Representing braids by hypergeometric integrals

Toshitake Kohno

(The University of Tokyo)
(1) Classical hypergeometric functions, uniformization of orbifolds and Burau-Gassner representations of braids.
(1) Classical hypergeometric functions, uniformization of orbifolds and Burau-Gassner representations of braids.
(2) Comparison between monodromy of

KZ equation and hypergeometric integrals - relation to Lawrence-Krammer-Bigelow representations.
(1) Classical hypergeometric functions, uniformization of orbifolds and Burau-Gassner representations of braids.
(2) Comparison between monodromy of

KZ equation and hypergeometric integrals - relation to Lawrence-Krammer-Bigelow representations.
(3) Description of a basis of the space of conformal blocks by means of hypergeometric integrals with respect to regularizable cycles.

1 Hypergeometric functions

The hypergeometric series

$$
F(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{(c, n)} \frac{z^{n}}{n!}, \quad|z|<1
$$

where $(a, n)=\prod_{i=0}^{n-1}(a+i)$ was introduced by Euler in 1778 as a solution of the differential equation

$$
z(z-1) u^{\prime \prime}+\{c-(a+b+1) z\} u^{\prime}-a b u=0
$$

There is an integral representation

$$
\begin{aligned}
& \frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)} F(a, b ; c ; z) \\
= & \int_{0}^{1} u^{b-1}(1-u)^{c-b-1}(1-u z)^{-a} d u
\end{aligned}
$$

By change of variable $u=t^{-1}$ we have

$$
u(z)=\int_{1}^{\infty} t^{a-c}(t-1)^{c-b-1}(t-z)^{-a} d t
$$

Basis of solutions of the hypergeometric differential equation is given by the integrals:

$$
\begin{aligned}
& u_{1}(z)=\int_{0}^{z} t^{a-c}(1-t)^{c-b-1}(t-z)^{-a} d t \\
& u_{2}(z)=\int_{1}^{\infty} t^{a-c}(t-1)^{c-b-1}(t-z)^{-a} d t
\end{aligned}
$$

$$
0 \quad z \quad 7
$$

- Describe the monodromy representations of $\left(u_{1}(z), u_{2}(z)\right)$ w.r.t.analytic continuation for the above braids.
- This gives linear representations of the pure braid group P_{3} modulo the full twist Δ^{2}.

By putting $t=u z$, we have
$u_{1}(z)=z^{1-c} \int_{0}^{1} u^{a-c}(1-u)^{-a}(1-u z)^{c-b-1} d u$.
This implies that the monodromy matrix A
w.r.t. the basis $u_{1}(x), u_{2}(x)$ is expressed as

$$
A=\left(\begin{array}{cc}
e^{2 \pi i(1-c)} & 0 \\
0 & 1
\end{array}\right)
$$

The matrix B is more complicated.

Braid action on the integrals

$$
u_{j}(z)=\int_{C_{j}}\left(t-z_{1}\right)^{-\mu_{1}} \cdots\left(t-z_{n}\right)^{-\mu_{n}} d t
$$

is described as follows.

$$
u_{i} \mapsto \tilde{u}_{i+1}, \quad u_{i+1} \mapsto\left(1-\xi_{i}\right) \tilde{u}_{i+1}+\xi_{i} \tilde{u}_{i}
$$

$$
\left(\xi_{i}=e^{-2 \pi i \mu_{i}}\right) \text { Gassner representation }
$$

The monodromy of hypergeometric differential equation is Gassner representation

$$
P_{3} \rightarrow G L\left(\mathbf{Z}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, t_{3}^{ \pm 1}\right]\right)
$$

at special values. Suppose
$(1-c)^{-1}=p,(c-a-b)^{-1}=q,(b-a)^{-1}=r$
are positive integers or ∞. The monodromy matrices have relations (with C monodromy around ∞): $A^{p}=B^{q}=C^{r}=A B C=I$.

