The Dimension Of The Second Bounded Cohomology (as a vector space over R)

> HeeSook Park ASARC, KAIST KOREA

I. History

- Hirsh-Thurston
- P. Trauber
 - Bounded cohomology of an amenable group is zero.

• M. Gromov

- Volume and bounded cohomology (1985)
- Bounded cohomology of topological spaces
- $-\widehat{H}^*(G) \stackrel{\text{def}}{=} \widehat{H}^*(K(G,1))$
- Applied to Riemannian Geometry
- Simplicial Multicomplexes Difficulty

 $\mathbf{2}$

- R. Brooks
 - Relative homological Algebra
 - * Strong relatively injective G-resolution with trivial G-module \mathbf{R} .
 - Norm is not clear
 - The second bounded cohomology of $\mathbf{Z} * \mathbf{Z}$ is infinite.
- N. Ivanov
 - Relative homological algebra - Relatively Injective G- Resolution of the trivial $G\text{-}\mathrm{module}~\mathbf{R}$
 - Canonical seminorm
 - Theorem: For a topological space X equipped with a universal covering, $\widehat{H}^*(X) \cong \widehat{H}^*(\pi_1(X))$.

II. Definition

4

(1) Bounded cohomology of a (discrete) group G

- $C^n(G) = \{f \colon G^n \to \mathbf{R}\}.$
- $H^*(G) = H^*(G, \mathbf{R})$: Cohomology of $\{C^n(G) \xrightarrow{d_n} C^{n+1}(G)\}$, where $d_n(f)(g_1, \cdots, g_{n+1}) = f(g_2, \cdots, g_{n+1})$ $+ \sum_{i=1}^n (-1)^i f(g_1, \cdots, g_i g_{i+1}, \cdots, g_{n+1})$ $+ (-1)^{n+1} f(g_1, \cdots, g_n).$
- $B^n(G)$ = { $f \in C^n(G) \mid ||f|| = \sup_{x \in G^n} |f(x)| < \infty$ }. This bounded cochain group is a Banach space.
- The bounded cohomology of G, \$\hat{H}^*(G)\$, is the cohomology of \$\{B^n(G), d_n\}\$.
 \$\hat{H}^n(G)\$ has a seminorm in general.
 Especially, \$\hat{H}^2(G)\$ is a Banach space.

- (2) Bounded cohomology of a topological space X
 - $C^n(X) = \{f : S_n(X) \to \mathbf{R}\}$, where $S_n(X)$ is the set of *n*-dimensional singular simplices in X.
 - $B^n(X)$ = { $f \in C^n(X) \mid ||f|| = \sup_{\sigma \in S_n(X)} |f(\sigma)| < \infty$ }.
 - The bounded cohomology of X, $\widehat{H}^*(X)$, is the cohomology of $\{B^*(X), \partial_*\}$.
- (3) A group G is amenable
 - Definition: The group G has the right invariant mean on B(G), that is, there is a linear functional $m: B(G) \to \mathbf{R}$ such that $\inf_{x \in G} f(x) \leq m(f) \leq \sup_{x \in G} f(x)$ and $m(g \cdot f) = m(f)$ for all $g \in G$.
 - Examples

Finite groups, Abelian groups, Solvable groups, the homomorphic image of an amenable group.

III. Known Results

- Bounded cohomology of a simply connected space is zero.
- $\widehat{H}^*(X) \cong \widehat{H}^*(\pi_1(X))$
- If $X \simeq Y$, then $\widehat{H}^*(X) = \widehat{H}^*(Y)$
- For an amenable normal subgroup $N \subset G$, $\widehat{H}^*(G/N) \cong \widehat{H}^*(G)$.
- Bounded cohomology of an amenable group is zero.
- For a free group F with rank ≥ 2 , $\widehat{H}^2(F)$ is infinite.
- For a normal subgroup N of G, there is a five-term exact sequence $0 \to \widehat{H}^2(G/N) \to \widehat{H}^2(G) \to \widehat{H}^2(N)^{G/N} \to \widehat{H}^3(G/N) \to \widehat{H}^3(G).$

IV. Bounded vs Ordinary cohomology

- The inclusion map $B^*(G) \to C^*(G)$ induces the homomorphism $\widehat{H}^*(G) \to H^*(G)$ which is neither injective nor surjective, in general.
- Eilenberg-Steenrod Axioms
 - True for $\widehat{H}^*(X)$ Identity Axiom, Composition, Natural transformation, Long exact sequence, homotopy axiom, Dimension Axiom
 - $\widehat{H}^*(X)$ does NOT hold Excision Axiom

• Examples:

 $-\pi_1(T) = \mathbf{Z} \oplus \mathbf{Z} \text{ is amenable}$ $* \widehat{H}^n(T) = \widehat{H}^n(\pi_1(T)) = 0 \text{ for } n > 0$ $* H^2(T) = \mathbf{R}, \text{ while } H^2(\pi_1 T)) = 0$ $- \text{ For a sphere } S^2,$ $* \widehat{H}^2(S^2) = 0$ $* H^2(S^2) = \mathbf{R}$ $- \text{ For a Torus } T_g \text{ with genus } g > 1,$ $* \widehat{H}^2(T_g) \text{ is infinite}$ $* H^2(T_g) = \mathbf{R}$ $- \text{ For a free group } F \text{ with rank } \ge 2$ $* \widehat{H}^2(F) \text{ is infinite}$ $* H^2(F) = 0$

