C

t−µ0(t − 1)−µ1
Y

2≤i≤d+1

(t − zi)
−µidt

• We assign the exponent at ∞ by

µ0 + · · · + µd+1 + µ∞ = 2.

• We suppose µi > 0 for 0 ≤ i ≤ d + 1 and i = ∞.

• The monodromy defines linear representation of

Pn modulo ∆2.



INT condition (1 − µi − µj)−1 ∈ Z for all

i 6= j such that µi + µj < 1

Theorem [Deligne-Mostow]. Under the above

INT condition, the monodromy of

hypergeometric functions is a lattice in

PU(1, d).

These are Burau-Gassner representations at

special values.



In the case of d = 2 this construction gives the

universal branched covering of an orbifold with 6
lines in CP 2 as 2-dimensional complex ball,

where branch index is given by

nij = (1 − µi − µj)−1



• Blow-up at triple points.

• The kernel of Gassner representation at these

special values is the normal subgroup of P4

generated by ∆2 and

γ
nij

ij (γijγjkγki)d, (d = lcm(nij , njk, nki))

• The image is identified with a subgroup of the

automorphism of 2-dimensional complex ball.

Aut(D2)
• In the work of Delign-Mostow there is a list of

27 such differential equations.



4 KZ equation

g : semi-simple Lie algebra.

{Iµ} : orthonormal basis of g w.r.t. Killing form.

Ω =
∑

µ Iµ ⊗ Iµ

ri : g → End(Vi), 1 ≤ i ≤ n representations.



4 KZ equation

g : semi-simple Lie algebra.

{Iµ} : orthonormal basis of g w.r.t. Killing form.

Ω =
∑

µ Iµ ⊗ Iµ

ri : g → End(Vi), 1 ≤ i ≤ n representations.

Ωij : the action of Ω on the i-th and j-th

components of V1 ⊗ · · · ⊗ Vn.

ω =
1
κ

∑
i,j

Ωijd log(zi − zj), κ ∈ C \ {0}



ω defines a flat connection for a trivial vector

bundle over the configuration space

Xn = {(z1, · · · , zn) ∈ Cn ; zi 6= zj , i 6= j}

with fiber V1 ⊗ · · · ⊗ Vn since we have

ω ∧ ω = 0

As the holonomy we have representations

θκ : Pn → GL(V1 ⊗ · · · ⊗ Vn).



In particular, if V1 = · · · = Vn = V , we have

representations of braid groups

θκ : Bn → GL(V n⊗).

[Drinfeld-K Theorem].

These representations are described by means of

quantum R matrices. (description by quantum

groups)

We shall express the solutions of KZ equation

dϕ = ωϕ by hyergeometric integrals.



5 Solutions of KZ equation

Consider the case g = sl2(C) with basis

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
Vλ : highest weight representation of sl2(C)
with highest weight vector v :

Hv = λv, Ev = 0

Vλ1 ⊗ · · ·Vλn : tensor product of highest weight

representations of sl2(C)



Set λ = λ1 + · · · + λn.

For a non-negative integer ` put

W [λ−2`] = {x ∈ Vλ1⊗· · ·Vλn ; Hx = (λ−2`)x},

N [λ − 2`] = {x ∈ W [λ − 2`] ; Ex = 0}.

The KZ connection ω commutes with the

diagonal action of g on Vλ1 ⊗ · · ·Vλn , hence it

leaves invariant the space of null vectors

N [λ − 2`].



π : Xn+m → Xn : projection defined by

(z1, · · · , zn, t1, · · · , tm) 7→ (z1, · · · , zn).
Xn,m : fiber of π.

Φ =
∏

1≤i<j≤n

(zi − zj)
λiλj

κ

∏
1≤i≤m,1≤`≤n

(ti − z`)−
λ`
κ

×
∏

1≤i<j≤m

(ti − tj)
2
κ

(multi-valued function on Xn+m).



Construct solutions of KZ equation with values

in N [λ − 2`].

Example. (the case ` = 1)

W [λ − 2] is spanned by

v1 ⊗ · · · ⊗ Fvj ⊗ · · · ⊗ vn, 1 ≤ j ≤ m

with highest weight vectors v1, · · · , vn for

Vλ1 , · · ·Vλn . N [λ − 2`] is a codimension one

linear subspace.