2 Uniformization of orbifolds

Gauss-Schwarz theory. Hypergeometric differential equation uniformaizes the orbifold $S(p, q, r)$. The universal branched covering is isomorphic to :

Sphere, Euclidean plane, Hyperbolic plane

 according as$\frac{1}{p}+\frac{1}{q}+\frac{1}{r}>1, \quad \frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1, \quad \frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$

- The monodromy group (image of Gassner representation) is identified with orientation preserving Schwarz triangle group $\Gamma^{+}(p, q, r)$.
- This describes the kernel of Gassner representations at these special values.
The kernel is the normal subgroup generated by

$$
\gamma_{12}^{p}, \quad \gamma_{23}^{q}, \quad\left(\gamma_{12} \gamma_{23}\right)^{r}, \quad \Delta^{2}
$$

3 Deligne-Mostow and P_{4}

Generalization of hypergeometric functions due to Picard, Appell, ...

$$
F(z)=\int_{C} t^{-\mu_{0}}(t-1)^{-\mu_{1}} \prod_{2 \leq i \leq d+1}\left(t-z_{i}\right)^{-\mu_{i}} d t
$$

- We assign the exponent at ∞ by $\mu_{0}+\cdots+\mu_{d+1}+\mu_{\infty}=2$.
- We suppose $\mu_{i}>0$ for $0 \leq i \leq d+1$ and $i=\infty$.
- The monodromy defines linear representation of P_{n} modulo Δ^{2}.

INT condition $\left(1-\mu_{i}-\mu_{j}\right)^{-1} \in \mathbf{Z}$ for all $i \neq j$ such that $\mu_{i}+\mu_{j}<1$

Theorem [Deligne-Mostow]. Under the above INT condition, the monodromy of hypergeometric functions is a lattice in $P U(1, d)$.

These are Burau-Gassner representations at special values.

In the case of $d=2$ this construction gives the universal branched covering of an orbifold with 6 lines in $\mathbf{C} P^{2}$ as 2-dimensional complex ball, where branch index is given by

$$
n_{i j}=\left(1-\mu_{i}-\mu_{j}\right)^{-1}
$$

- Blow-up at triple points.
- The kernel of Gassner representation at these special values is the normal subgroup of P_{4} generated by Δ^{2} and

$$
\gamma_{i j}^{n_{i j}} \quad\left(\gamma_{i j} \gamma_{j k} \gamma_{k i}\right)^{d},\left(d=\operatorname{Icm}\left(n_{i j}, n_{j k}, n_{k i}\right)\right)
$$

- The image is identified with a subgroup of the automorphism of 2-dimensional complex ball. $A u t\left(\mathbf{D}^{2}\right)$
- In the work of Delign-Mostow there is a list of 27 such differential equations.

4 KZ equation

\mathfrak{g} : semi-simple Lie algebra.
$\left\{I_{\mu}\right\}$: orthonormal basis of \mathfrak{g} w.r.t. Killing form.
$\Omega=\sum_{\mu} I_{\mu} \otimes I_{\mu}$
$r_{i}: \mathfrak{g} \rightarrow \operatorname{End}\left(V_{i}\right), 1 \leq i \leq n$ representations.

4 KZ equation

\mathfrak{g} : semi-simple Lie algebra.
$\left\{I_{\mu}\right\}$: orthonormal basis of \mathfrak{g} w.r.t. Killing form.
$\Omega=\sum_{\mu} I_{\mu} \otimes I_{\mu}$
$r_{i}: \mathfrak{g} \rightarrow \operatorname{End}\left(V_{i}\right), 1 \leq i \leq n$ representations.
$\Omega_{i j}$: the action of Ω on the i-th and j-th components of $V_{1} \otimes \cdots \otimes V_{n}$.

$$
\omega=\frac{1}{\kappa} \sum_{i, j} \Omega_{i j} d \log \left(z_{i}-z_{j}\right), \quad \kappa \in \mathbf{C} \backslash\{0\}
$$

ω defines a flat connection for a trivial vector bundle over the configuration space

$$
X_{n}=\left\{\left(z_{1}, \cdots, z_{n}\right) \in \mathbf{C}^{n} ; z_{i} \neq z_{j}, i \neq j\right\}
$$

with fiber $V_{1} \otimes \cdots \otimes V_{n}$ since we have

$$
\omega \wedge \omega=0
$$

As the holonomy we have representations

$$
\theta_{\kappa}: P_{n} \rightarrow G L\left(V_{1} \otimes \cdots \otimes V_{n}\right) .
$$

In particular, if $V_{1}=\cdots=V_{n}=V$, we have representations of braid groups

$$
\theta_{\kappa}: B_{n} \rightarrow G L\left(V^{n \otimes}\right)
$$

[Drinfeld-K Theorem].

These representations are described by means of quantum R matrices. (description by quantum groups)

We shall express the solutions of KZ equation $d \varphi=\omega \varphi$ by hyergeometric integrals.

