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Mean-Variance versus Expected Utility

in Dynamic Investment Analysis

Abstract

This paper extends Merton’s continuous time (instantaneous) mean-variance analy-

sis and the mutual fund separation theory in which the growth optimal portfolio can

be chosen as the risky fund. Given the existence of a Markovian state price density

process, the CAPM holds without assuming log-normality for prices. The optimal

investment policies for the case of HARA utility function are analytically derived.

It is proved that only the quadratic utility exhibits global mean-variance efficiency

among the family of HARA utility functions. The (global) efficient frontier for the

dynamic model is linear in the space of standard deviation and expected return of

the portfolio. A numerical comparison is made between the growth optimal portfo-

lio and mean-variance analysis for the case of log-normally distributed assets. We

discuss the optimal choice of target return that maximizes the probability that mean-

variance analysis outperforms the expected utility approach. Finally, we discuss how

to control portfolio’s downside losses using a put option on the market portfolio.

2



I. Introduction

Markowitz (1952) mean-variance analysis blends elegance and simplicity. Compared to ex-

pected utility models, it offers an intuitive explanation for diversification and a relatively simple

computational procedure. However, most discussions of mean-variance analysis are restricted

to static models. Hence, investors can only make decisions at the beginning and must wait

for the results without adjusting the portfolio weights until the end of the horizon. This is

awkward for mean-variance analysis compared to versatile dynamic (multiperiod or continuous

time) models that maximize expected utility. This paper investigates and develops a dynamic

version of mean-variance analysis. Tobin (1958) showed that the mean-variance model is consis-

tent with the von Neumann-Morgenstern postulates of rational behavior if the utility of wealth

is quadratic. Merton (1973, 1992) developed an analog of the continuous time (instantaneous)

mean-variance analysis and concluded that the mutual fund separation theory applies for the

case of log-normal prices. This paper extends these results to a more general case in which the

existence of a Markovian state price density process is the only assumption.

Alternative approaches are sought for the mean-variance criterion to apply in dynamic

investment analysis. Merton (1973, 1992) discussed the approach of applying the Markowitz

static model instantaneously at each time, i.e., minimizing the instantaneous standard deviation

for a given target instantaneous mean return rate. By doing this, Merton was able to develop

the intertemporal CAPM and mutual fund separation theory by applying stochastic control

methodology. He showed that growth optimal portfolio is instantaneously mean-variance effi-

cient when asset prices are log-normal. However, the log-normal assumption is only a sufficient

condition. Therefore, this result can be extended to a more broad dynamic setting in which

the asset price behavior mechanism is determined by a Markovian state price density process.

With this setting, we can derive an instantaneous mean-variance efficient frontier as in the
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Markowitz-Tobin model. The intertemporal CAPM holds as the growth optimal portfolio acts

as the “market portfolio.” We prove that all portfolios constructed by maximizing expected

utility of terminal wealth are on the efficient frontier. The growth optimal portfolio can be

chosen as the risky mutual fund. All investors are indifferent between investing in the two mu-

tual funds, riskless portfolio and the growth optimal portfolio, and the combination of market

primary assets.

Investors can use mean-variance analysis as the investment criterion under which investors

minimize the variance of the total portfolio return by setting the portfolio expected return to a

prescribed target as in the static case. The difference is that we allow the portfolio to be traded

dynamically which is more realistic. In this way, the global efficient frontier can be developed.

It is shown that the global efficient frontier is a straight line in mean-standard deviation of the

portfolio return space as in the static case. We argue that this criterion for investment is better

than instantaneous mean-variance analysis by showing that only quadratic utilities exhibit the

(global) mean-variance efficiency, even for the case of log-normal asset prices. The optimal

portfolio policies can be identified as a function of the state price and time variable by solving

the associated partial differential equations. The solution techniques follow Cox and Huang

(1989). The well known two fund separation theorem still holds and investors invest solely in

the riskless asset and the growth optimal portfolio. However, the growth optimal portfolio is

not on the global efficient frontier.

Investors might be interested in knowing the advantages of mean-variance analysis com-

pared to the expected utility approach, since the mean-variance dominates the expected utility

approach in mean-standard deviation space. However, there is no absolute dominance. It is

well known that the growth optimal strategy (log utility) will outperform any essentially differ-

ent strategy in the long run; see Breiman (1961) and Algoet and Cover (1988). The comparison
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provided in this paper shows that the mean-variance criterion achieves a better performance if

the outcome of the market state price is near its mean value. The expected utility approach

has superior performance when the outcomes are in the tails of the state price which accom-

modates the investor’s risk aversion. To apply mean-variance analysis, the probability that a

mean-variance model outperforms an expected utility model is a good criterion for identifying

the optimal target mean level. We provide a general method for calculating this probability

and a closed form solution in the case of log-normal prices and logarithmic utility. A numerical

example compares the two approaches.

A critical problem of mean-variance approach is that it allows for arbitrarily large negative

realizations of terminal wealth. This renders the practical importance of the analysis quite

limited. Furthermore, in the continuous time setting such a concern is of particular importance.

Dybvig and Huang (1988) use a nonnegative wealth constraint for ruling out the arbitrage

opportunity. The martingale approach for portfolio selection problem is useful in dealing with

portfolio constraints on the level of terminal wealth, for example, see Cox and Huang (1989).

