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I. History

• Hirsh-Thurston

• P. Trauber

– Bounded cohomology of an amenable group is
zero.

• M. Gromov

– Volume and bounded cohomology (1985)

– Bounded cohomology of topological spaces

– Ĥ∗(G)
def
= Ĥ∗(K(G, 1))

– Applied to Riemannian Geometry

– Simplicial Multicomplexes - Difficulty
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• R. Brooks

– Relative homological Algebra

∗ Strong relatively injective G-resolution
with trivial G-module R.

– Norm is not clear

– The second bounded cohomology
of Z ∗ Z is infinite.

• N. Ivanov

– Relative homological algebra
- Relatively Injective G- Resolution of the trivial
G-module R

– Canonical seminorm

– Theorem: For a topological space X equipped
with a universal covering, Ĥ∗(X) ∼= Ĥ∗(π1(X)).
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II. Definition

(1) Bounded cohomology of a (discrete) group G

• Cn(G) = {f : Gn → R}.

• H∗(G) = H∗(G,R):

Cohomology of {Cn(G)
dn−→ Cn+1(G)}, where

dn(f)(g1, · · · , gn+1) = f(g2, · · · , gn+1)

+
n∑

i=1

(−1)if(g1, · · · , gigi+1, · · · , gn+1)

+ (−1)n+1f(g1, · · · , gn).

• Bn(G)
= {f ∈ Cn(G) | ‖f‖ = supx∈Gn | f(x) |< ∞}.
This bounded cochain group is a Banach space.

• The bounded cohomology of G, Ĥ∗(G), is the
cohomology of {Bn(G), dn}.
Ĥn(G) has a seminorm in general.

Especially, Ĥ2(G) is a Banach space.
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(2) Bounded cohomology of a topological space X

• Cn(X) = {f : Sn(X) → R}, where Sn(X) is the
set of n-dimensional singular simplices in X.

• Bn(X)
= {f ∈ Cn(X) | ‖f‖ = supσ∈Sn(X) |f(σ)| < ∞}.

• The bounded cohomology of X, Ĥ∗(X), is the
cohomology of {B∗(X), ∂∗}.

(3) A group G is amenable

• Definition: The group G has the right invariant
mean on B(G), that is, there is a linear functional
m : B(G) → R such that
infx∈G f(x) ≤ m(f) ≤ supx∈G f(x) and
m(g · f) = m(f) for all g ∈ G.

• Examples
Finite groups, Abelian groups, Solvable groups,
the homomorphic image of an amenable group.
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III. Known Results

• Bounded cohomology of a simply connected space is
zero.

• Ĥ∗(X) ∼= Ĥ∗(π1(X))

• If X ' Y , then Ĥ∗(X) = Ĥ∗(Y )

• For an amenable normal subgroup N ⊂ G,
Ĥ∗(G/N) ∼= Ĥ∗(G).

• Bounded cohomology of an amenable group is zero.

• For a free group F with rank ≥ 2, Ĥ2(F ) is infinite.

• For a normal subgroup N of G, there is a five-term
exact sequence
0 → Ĥ2(G/N) → Ĥ2(G) → Ĥ2(N)G/N →
Ĥ3(G/N) → Ĥ3(G).
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IV. Bounded vs Ordinary cohomology

• The inclusion map B∗(G) → C∗(G) induces

the homomorphism Ĥ∗(G) → H∗(G) which is neither
injective nor surjective, in general.

• Eilenberg-Steenrod Axioms

– True for Ĥ∗(X)
Identity Axiom, Composition, Natural transfor-
mation,
Long exact sequence, homotopy axiom, Dimen-
sion Axiom

– Ĥ∗(X) does NOT hold Excision Axiom
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• Examples:

– π1(T ) = Z⊕ Z is amenable

∗ Ĥn(T ) = Ĥn(π1(T )) = 0 for n > 0

∗ H2(T ) = R, while H2(π1T )) = 0

– For a sphere S2,

∗ Ĥ2(S2) = 0

∗ H2(S2) = R

– For a Torus Tg with genus g > 1,

∗ Ĥ2(Tg) is infinite

∗ H2(Tg) = R

– For a free group F with rank ≥ 2

∗ Ĥ2(F ) is infinite

∗ H2(F ) = 0
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V. Why the second bounded cohomology?