The solutions are

ϕ =
∑

Ijv1 ⊗ · · · ⊗ Fvj ⊗ · · · ⊗ vm

with

Ij =
∫

∆

ηj , ηj = Φ
dt

t − zj

Eϕ = 0 implies λ1I1 + · · · + λnIn = 0 which is

a relation among de Rham cohomology classes.

The action of Pn on N [λ − 2`] is identified with

Gassner representation.



6 Hypergeometric pairing

Put Yn,m = Xn,m/Sm.

L : local system on Yn,m associated with the

multi-valued function Φ.

The twisted de Rham complex (Ω∗(Yn,m),5) is

defined by
5ω = d log Φ ∧ ω.



6 Hypergeometric pairing

Put Yn,m = Xn,m/Sm.

L : local system on Yn,m associated with the

multi-valued function Φ.

The twisted de Rham complex (Ω∗(Yn,m),5) is

defined by
5ω = d log Φ ∧ ω.

Hypergeometric pairing:

Hm(Yn,m,L∗) × Hm(Ω∗(Yn,m),5) → C



defined by

(c, w) 7→
∫

c

Φw.

There is a map

ρ : N [λ − 2m] → Ωm(Yn,m)

with ρ(w) = Rw(t, z)dt1 ∧ · · · ∧ dtm a rational

form so that the following theorem holds.



Let wJ be a basis of N [λ − 2`].

Theorem [Schechtman-Varchenko...].∑
J

∫
∆

Φρ(wJ)

is a solution of the KZ equation, where ∆ is a

cycle in Hm(Yn,m,L∗).



Theorem. For generic λ, κ, there is an

isomophism

φ : Hm(Yn,m,L∗) ∼= N [λ − 2m]∗

where φ is defined by

〈φ(c), w〉 =
∫

c

Φρ(w).

This gives a basis of the solution of KZ equation

with values in N [λ − 2m].



Moreover, the following two representations of

pure braid groups are equivalent:

(1) Action of Pn on the twisted homology

Hm(Yn,m,L∗).

(2) Holonomy representation of the KZ equation

with valued in N [λ − 2m].

In the case λ1 = · · · = λn and m = 2 they are

LKB representations.



Remark. For generic λ, κ,

Hj(Yn,m,L∗) ∼= 0, j 6= m

and we have an isomorphism

Hm(Yn,m,L∗) ∼= H lf
m (Yn,m,L∗)

(homology with locally finite chains)

The above homology is spanned by bounded

chambers.



bounded chambers : basis of twisted homology

(the case n = 3,m = 2).



7 Space of conformal blocks
Put κ = K + 2 (K a positive integer). Suppose

0 ≤ λ1, · · · , λn+1 ≤ K.

bg = g ⊗ C((ξ)) ⊕ Cc : affine Lie algebra.

p1, · · · , pn+1 ∈ CP 1 with pn+1 = ∞
Assign highest weights λ1, · · · , λn+1 ∈ Z to

p1, · · · , pn+1.

Hj : irreducible representations of bg with highest

weight λj at level K.

Ref. [T. Kohno] Conformal Field Theory and Topology, Monograph, AMS 2002



The space of conformal blocks is defined as

H(p, λ) = Hλ1 ⊗ · · · ⊗ Hλn+1/(g ⊗Mp)

where Mp is the set of meromorphic functions on

CP 1 with poles at most at p1, · · · , pn+1.

H(p, λ) is identified with a quotient space of

N [λn+1] and there is a map

ρ : H(p, λ) → Hm(Ω∗(Yn,m),5).



so that the map

φ : Hm(Yn,m,L∗) → H(p, λ)∗

defined by

〈φ(c), w〉 =

Z

c

ρ(w)

is surjective ([Feigin-Schechtman-Varchenko]).



Consider the natural map

α : Hm(Yn,m,L∗) → Hlf
m (Yn,m,L∗)

and put Im(α) = Hlf
m (Yn,m,L∗)reg

(the set of regularizable cycles).

Theorem. φ induces an isomorphism

H lf
m (Yn,m,L∗)reg

∼= H(p, λ)∗

equivariant under the action of braids.



Final Remarks

• Equivalence of two flat bundles over the

configuration space – the space of conformal blocks

and regularizable cycles.

• Positive definite hermitian form invariant under

the action of braid groups by Hodge theory for

cohomology with local systems. Geometric structure

of the representations of braid groups.

• Possible generalization to mapping class groups of

surfaces.