We discuss this issue to accommodate practical needs.

II. Asset Price Dynamics and Intertemporal CAPM

Assume a complete probability space (Ω,F , P ) and a time horizon [0, T ], where T is a strictly

positive real number. Let zt = (z1t, · · · , znt)
> denote an n-dimensional standard Brownian

motion, which generates a filtration F = {Ft ⊆ F ; t ∈ [0, T ]}. A stochastic process Wt is called

adapted to F if Wt is measurable with respect to Ft. Assume the market is arbitrage free and

continuous trading occurs without friction. Furthermore, the market has a state price density
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process described as the following Markovian diffusion process

dξt

ξt

= α(t, ξt) dt + β(t, ξt)
> dzt, ξ0 = 1, (1)

where α(t, ξ) and β(t, ξ) are at most functions of t and ξ and β satisfys the Novikov condition

for the purpose of stochastic integrability. The assumption of the Markovian property for the

state price density process ξt is credible, because it at least contains the case of log-normal asset

prices as a subset. We will use αt and βt for short whenever there is no confusion. Throughout

this paper, we make the following assumptions:

Assumption 1. For every asset price (portfolio) process Wt, ξtWt is a martingle terminated

at ξT WT .

Assumption 2. If ξtWt is a martingale, then Wt is a valid portfolio process, i.e., it can be

replicated using market primary assets.

It can be proved that the martingale assumption with the positivity of the state price process

ξt entirely rules out the arbitrage opportunities. So, ξt is restricted to a positive Markovian

process. Following Harrison and Kreps (1979) and Harrison and Pliska (1981), Assumption 1

implies that the expected value of a security or a portfolio should be the same as its current

value after being adjusted by the state prices over time. Assumption 2 should be viewed as

an equivalent hypothesis to market completeness, but it is a weaker version than that in the

literature.

Let Wt be a portfolio value (asset price) process. By Assumption 2, ξtWt is a martingale.

Hence, by the martingale representation theorem, one can derive

Proposition 1. For any asset (portfolio) in the market, there exists a predictable stochastic

process φt such that the asset price (portfolio value) process Wt follows the stochastic differential
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equation

dWt

Wt

=
[
β>

t βt − αt − φ>t βt

]
dt +

[
φ>t − β>

t

]
dzt. (2)

Proof, see Appendix A. Proposition 1 characterizes the dynamics of stock prices by the state

price density process. There are some advantages of modelling the stock price dynamics as

such an equilibrium representation for a given state price density process. We can be certain

that the state prices are implied by the overall market performance but not individual stocks.

On the contrary, equilibrium prices of individual stocks should follow Equation (2) to ensure

that the market is arbitrage free. A criterion for admissible portfolio process is given in

Proposition 2. If the stochastic process

dWt

Wt

= µt dt + σ>t dzt. (3)

represents an admissible portfolio process, then µt and σt satisfy the linear equation:

αt + µt + σ>t βt = 0. (4)

Conversely, if (4) holds and σt satisfies the Novikov condition of integrability, then Equation

(3) represents an admissible portfolio process.

Equation (4) determines how the mean and standard deviation of asset returns are related.

Some special cases are worth of examination. If φt = βt with probability one, then Equation

(2) implies that

dWt

Wt

= −αt dt

which represents the riskless asset. Hence, the short term interest rate is −αt (note that αt

should be negative by the definition of the state price density process). If φt = 0, then Equation
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(2) implies that

dWt

Wt

= (β>
t βt − αt) dt− β>

t dzt

which represents the rate of return of the growth optimal portfolio, i.e., the process ξ−1
t which

is equivalent to log utility maximization.

Let µξt and σ>ξtσξt denote the mean and variance of the instantaneous rate of return of the

growth optimal portfolio. By Equation (4), the following equation must hold for any asset price

or portfolio value Wt with instantaneous mean return µt and instantaneous standard deviation

σt

µt + αt =
σ>t βt

σ>ξtβt

(µξt + αt). (5)

Since µξt = β>
t βt − αt and σξt = −βt, then −σ>t β is the covariance of the return rates of Wt

and ξ−1
t . Also, −σ>ξtβt = β>

t βt is the variance of the return rate of ξ−1
t . The above argument

has established the intertemporal CAPM, which is the continuous time version of the static

CAPM model of Sharpe (1964) and Lintner (1965).

III. Mean Variance Analysis and Mutual Fund Separa-

tion

Merton (1973, 1992) developed the continuous time analog of the static mean-variance analysis.

He concluded that, if asset prices follow a log-normal process, the growth optimal portfolio is

(instantaneous) mean-variance efficient. Now, we extend this theory to a more general case.

The (instantaneous) mean-variance analysis is an optimization model that minimizes the

instantaneous variance for a given mean of the rate of return, which can be represented as, by
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Equation (2)

min
φt

(φt − βt)
>(φt − βt)

s.t. β>
t βt − αt − φ>t βt = µt.

(6)

Theorem 1. The instantaneous mean-variance efficient frontier is a straight line in mean and

standard deviation space with a slope of
√

β>
t βt, i.e., the optimal mean rate of return µt and

its standard deviation
√

σ>t σt have the relation

µt + αt√
σ>t σt

=
√

β>
t βt, µt > −αt. (7)

For the proof of Theorem 1, see Appendix A. Since −αt is the return rate of the riskless asset,

Equation (7) is the continuous time version of the Markowitz (1952) static model.