8

V. Why the second bounded cohomology?

- $\widehat{H}^0(G) = \mathbf{R}$
- $\widehat{H}^1(G) = 0$ $0 \to \mathbf{R} \xrightarrow{d_0=0} B(G) \xrightarrow{d_1} B^2(G) \xrightarrow{d_2} \cdots$, and $\widehat{H}^1(G) = \ker d_1$ is the group of bounded homomorphisms.
- Fujiwara's Conjecture:
 - If $\widehat{H}^2(G) \neq 0$, then $\widehat{H}^2(G)$ is infinite dimensional as a vector space over **R**.
 - Counterexamples $\widehat{H}^2(SL(2, \mathbf{R})) = \mathbf{R}$ $\widehat{H}^2(\text{Homeo}_+(S^1)) = \mathbf{R}$
 - Common property in counterexamples? Linear groups \sim perfect groups

VI. \widehat{H}^2 (hypoabelian group)

A. Definitions

- The transfinite derived series of G is an extension of its derived series to higher ordinals defined by the rules $G^{(\alpha)} = [G^{(\alpha-1)}, G^{(\alpha)-1}]$ and $G^{(\lambda)} = \bigcap_{\beta < \lambda} G^{(\beta)}$, where $\alpha \ge 1$ is a nonlimit ordinal and λ is a limit ordinal.
- A group G is said to be residually solvable if for each $g \in G$ with $g \neq e$ there is a normal subgroup $N \trianglelefteq G$ of G such that $g \notin N$ and the quotient G/N is solvable.

A group G is residually solvable if and only if $G^{(\omega)} = \bigcap_{n < \omega} G^{(n)}$ is trivial.

E. g. Free groups of rank ≥ 2 are residually solvable.

• A group G is said to be hypoabelian if its maximal perfect subgroup is trivial.

A group G is hypoabelian if and only if $G^{(\alpha)}$ is trivial for some ordinal α .

B. Theorems for Residually Solvable groups

- Let G be residually solvable. Then $\widehat{H}^2(G)$ is either zero or infinite dimensional.
 - (1) Let G = F/K for a free group F. If exact sequence for $G^{(n)} = F^{(n)}/(F^{(n)} \cap K)$ $1 \to F^{(n)} \cap K \to F^{(n)} \to F^{(n)}/(F^{(n)} \cap K) \to 1$ is trivial for some finite ordinal n, then $\widehat{H}^2(G)$ is zero or infinite dimensional.

Idea: This is the case that either $G^{(n)} = e$ or $F^{(n)} \cap K = e$ so that $G^{(n)} = F^{(n)}$ is free.

(2) Let G = F/K be residually solvable. If the exact sequence induced from $G^{(n)} = F^{(n)}K/K$, $0 \to K \to F^{(n)}K \to F^{(n)}K/K = G^{(n)} \to 0$, has the first trivial one at the limit ordinal ω , $0 \to K \to \cap(F^{(n)}K) \to \cap_{n < \omega}(F^{(n)}K/K) \to 0$, then the homomorphism $\varphi^* \colon \widehat{H}^2(F) \to \widehat{H}^2(K)^G$ induced from the inclusion homomorphism $K \xrightarrow{\varphi} F$ is injective. Furthermore, $\widehat{H}^2(G) = \widehat{H}^2(F/K)$ is zero.

C. Theorems for Hypoabelian groups

• Let G be hypoabelian.

Then $\widehat{H}^2(\widehat{G})$ is either zero or infinite dimensional. Idea: It is done by transfinite induction.

- (1) Let $N \leq G$ and N be residually solvable. Suppose $\widehat{H}^2(G/N) = 0$. Then $\widehat{H}^2(G)$ is either zero or infinite dimensional.
- (2) If $G^{(\alpha)} = e$ for a nonlimit ordinal, G contains an abelian normal subgroup $G^{(\alpha-1)}$.
- (3) If $G^{(\delta)} = e$ for a limit ordinal, $\delta = \omega k$ for some finite $k < \omega$ or $\delta = \omega \omega$, etc.

12

- If the dimension $\dim_{\mathbf{R}} V$ of a Banach space Vas a vector space over \mathbf{R} is not less than countably infinite, then the dimension $\dim_{\mathbf{R}} V$ is at least that of the continuum.
- Let G be hypoabelian and $\widehat{H}^2(G) \neq 0$. Then the dimension of $\widehat{H}^2(G)$, which is a Banach space, as a vector space over **R** is the continuum.

D. Examples

• The infinite dihedral group

The infinite difference of $D_{\infty} = \langle x, y \mid x^2 = 1, y^2 = 1 \rangle$ is residually solvable. Also D_{∞} is isomorphic to the semidirect product of cyclic group of order 2 as the active group and infinite cyclic group as the passive group. Its second bounded cohomology is zero.

• Let G be a surface group or a free product of cyclic groups. Then its first commutator subgroup G' =[G, G] is free, and so G is residually solvable. Its second bounded cohomology is infinite.

14

E . Currently...

How about the groups which are not hypoabelian? The second bounded cohomology of a perfect group.

- (1) The dimension of the second bounded cohomology of a perfect group could be anything.
 - The second bounded cohomology of a finite perfect group is zero.
 - $\widehat{H}^2(SL(2,\mathbf{R})) = \mathbf{R}.$
 - Free product of perfect groups are perfect and its second bounded cohomology is infinite.
- (2) If P is a maximal perfect normal subgroup of G, then $\widehat{H}^2(G)$ is infinite dimensional or $\widehat{H}^2(G) \cong \widehat{H}^2(P)^{G/P}$.
- (3) The second bounded cohomology of a uniformly perfect group.