• Ĥ0(G) = R

• Ĥ1(G) = 0

0 → R
d0=0−−→ B(G)

d1−→ B2(G)
d2−→ · · ·, and

Ĥ1(G) = ker d1 is the group of bounded homomor-
phisms.

• Fujiwara’s Conjecture:

– If Ĥ2(G) 6= 0, then Ĥ2(G) is infinite dimensional
as a vector space over R.

– Counterexamples
Ĥ2(SL(2,R)) = R

Ĥ2(Homeo+(S1)) = R

– Common property in counterexamples?
Linear groups ∼ perfect groups
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VI. Ĥ2(hypoabelian group)

A. Definitions

• The transfinite derived series of G is
an extension of its derived series to higher ordinals
defined by the rules
G(α) = [G(α−1), G(α)−1] and G(λ) =

⋂
β<λ G(β),

where α ≥ 1 is a nonlimit ordinal and
λ is a limit ordinal.

• A group G is said to be residually solvable
if for each g ∈ G with g 6= e
there is a normal subgroup N E G of G such that
g /∈ N and the quotient G/N is solvable.

A group G is residually solvable if and only if
G(ω) =

⋂
n<ω G(n) is trivial.

E. g. Free groups of rank ≥ 2 are residually solv-
able.

• A group G is said to be hypoabelian
if its maximal perfect subgroup is trivial.

A group G is hypoabelian if and only if
G(α) is trivial for some ordinal α.
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B. Theorems for Residually Solvable groups

• Let G be residually solvable.
Then Ĥ2(G) is either zero or infinite dimensional.

(1) Let G = F/K for a free group F .
If exact sequence for G(n) = F (n)/(F (n) ∩K)

1 → F (n) ∩K → F (n) → F (n)/(F (n) ∩K) → 1
is trivial for some finite ordinal n,
then Ĥ2(G) is zero or infinite dimensional.

Idea: This is the case that either G(n) = e or
F (n) ∩K = e so that G(n) = F (n) is free.

(2) Let G = F/K be residually solvable.
If the exact sequence induced from G(n) = F (n)K/K,

0 → K → F (n)K → F (n)K/K = G(n) → 0,

has the first trivial one at the limit ordinal ω,

0 → K → ∩(F (n)K) → ∩n<ω(F (n)K/K) → 0,

then the homomorphism ϕ∗ : Ĥ2(F ) → Ĥ2(K)G

induced from the inclusion homomorphism

K
ϕ−→ F is injective.

Furthermore, Ĥ2(G) = Ĥ2(F/K) is zero.
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C. Theorems for Hypoabelian groups

• Let G be hypoabelian.
Then Ĥ2(G) is either zero or infinite dimensional.

Idea: It is done by transfinite induction.

(1) Let N E G and N be residually solvable.

Suppose Ĥ2(G/N) = 0.

Then Ĥ2(G) is either zero or infinite dimensional.

(2) If G(α) = e for a nonlimit ordinal, G contains an
abelian normal subgroup G(α−1).

(3) If G(δ) = e for a limit ordinal,
δ = ωk for some finite k < ω or δ = ωω, etc.
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• If the dimension dimRV of a Banach space V
as a vector space over R is not less than countably
infinite,
then the dimension dimRV is at least that of the
continuum.

• Let G be hypoabelian and Ĥ2(G) 6= 0.

Then the dimension of Ĥ2(G), which is a Banach
space, as a vector space over R is the continuum.
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D. Examples

• The infinite dihedral group
D∞ =< x, y | x2 = 1, y2 = 1 >
is residually solvable. Also D∞ is isomorphic to the
semidirect product of cyclic group of order 2 as the
active group and infinite cyclic group as the passive
group. Its second bounded cohomology is zero.

• Let G be a surface group or a free product of cyclic
groups. Then its first commutator subgroup G′ =
[G, G] is free, and so G is residually solvable.
Its second bounded cohomology is infinite.
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E . Currently...

How about the groups which are not hypoabelian?
The second bounded cohomology of a perfect group.

(1) The dimension of the second bounded cohomology of
a perfect group could be anything.

• The second bounded cohomology of a finite per-
fect group is zero.

• Ĥ2(SL(2,R)) = R.

• Free product of perfect groups are perfect and its
second bounded cohomology is infinite.

(2) If P is a maximal perfect normal subgroup of G,

then Ĥ2(G) is infinite dimensional or Ĥ2(G) ∼= Ĥ2(P )G/P .

(3) The second bounded cohomology of a uniformly per-
fect group.