Now we derive the conditions for a portfolio to be mean-variance efficient. Equation (4)

and Equation (7) imply that

−σ>t βt =
√

σ>t σt

√
β>

t βt. (8)

One can observe that the growth optimal portfolio ξ−1
t (with σt = −βt) is on the efficient

frontier. This result does not require the assumption of log-normal prices. Obviously the case

of log-normal prices is included in our general setting.

Proposition 3. A portfolio is instantaneous mean-variance efficient if and only if

σt = −at βt,

where at is a positive scalar.

For the proof, see Appendix A.

Mutual fund separation theory is about alternative approaches for allocating wealth to pri-

mary assets. An immediate advantage of the theory is that investment decisions can be divided
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into two parts by the establishment of two financial intermediaries (mutual funds) to hold all

individual assets and to issue shares of their own for purchase by individual investors. The

separation is executable because mutual fund managers are instructed to hold the proportions

of the individual assets independent of investors’ preferences and wealth distribution. If asset

returns are normally distributed or the investor’s utility is quadratic, all investors can alterna-

tively invest in two mutual funds that are constructed using the primary assets. Merton (1973,

1992) derived a two mutual fund separation for fixed investment opportunities (constant µt and

σt and a three mutual fund separation for stochastic interest rate (stochastic αt but fixed µt

and σt). Here we extend this result to the general case in which the state price density process

is Markovian.

Let U(x) be a strictly increasing and concave utility function. Assume investors’ deci-

sions are based on the maximization of the expected utility of the terminal wealth (we ignore

consumption for simplicity). The optimization model is

max
WT

E [U(WT )]

s.t. E [ξT WT ] = W0.

(9)

Now, we state our main results as

Theorem 2. If market state price density process is Markovian, then

i.) All investment portfolios that maximize the expected utility of terminal wealth are in-

stantaneous mean-variance efficient.

ii.) The two fund separation theorem applies. The growth optimal portfolio can be chosen

as the risky fund. Let F (t, ξt) be the optimal wealth at time t and the proportion invested

in the growth optimal portfolio θξt. Then

θξt = − ξt

Wt

∂F

∂ξ
, (10)
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where ∂F
∂ξ

is the partial derivative of F (t, ξ) with respect to ξ.

For the proof, see Appendix A.

Theorem 2 indicates that investors are indifferent between investing in two mutual funds

and a combination of market tradable assets. The growth optimal portfolio can be chosen as the

risky fund. However, the optimal portfolio weights are functions of calender time and the value

of the risky fund. In other words, there are no incentives for investors to know the performance

of the individual stocks, but managers of the risky fund fully take the responsibility of managing

the fund. This theory is consistent with the operation of financial investment. The log-normal

assumption is a special case of the setting that the state price density process is Markovian.

Hence, Theorem 2 extends the mutual fund separation theory to a broader setting.

IV. The Global Mean-Variance Model

In continuous time, investors may be also interested in seeking sound investment decisions

by a mean-variance criterion as in the static case where the portfolio risk is minimized for a

given expected return. Unlike instantaneous mean-variance analysis, investors are interested

not only in the expected value of the portfolio return but also in monitoring the portfolio’s

risk measured by its standard deviation. Let R̃ = WT

W0
be the portfolio return, and denote the

expected value and the standard deviation of R̃ by R and V , respectively. Since ξtWt is a

martingale, E[ξT R̃] = 1. Considering the opportunity of dynamic trading, investors wish to

solve the global mean-variance model

V 2 = min
R̃

E[R̃2]−R2

s.t. E[R̃] = R

E[ξT R̃] = 1.

(11)
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The objective function is equal to the variance of the portfolio value for a given mean return

R.

Theorem 3. The optimal portfolio return R̃ is a linear function of the state price ξT with a

negative slope if the target return is greater than the riskless rate

R̃ = 1
2
λ− 1

2
ρ ξT , (12)

where λ and ρ are the multipliers on the constraints in model (11). The mean-variance efficient

frontier is also linear and determined by

V =


Rξ

Vξ
(R−R−1

ξ ), R ≥ R−1
ξ ,

−Rξ

Vξ
(R−R−1

ξ ), R < R−1
ξ ,

(13)

where Rξ and Vξ are the expected value and the standard deviation of ξT , respectively.

For the proof, see Appendix A.

Figure 1 depicts the feasible region of portfolio policies as the area between the two lines

in mean-standard deviation space. The upward straight line (with positive slope V [ξ]
E[ξ]

) is the

  

Return (R) 

E[ξ]-1 

Standard Deviation (V) 

Efficient Frontier  
with Slope V[ξ]/Ε[ξ]

Inefficient Frontier  
with Slope -V[ξ]/Ε[ξ] 

Figure 1: The Dynamic Mean-Variance Efficient Frontier
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efficient frontier and the downward straight line (with negative slope −V [ξ]
E[ξ]

) is the inefficient

frontier as in the static model. The global mean-variance model has a similar shape but with a

larger slope than the static mean-variance efficient frontier, since the set of continuous trading

strategy contains the set of static strategies as a subset. Furthermore, the mean and the

standard deviation of the contingent state price jointly determine the mean-variance efficient

frontier by (13).