5 Solutions of KZ equation

Consider the case $\mathfrak{g}=s l_{2}(\mathbf{C})$ with basis

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

V_{λ} : highest weight representation of $s l_{2}(\mathbf{C})$ with highest weight vector v :

$$
H v=\lambda v, E v=0
$$

$V_{\lambda_{1}} \otimes \cdots V_{\lambda_{n}}$: tensor product of highest weight representations of $s l_{2}(\mathbf{C})$

Set $\lambda=\lambda_{1}+\cdots+\lambda_{n}$.

For a non-negative integer ℓ put

$$
\begin{gathered}
W[\lambda-2 \ell]=\left\{x \in V_{\lambda_{1}} \otimes \cdots V_{\lambda_{n}} ; H x=(\lambda-2 \ell) x\right\}, \\
N[\lambda-2 \ell]=\{x \in W[\lambda-2 \ell] ; E x=0\} .
\end{gathered}
$$

The KZ connection ω commutes with the diagonal action of \mathfrak{g} on $V_{\lambda_{1}} \otimes \cdots V_{\lambda_{n}}$, hence it leaves invariant the space of null vectors $N[\lambda-2 \ell]$.
$\pi: X_{n+m} \rightarrow X_{n}:$ projection defined by
$\left(z_{1}, \cdots, z_{n}, t_{1}, \cdots, t_{m}\right) \mapsto\left(z_{1}, \cdots, z_{n}\right)$.
$X_{n, m}$: fiber of π.

$$
\begin{aligned}
\Phi= & \prod_{1 \leq i<j \leq n}\left(z_{i}-z_{j}\right)^{\frac{\lambda_{i} \lambda_{j}}{\kappa}} \prod_{1 \leq i \leq m, 1 \leq \ell \leq n}\left(t_{i}-z_{\ell}\right)^{-\frac{\lambda_{\ell}}{\kappa}} \\
& \times \prod_{1 \leq i<j \leq m}\left(t_{i}-t_{j}\right)^{\frac{2}{\kappa}}
\end{aligned}
$$

(multi-valued function on X_{n+m}).

Construct solutions of KZ equation with values in $N[\lambda-2 \ell]$.

Example. (the case $\ell=1$)
$W[\lambda-2]$ is spanned by

$$
v_{1} \otimes \cdots \otimes F v_{j} \otimes \cdots \otimes v_{n}, \quad 1 \leq j \leq m
$$

with highest weight vectors v_{1}, \cdots, v_{n} for $V_{\lambda_{1}}, \cdots V_{\lambda_{n}} . N[\lambda-2 \ell]$ is a codimension one linear subspace.

The solutions are

$$
\varphi=\sum I_{j} v_{1} \otimes \cdots \otimes F v_{j} \otimes \cdots \otimes v_{m}
$$

with

$$
I_{j}=\int_{\Delta} \eta_{j}, \quad \eta_{j}=\Phi \frac{d t}{t-z_{j}}
$$

$E \varphi=0$ implies $\lambda_{1} I_{1}+\cdots+\lambda_{n} I_{n}=0$ which is a relation among de Rham cohomology classes. The action of P_{n} on $N[\lambda-2 \ell]$ is identified with Gassner representation.

6 Hypergeometric pairing

Put $Y_{n, m}=X_{n, m} / S_{m}$.
\mathcal{L} : local system on $Y_{n, m}$ associated with the multi-valued function Φ.
The twisted de Rham complex $\left(\Omega^{*}\left(Y_{n, m}\right), \nabla\right)$ is defined by

$$
\nabla \omega=d \log \Phi \wedge \omega
$$

6 Hypergeometric pairing

Put $Y_{n, m}=X_{n, m} / S_{m}$.
\mathcal{L} : local system on $Y_{n, m}$ associated with the multi-valued function Φ.
The twisted de Rham complex $\left(\Omega^{*}\left(Y_{n, m}\right), \nabla\right)$ is defined by

$$
\nabla \omega=d \log \Phi \wedge \omega .
$$

Hypergeometric pairing:

$$
H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right) \times H^{m}\left(\Omega^{*}\left(Y_{n, m}\right), \nabla\right) \rightarrow \mathbf{C}
$$

defined by

$$
(c, w) \mapsto \int_{c} \Phi w
$$

There is a map

$$
\rho: N[\lambda-2 m] \rightarrow \Omega^{m}\left(Y_{n, m}\right)
$$

with $\rho(w)=R_{w}(t, z) d t_{1} \wedge \cdots \wedge d t_{m}$ a rational form so that the following theorem holds.