Which portfolios are global mean-variance efficient? We have a quite satisfactory answer

for the case of static model and its instantaneous version. However, for our setting of the

dynamic equilibrium market, only the portfolio obtained by maximizing a quadratic utility is

global mean-variance efficient, even for the case of log-normal asset prices. We give this result

as

Proposition 4. Assume U(x) is a HARA utility function. If U(x) is quadratic and concave,

then the optimal portfolio obtained from maximizing E[U(WT )] is global mean-variance effi-

cient. Therefore, global mean-variance analysis is consistent with the utility maximization.

Conversely, if the portfolio obtained from maximizing E[U(WT )] is global mean-variance effi-

cient, then U(x) must be a quadratic function with a negative second order derivative.

For the proof, see Appendix A.

So far, the optimal portfolio is characterized as a function of the state price density process.

How is this portfolio replicated by using market traded securities?

Suppose we have a market of m + 1 “continuously” tradable securities. One of them is

riskless and denoted by Bt,

dBt

Bt

= −αt dt,

and the other m securities follow the following processes:

dSit

Sit

= (−σ>itβt − αt) dt + σ>itdzt, i = 1, · · · , m.
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Equation (4) demonstrates that the above formulation is correct. Denote Σt = (σ1t, · · · , σmt)
>,

and assume ΣtΣ
>
t is invertible (m ≤ n) which accommodates the completeness of the market.

The wealth at time t is,

Wt = ξ−1
t E

[
ξT

(
1
2
λ− 1

2
ρ ξT

)
|Ft

]
.

Since ξt is Markovian and, by the two-fund separation theorem (Theorem 2), any optimal

portfolio obtained from utility maximization is equivalent to a portfolio rule investing only in

two mutual funds, the riskless asset and the growth optimal portfolio. Without proving the

equivalence of the global mean variance efficiency to a quadratic utility maximization as given

in the static case, we directly derive the optimal portfolio rule. Let Wt = F (t, ξt) be the optimal

portfolio value, where F (t, ξ) is differentiable with respect to t and twice differentiable with

respect to ξ. By Itô’s formula

dWt

Wt

=
1

Wt

(
∂F

∂t
dt +

∂F

∂ξ
dξt +

1

2

∂2F

∂ξ2
(dξt)

2

)
=

1

Wt

(
∂F

∂t
+ αtξt

∂F

∂ξ
+ 1

2
ξ2
t β

>
t βt

∂2F

∂ξ2

)
dt +

ξt

Wt

∂F

∂ξ
β>

t dzt.

(14)

The equilibrium condition (4) implies

∂F

∂t
+ αtξt

∂F

∂ξ
+ 1

2
ξ2
t β

>
t βt

∂2F

∂ξ2
+ αt F + ξtβ

>
t βt

∂F

∂ξ
= 0. (15)

Hence, F (t, ξ) is the solution to the partial differential equation

∂F

∂t
+ αtξ

∂F

∂ξ
+ 1

2
ξ2β>

t βt
∂2F

∂ξ2
+ αt F + ξβ>

t βt
∂F

∂ξ
= 0 (16)

where αt and βt are viewed as functions of (t, ξ), with the boundary condition

F (T, ξ) = 1
2
λ− 1

2
ρ ξ.

An analytical solution is available when αt and βt are constant as shown in
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Theorem 4. Let θit be the proportion of wealth allocated in the ith risky asset. Denote θt =

(θ1t, · · · , θnt)
>. Then

θt =
ξt

Wt

∂F

∂ξ
· (ΣtΣ

>
t )−1Σtβt. (17)

If the parameters αt and βt in the state price density process are constant, i.e., αt = α, βt = β,

and Σt = Σ, then the partial differential equation (16) has the closed form solution,

F (t, ξ) = 1
2

(
λeα(T−t) − ρξ e(β>β+2α)(T−t)

)
. (18)

The optimal portfolio policy at time t is

θt =
(

1
2Wt

λeα(T−t) − 1
)

(ΣΣ>)−1Σβ, (19)

where λ is the Lagrangian multiplier on the first constraint in the model (11).

For the proof of Theorem 4, see Appendix A. An alternative proof of Theorem 4 can be

approached by taking use of the results in Theorem 2 that any optimal portfolio is equivalent

to a portfolio investing in the two mutual funds, the riskless asset and the growth optimal

portfolio. Since the growth optimal portfolio weights (Merton ratio) are given by

−(ΣtΣ
>
t )−1Σtβt.

Combining this with (10) yields (17).

V. Mean-Variance versus Expected Utility

A. The Relation between Portfolio Returns

Much research has been focused on determining which of the expected utility approach and the

mean-variance analysis is preferable in making sound investment decisions. It is well known

that the optimal portfolio generated from a utility maximization is not on the mean-variance
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efficient frontier except in a few special instances: either a “carefully” chosen quadratic utility

function is used or the asset returns are joint normally distributed; see Ross (1978), and Ziemba

and Vickson (1975) for other exceptions. However, investors and academic researchers do not

accept these assumptions for practical use. In Section IV., we proved that only the quadratic

utility functions are global mean-variance efficient in the setting of the market. This seems to

be in favor of the mean-variance approach. However, see Breiman (1961), the growth optimal

portfolio (log utility) will beat any essentially different portfolio strategy with probability 1 in

the long run. Grauer (1981) compared the growth optimal strategies and the mean-variance

analysis in the static case. Kroll and Markowitz (1984) conducted a similar study. For users

of mean-variance analysis, the following question may be asked: what is the best choice of the

target return such that the portfolio return has the maximum probability of being higher than

the portfolio return obtained from a utility maximization approach?

Let R̃m and R̃u be the portfolio returns for mean-variance analysis and an expected utility

approach, respectively. R̃m is given by (12). The utility maximization is given by (9). Hence,

the optimal return R̃u for the utility maximization portfolio is

R̃u = 1
W0

U−1
x (λuξT ),

where λu is the Lagrangian multiplier on the budget constraint in model (9) and U−1
x (·) stands

for the inverse function of the marginal utility of wealth; see Cox and Huang (1989).

Assuming U(x) is a strictly increasing HARA utility function, R̃u is usually a convex func-

tion of ξT . On the other hand R̃m is a straight line with negative slope. Therefore, there are

two intersection points ξ1 and ξ2 in the two portfolio returns. Mean-variance analysis will be

superior if the outcome of the state price ξT occurs around the mean value E[ξT ] of the state

price, as represented by shaded area, and be inferior if the outcome is beyond one of the tails,

ξ1 or ξ2. Also, ρ changes as a function of µ = E
[
R̃m

]
. As µ increases, R̃m shifts up, and
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at the same time becomes steeper. Hence, the effect of an increase of µ on the probability of

outperforming the expected utility of wealth is non-monotonic. Figure 2 depicts the relation

of the two optimal portfolio values in terms of the state price ξT .

 

 
                      Mean Variance  
 
                      Utility Maximization  
                      

Return  

State Price 

R 

E[ξ] ξ1 ξ2 

Figure 2: The Optimal Terminal Portfolio Values

B. Opportunities Superior to the Expected Utility Approach

By varying the expected portfolio return µ , investors can find the maximum probability that the

mean-variance optimal portfolio will outperform the expected utility maximization portfolio.

The maximum probability is given by solving

max
µ

Pr{ξ1 ≤ ξT ≤ ξ2 | Rm ≥ E[ξT ]−1}. (20)

Here ξ1 and ξ2, ξ1 < ξ2, are the two intersection points of R̃u and R̃m which satisfy the following

transcendental equation,

− 2
W0

U−1
x (λuξT ) + λ− ρξT = 0. (21)
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Since R̃u is usually a convex function of the contingent state price ξT and R̃m is linear in ξT ,

R̃u and R̃m intersect at exactly two points for a given µ < ∞. Since λ and ρ are functions

of µ, so are ξ1 and ξ2. Both the mean-variance analysis and expected utility approaches are

considered as standard approaches for constructing optimal investment strategies. For mean-

variance optimizers, an interesting question is how to set the target wealth level such that

the mean-variance criterion will be superior to the expected utility approach with maximum

probability. With appropriate conditions, we can calculate the optimal value µ and, therefore,

the maximum probability. Let φ(x) be the density function of ξT . Assuming that there is

a solution to (20) and that both ξ1(µ) and ξ2(µ) are differentiable with respect to µ, then

problem (20) becomes

max
µ

∫ ξ2

ξ1

φ(x)dx.

By the first order conditions, the optimal µ is given by

φ(ξ2(µ))ξ′2(µ)− φ(ξ1(µ))ξ′1(µ) = 0, (22)

where “′ ” stands for the mathematical derivative.

C. Optimal Portfolio with a Lower Bound

A critical problem of mean-variance approach is that it allows for arbitrarily large negative

realizations of terminal wealth as shown in Figure 2. This clearly renders the practical impor-

tance of the analysis quite limited. Dybvig and Huang (1988) considered a nonnegative wealth

constraint for ruling out arbitrage opportunities, Cox and Huang (1989) consider a model of

investment and consumption with nonnegative constraints and relate the optimal rules to a

synthetic option strategy. For mean-variance analysis, downward control can be easily imple-

mented.
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Let W0 be the initial wealth, W̄ the targeted mean level of wealth, and Wl a lower bound

of the wealth level. Assume investor are interested in solving the following constrained mean-

variance model

min E[W 2
T ]− W̄ 2

E[WT ] = W̄

E[ξT WT ] = W0

WT ≥ Wl, in probability.

(23)

Let λ∗, ρ∗, and γ̃∗ be the multipliers on the three constraints in model (23), respectively. we

use “*” to emphasize that these multipliers are different from those without the lower bound

constraint. The optimal wealth is

WT = 1
2
λ∗ − 1

2
ρ∗ξT +

(
Wl − (1

2
λ∗ − 1

2
ρ∗ξT )

)+
. (24)

This expression is equivalent to a mean-variance portfolio strategy with a protective put option

on the portfolio value. One can implement this portfolio policy by investing in a mean variance

model and taking an insurance policy against the portfolio’s decrease in value at the same time.

The problem is what percentage of the wealth should be allocated for investment and how to

purchase the insurance policy, given the existence of such a financial intermediary. To resolve

such a concern, we devise an alternative approach that will reach the same solution. The

growth optimal portfolio ξ−1
t acts as the “market” portfolio, therefore, it should be conceivably

available for investment if all investors hold efficient portfolios. Hence, we want to relate the

insurance strategy to this portfolio.