Let w_{J} be a basis of $N[\lambda-2 \ell]$.

Theorem [Schechtman-Varchenko...].

$$
\sum_{J} \int_{\Delta} \Phi \rho\left(w_{J}\right)
$$

is a solution of the KZ equation, where Δ is a cycle in $H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right)$.

Theorem. For generic λ, κ, there is an isomophism

$$
\phi: H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right) \cong N[\lambda-2 m]^{*}
$$

where ϕ is defined by

$$
\langle\phi(c), w\rangle=\int_{c} \Phi \rho(w)
$$

This gives a basis of the solution of KZ equation with values in $N[\lambda-2 m]$.

Moreover, the following two representations of pure braid groups are equivalent:
(1) Action of P_{n} on the twisted homology $H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right)$.
(2) Holonomy representation of the KZ equation with valued in $N[\lambda-2 m]$.

In the case $\lambda_{1}=\cdots=\lambda_{n}$ and $m=2$ they are LKB representations.

Remark. For generic λ, κ,

$$
H_{j}\left(Y_{n, m}, \mathcal{L}^{*}\right) \cong 0, \quad j \neq m
$$

and we have an isomorphism

$$
H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right) \cong H_{m}^{l f}\left(Y_{n, m}, \mathcal{L}^{*}\right)
$$

(homology with locally finite chains)

The above homology is spanned by bounded chambers.

bounded chambers : basis of twisted homology (the case $n=3, m=2$).

7 Space of conformal blocks

Put $\kappa=K+2$ (K a positive integer). Suppose
$0 \leq \lambda_{1}, \cdots, \lambda_{n+1} \leq K$.
$\widehat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbf{C}((\xi)) \oplus \mathbf{C} c$: affine Lie algebra.
$p_{1}, \cdots, p_{n+1} \in \mathbf{C} P^{1}$ with $p_{n+1}=\infty$
Assign highest weights $\lambda_{1}, \cdots, \lambda_{n+1} \in \mathbf{Z}$ to
p_{1}, \cdots, p_{n+1}.
\mathcal{H}_{j} : irreducible representations of $\widehat{\mathfrak{g}}$ with highest weight λ_{j} at level K.

Ref. [T. Kohno] Conformal Field Theory and Topology, Monograph, AMS 2002

The space of conformal blocks is defined as

$$
\mathcal{H}(p, \lambda)=\mathcal{H}_{\lambda_{1}} \otimes \cdots \otimes \mathcal{H}_{\lambda_{n+1}} /\left(\mathfrak{g} \otimes \mathcal{M}_{p}\right)
$$

where \mathcal{M}_{p} is the set of meromorphic functions on $\mathbf{C} P^{1}$ with poles at most at p_{1}, \cdots, p_{n+1}.
$\mathcal{H}(p, \lambda)$ is identified with a quotient space of $N\left[\lambda_{n+1}\right]$ and there is a map

$$
\rho: \mathcal{H}(p, \lambda) \rightarrow H^{m}\left(\Omega^{*}\left(Y_{n, m}\right), \nabla\right)
$$

so that the map

$$
\phi: H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right) \rightarrow \mathcal{H}(p, \lambda)^{*}
$$

defined by

$$
\langle\phi(c), w\rangle=\int_{c} \rho(w)
$$

is surjective ([Feigin-Schechtman-Varchenko]).

Consider the natural map

$$
\alpha: H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right) \rightarrow H_{m}^{l f}\left(Y_{n, m}, \mathcal{L}^{*}\right)
$$

and put $\operatorname{Im}(\alpha)=H_{m}^{l f}\left(Y_{n, m}, \mathcal{L}^{*}\right)_{\text {reg }}$
(the set of regularizable cycles).

Theorem. ϕ induces an isomorphism

$$
H_{m}^{l f}\left(Y_{n, m}, \mathcal{L}^{*}\right)_{r e g} \cong \mathcal{H}(p, \lambda)^{*}
$$

equivariant under the action of braids.

Final Remarks

- Equivalence of two flat bundles over the configuration space - the space of conformal blocks and regularizable cycles.
- Positive definite hermitian form invariant under the action of braid groups by Hodge theory for cohomology with local systems. Geometric structure of the representations of braid groups.
- Possible generalization to mapping class groups of surfaces.