Equation (24) can be rewritten as

WT = 1
2
λ∗ − 1

2
ρ∗ξT +

(
1
2
λ∗ −Wl

)
ξT

(
ρ∗

λ∗−2Wl
− ξ−1

T

)+

. (25)

Hence, the portfolio strategy can be decomposed as a mean-variance model and put options on

the growth optimal portfolio.
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Let W ∗
0 = E

[
ξT (1

2
λ∗ − 1

2
ρ∗ξT )

]
and W̄ ∗ = E

[
1
2
λ∗ − 1

2
ρ∗ξT

]
. Then investors can solve the

mean-variance model with the initial investment W ∗
0 and a target mean level W̄ ∗. Then, using

W0 − W ∗
0 to purchase put options on the growth optimal portfolio with strike price ρ∗

λ∗−2Wl
.

The number of puts is 2(W̄−W̄ ∗)
λ∗−2Wl

.

D. A Numerical Example

Capital growth theory is very interesting to both academicians and practitioners. Hakansson

(1971) studied capital growth and mean-variance approach to portfolio selection, MacLean et

al. (1992) and MacLean and Ziemba (1999) studied the growth versus security tradeoffs using

fractional Kelly strategies that are blends of the capital growth portfolio and cash. Hakansson

and Ziemba (1995) surveyed this area. Here we examine the difference of the two approaches

within the continuous time framework using a numerical example.

Consider an investor having one dollar to invest between a riskless asset and a risky asset.

For the riskless interest rate for the period of August 2, 1999 to August 1, 2000, we use r = 0.05

per annum, i.e., the riskless asset price B(t) = ert. The S&P 500 is the risky asset. After scaling

the initial index level to a dollar, Figure 3 depicts the price dynamics of the S&P 500 without

dividend for this period.

Assuming that the price St of the S&P 500 follows the geometric Brownian motion

dSt

St

= bdt + σdzt,

with estimated b = 0.101 and σ = 0.212. Let the investment horizon be one year, so T = 1.

Hence, α = −0.05 and β = −(b− r)/σ = −0.24, i.e., the state price density process is given by

dξt

ξt

= −0.05dt− 0.24dzt
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Figure 3: Scaled Index Level of S&P 500.

where zt is a standard Brownian motion. Hence, E[ξT ] = 0.95 and V 2[ξT ] = 0.96. The λ and

ρ are 
λ = 35.69µ− 35.42

ρ = −35.42µ + 37.24.

The mean-variance optimal portfolio return is, by Equation (12),

R̃m = (17.85µ− 17.76) + (−17.76µ + 18.62)ξT .

For the logarithmic utility, the optimal return is

Ru = ξ−1
T .

See Cox and Huang (1989) for a derivation of this. The intersection points, ξ1 and ξ2, are given

by the quadratic equation

(−17.76µ + 18.62)ξ2
∗ + (17.85µ− 17.76)ξ∗ − 1 = 0,

whose solutions are 
ξ1(µ) =

17.85µ−17.76−
√

240.94−562.99µ+318.62µ2

2(17.76µ−18.62)

ξ2(µ) =
17.85µ−17.76+

√
240.94−562.99µ+318.62µ2

2(17.76µ−18.62)
.

(26)
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For given µ, the probability that the mean-variance model outperforms the growth optimal

strategy is ∫ ξ2

ξ1

1√
2πβ>β

exp{−
(ln x− α + 1

2
β>β)2

2β>β
} · 1

x
dx.

Using the first order condition indicates that the numerical solution of the optimal µ is

µ ≈ 1.139.

This means that, for this specific investment environment, investors should set the target wealth

to be about 13.9% higher than the initial wealth to maximize the probability of surpassing the

growth optimal strategy (logarithmic utility). Then, the probability that the mean-variance

model will beat the growth optimal strategy under the assumption of log-normal asset prices

exceeds 70%. Figure 4 depicts the probabilities corresponding to different choices of µ.

���������
	�����������������

�������! #"!$&%(' )+*

Figure 4: The Probability of Mean-Variance Superior to the Growth Optimal Strategy

Remark. Since the logarithmic utility has an expected portfolio return E[ξ−1
T ] = e(β>β−α)T

which is dominant in the long run (as T → ∞), the logarithmic utility will have a higher

chance of beating the mean-variance analysis for the long investment horizon. This leads to
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the assertion that the logarithmic utility may have a high probability of beating a mean-

variance model when the market investment environments are changed to a long investment

horizon and/or a moderately high market price for risk (a high −β). See the discussion on this

in Hakansson and Ziemba (1995).

E. Implementation of the Mean-Variance Optimal Strategy

In the static mean-variance model, the investor needs only to choose an appropriate target mean

level to find the optimal portfolio strategy by minimizing the standard deviation. This process

can be completed with the calculation of the first and the second moments and a quadratic

programming optimizer. However, in dynamic investment analysis, the portfolio weights are

continuously changed according to the observed market asset prices. To illustrate the dynamic

mean-variance analysis, we use the data of the previous example to compare the performances of

mean-variance analysis and the growth optimal portfolio. The target mean return level for the

mean-variance analysis is chosen as 13.9% which maximizes the probability of outperforming

the growth optimal strategy (logarithmic utility). Figure 5 describes the performances of these

two strategies with S&P 500 over time (note that the similar performances of the growth

optimal portfolio and S&P 500 for this period show a strong support to our assumption of a

Markovian state price density). While the growth optimal portfolio has a similar performance

to the index for this specific data, the mean-variance analysis has a superior performance if we

set the target mean level to be about 2% more than the mean return of S&P 500.

VI. Concluding Remarks

With the assumption of the existence of a Markovian state price density process and a repli-

cation argument, we have proved that the intertemporal CAPM holds. All models of utility
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Figure 5: Wealth Level Performances over Time

maximization of terminal wealth are instantaneously mean-variance efficient. This result has

extended the two fund separation theory to broader settings of the market asset returns. The

growth optimal portfolio can be evidently chosen as the risky fund.

Taking mean-variance as the investment criterion, we have derived the global mean-variance

efficient frontier and optimal portfolio policies for dynamic investments. The efficient frontier

is uniquely determined by the mean and the standard deviation of the contingent state price.

The efficient frontier is also a ray which intersects the vertical axis corresponding to the riskless

rate with slope equal to the ratio of the standard deviation and the mean of the contingent

price. Unlike instantaneous mean-variance analysis, no utility function except the quadratic

utility is globally mean-variance efficient.

Because of the non-efficiency of the utility maximization in mean and standard deviation,

investors might be interested in knowing which approach makes a sound investment decision.

The optimal portfolio return for a mean-variance model is a linear function of the state price
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with a negative slope, while that of a (HARA) utility maximization usually appears to be a

convex function of the state price. This provides us a method for calculating the probability

that the mean-variance model outperforms the expected utility maximization approach. To

show the important role of mean-variance analysis in making sound investment decisions, this

paper compares, state by state, the optimal values obtained from both mean-variance and

expected utility models. The mean-variance analysis is superior to the expected utility if the

outcome of the contingent state price is near its mean and inferior to the expected utility model

if the outcome is in the tails. An interesting question is: what is the optimal target wealth

such that the mean-variance criterion will be superior to a given expected utility model with

maximum probability? To perform the analysis, we used S&P 500 data for a one year period to

calibrate the asset price model. For a one-year investment horizon, the mean-variance return

will beat the growth optimal (logarithmic utility) return by more than a 70% chance if the

wealth target (the mean level) is set to be about 13.9% more than the initial wealth.
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A Appendix

Proof of Proposition 1:

By assumption 2, ξtWt is a martingale that terminates at ξT WT . By the martingale represen-

tation theorem, see Øksendal (1995), there exists a unique adapted stochastic process φt such

that

dξtWt

ξtWt

= φ>t dzt.

Since the growth optimal portfolio follows the stochastic differential equation

dξ−1
t

ξ−1
t

= (β−1
t βt − αt) dt− β>

t dzt,

by Itô’s formula

dWt

Wt

=
dξ−1

t

ξ−1
t

+
dξtWt

ξtWt

+
dξtWt

ξtWt

· dξ−1
t

ξ−1
t

= (β−1
t βt − αt) dt− β>

t dzt + φ>t dzt − φ>t βt dt

= (β>
t βt − αt − φ>t βt) dt + (φt − βt)

> dzt.

(27)

Proof of Proposition 2:

By Assumption 1 and Proposition 1, there is an adapted stochastic process φt such that

µt = β>
t βt − αt − φ>t βt, σt = φt − βt.

Substituting out φt yields

µt + αt + σ>t βt = 0.

Conversely, if the above equation hold, then ξtWt is a martingale. By assumption 2, Wt is a

portfolio process.

Proof of Theorem 1:
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The Lagrange multiplier of the optimization model (6) is

L(φt, λ) =
[
(φt − βt)

>(φt − βt)
]
− λ

(
β>

t βt − αt − φ>t βt − µt

)
.

The first order conditions imply that
2(φt − βt) + λβt = 0

β>
t βt − αt)− φ>t βt − µt = 0,

which yields

(φt − βt)
>(φt − βt) =

(µt + αt)
2

β>
t βt

.

Hence, Theorem 1 is proved.

Proof of Proposition 3:

Let Wt be a portfolio with σt = −atβt, where at is a scalar. Thus, Equation (8) is satisfied.

Hence, by Proposition 2, Wt is instantaneous mean-variance efficient. Conversely, if Wt is

mean-variance efficient but σt 6= −atβt for any at > 0, then

(σt + atβt)
>(σt + atβt) > 0,

which implies that

(σ>t βt)
2 − σ>t σt · β>

t βt > 0.

This contradicts Theorem 1. Hence, there exists a positive scalar process at such that σt =

−atβt.

Proof of Theorem 2:

Let U(x) be a strictly increasing and concave utility function. A utility maximizer solves the

optimization model (9) with the Lagrange multiplier as

L(WT , λ) = E [U(WT )]− λ (E [ξT WT ]−W0) .
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The first order conditions are 
Ux(WT )− λξT = 0

E [ξT WT ] = W0,

where Ux(·) is the first order derivative. Let U−1
x (·) is its inverse function, then

WT = U−1
x (λξt)

where λ is given by

E
[
ξT · U−1

x (λξT )
]

= W0.

Let Wt be the portfolio value at time t. Since ξtWt is a martingale, then

ξtWt = E
[
ξT U−1

x (λξT )|Ft

]
.

Since ξt is Markovian, the wealth Wt must be a function of t and ξt, i.e., there exists a deter-

ministic function F (t, ξ) such that

Wt := F (t, ξt) = ξ−1
t E

[
ξT · U−1

x (λξT )|Ft

]
.

By Itô’s formula

dWt

Wt

=
1

Wt

(
∂F

∂t
dt +

∂F

∂ξ
dξt +

1

2

∂2F

∂ξ2
(dξt)

2

)
=

1

Wt

(
∂F

∂t
+ αtξt

∂F

∂ξ
+

1

2
ξ2
t β

>
t βt

∂2F

∂ξ2

)
dt +

ξt

Wt

∂F

∂ξ
β>

t dzt.

(28)

By Theorem 1, Wt is instantaneous mean-variance efficient. This proves the first part of

Theorem 2.

Equation (4)implies

1

Wt

(
∂F

∂t
+ αtξt

∂F

∂ξ
+ 1

2
ξ2
t β

>
t βt

∂2F

∂ξ2

)
+ αt +

ξt

Wt

∂F

∂ξ
β>

t βt = 0.

Denote the riskless asset by Bt, i.e., dBt = −αt Btdt. Hence, one can derive from the above

equation that

dWt

Wt

=

(
1 +

ξt

Wt

∂F

∂ξ

)
· dBt

Bt

− ξt

Wt

∂F

∂ξ
· dξ−1

t

ξ−1
t

. (29)
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This is equivalent to saying that the optimal portfolio can be replicated by the riskless asset

and the growth optimal portfolio. The optimal portfolio rule is to invest the proportion of

− ξt

Wt

∂F
∂ξ

in the growth optimal portfolio and (1 + ξt

Wt

∂F
∂ξ

) in the riskless asset. Thus, the two

fund separation theorem applies.

Proof of Theorem 3:

Applying the Kuhn-Tucker conditions yields

2R̃− λ + ρξT = 0

E[R̃]−R = 0

E[ξT R̃]− 1 = 0

(30)

which implies (11). Solving Equation (30) yields
λ =

2(RE[ξ2
T ]−E[ξT ])

V 2[ξT ]

ρ = 2(RE[ξT ]−1)
V 2[ξT ]

,

where V 2[ξT ] denotes the variance of ξT . Substituting λ and ρ into (30) yields

E[R̃2] =
(RE[ξ2

T ]− E[ξT ])R

V 2[ξT ]
+

(1−RE[ξT ])

V 2[ξT ]
.

Hence

V 2 =
(E[ξT ])2

V 2[ξT ]
(R− E[ξT ]−1)2 (31)

which completes the proof of Theorem 3.

Proof of Proposition 4: Let U(x) be the utility function determined by

− Ux(x)

Uxx(x)
= ax + b.

Then

Uxxx(x)Ux(x)

U2
xx(x)

= 1 + a.
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The optimal terminal wealth for the utility maximization is

WT = U−1
x (λξT ),

where λ is the Lagrangian multiplier in the model 9. Let At = U−1
x (λξt), then AT = WT . By

Itô’s formula

dAt =
1

Uxx(At)
dλξt −

Uxxx(At)

2U2
xx(At)

(dλξt)
2

=
Ux(At)

Uxx(At)
(αtdt + β>

t dzt)−
Uxxx(At)U

2
x(At)

2U3
xx(At)

β>
t βt dt

= (aAt + b)
[(

1
2
(a + 1)β>

t βt − αt

)
dt− β>

t dzt

]
.

If U(x) is quadratic, then a = −1, therefore

d(b− At)

(b− At)
=

dξt

ξt

.

Hence, there is a constant c such that At = b− c ξt. This proves that

WT = b− c ξT .

Compared with Theorem 3, we have also proved that mean-variance analysis is consistent with

quadratic utility maximization.

Now let U(x) be a concave and increasing utility function (second-order differentiable) and

the associated optimal portfolio return is R̃. If R̃ is global mean-variance efficient, it follows

that

E[R̃]− E[ξT ]−1

V [R̃]
=

V [ξT ]

E[ξT ]

which implies that

E[R̃] E[ξT ]− V [R̃] V [ξT ] = 1.

Hence, the covariance of R̃ and ξT is

Cov[R̃, ξT ] = −V [R̃] V [ξT ],
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i.e., R̃ and ξT are perfectly negatively correlated. This means that R̃ is a linear function of ξT

with a negative slope. Hence R̃ is the return of a quadratic utility maximization.

Proof of Theorem 4:

Since a portfolio value process Wt with weight θit in the ith asset Sit at time t is represented

as

dWt

Wt

= (1− θ>t 1)
dBt

Bt

+ θ>t
dSt

St

= −(αt + θ>t Σt)dt + θ>t Σt dzt.

(32)

Comparing the coefficients of the dzt terms of (32) and (14) yields (17).

If αt and βt are constant over time. The first and second order derivatives of F (t, ξ),

∂F

∂t
= −1

2
λαeα(T−t) + 1

2
ρξ(β>β + 2α)e(β>β+2α)(T−t)

∂F

∂ξ
= −1

2
ρe(β>β+2α)(T−t)

∂2F

∂ξ2
= 0

satisfy Equation (16) and the associated boundary condition. So, F (t, ξ) is the solution to the

partial differential equation. Therefore, the optimal portfolio policy is given by (17).
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