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Abstract
We analyze the properties of a bias-corrected realized variance(RV) in the presence of iid market mi-

crostructure noise. The bias correction is based on the first-order autocorrelation of intraday returns and

we derive the optimal sampling frequency as defined by the mean squared error (MSE) criterion. The bias-

correctedRV is benchmarked to the standard measure ofRV and an empirical analysis shows that the former

can reduce the MSE by 50%-90%. Our empirical analysis also shows that the iid noise assumption does not

hold in practice. While this need not affect theRVs that are based on low-frequency intraday returns, it has

important implications for those based on high-frequency returns.
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1. Introduction

The realized variance(RV) has become a popular empirical measure of volatility, and theRV yields

a perfect estimate of volatility in the hypothetical situation where prices are observed in continuous

time and without measurement error. This result suggests that theRV, which is a sum-of-squared

returns, should be based on returns that are sampled at the highest possible frequency (tick-by-tick

data). However, in practice this leads to a well-known bias problem due to market microstructure

noise, see e.g. Andreou & Ghysels (2002) and Oomen (2002a).1 So there is a trade-off between bias

and variance when choosing the sampling frequency, and this is the reason that returns are typically

sampled at a moderate frequency, such as 5-minute sampling. An alternativeway to handle the

bias problem is to use bias correction techniques. In this paper, we analyze an estimator that utilize

the first-order autocorrelation to bias-correct theRV. This estimator is denoted byRVAC1 and has

previously been used by French, Schwert & Stambaugh (1987) and Zhou (1996), who applied it to

∗Corresponding author, email: PeterHansen@brown.edu
1 The bias is particularly evident from the so-calledvolatility signature plotsthat were introduced by Andersen, Bollerslev, Diebold

& Labys (2000).
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daily returns and intraday returns, respectively.2 The subscript ‘AC1’ refers to the fact that we use

one (the first) autocorrelation of intraday returns to correct for the bias.

We make three contributions in this paper. First, we derive the bias and variance properties of the

RVAC1 and the optimal sampling frequency as defined by the mean squared error (MSE) criterion.

Second, we derive the asymptotic distribution ofRVAC1 and show that its asymptotic variance is

smaller than that of the standardRV. Third, the analysis is based on a particular type of market

microstructure noise, which has previously been analyzed by Corsi, Zumbach, Müller & Dacorogna

(2001), Zhang, Mykland & Äıt-Sahalia (2003), and Bandi & Russell (2003). Here it is assumed that

the noise is independent and identically distributed (across time) and that the noise is independent of

the true price process. We label this type of noise asiid noise. An important result of our empirical

analysis is that theiid noiseassumption does not hold in practice. Under theiid noiseassumption

theRVAC1 is unbiased at any sampling frequency, however theRVAC1 is clearly biased when returns

are sampled at high frequencies. While theRVAC1 should reduce the MSE by 80%–90% compared

to the standardRV, when based on its optimal sample frequency (about five-second sampling), we

conclude that the implications of the iid noise assumption are only valid when we sample every 30

seconds (or slower). At this sampling frequency the unbiasedRVAC1 leads to a reduction of the MSE

by a little more than 50% in our empirical analysis.

The paper is organized as follows. In Section 2, we define theRVAC1 and derives its properties.

Section 3 contains an empirical analysis that quantifies the relative MSE ofRVAC1 to that of the

standardRV, and Section 4 contains concluding remarks. All proofs are given in the appendix.

2. Definitions and Theoretical Results

Let {p∗(t)} be a latent log-price process in continuous time and let{p(t)} be the observable log-

prices process, such that the measurement error process is given byu(t) ≡ p(t) − p∗(t). The noise

process,u, may be due market microstructure effects such as bit-ask bounces, but the discrepancy

betweenp and p∗ can also be a result of the technique that is used to constructp(t). For example,

p is often constructed artificially from observed trades and quotes using theprevious-tickmethod or

the linear interpolationmethod.3

We assume that the specification forp∗ is a simple stochastic volatility model and our assump-

2 Other approached to bias correcting theRV include the filtering techniques by Andersen, Bollerslev, Diebold & Ebens (2001)

(moving average) and Bollen & Inder (2002) (autoregressive).
3 The former was proposed by Wasserfallen & Zimmermann (1985) and the latter was used by Andersen & Bollerslev (1997). For

a discussion of the two, see Dacorogna, Gencay, Müller, Olsen & Pictet (2001, sec. 3.2.1). Some additional approaches to calculate a

measure for the realized variance are discussed in Andersen,Bollerslev & Diebold (2003).
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tions about the (continuous-time) noise process, are analogous to standard (discrete-time) assump-

tions in the literature. We need the following definition.

Definition 1 (Gaussian iid process)We call u(t) a Gaussian iid process with meanµ and variance

ω2 if u(t) and u(s) are independent for all t6= s and u(t) ∼ N(µ, ω2) for all t ∈ R.

Lemma 1 The Gaussian iid process exists and(u(t1), . . . , u(tk))′ ∼ Nk(µ, ω2I k) for any k-tuple

(t1, . . . , tk) of distinct points, whereµ = (µ, . . . , µ) andI k is the k× k identity matrix.

Assumption 1 (i ) The true price process is given from dp∗(t) = σ(t)dw(t), wherew(t) is a stan-

dard Brownian motion,σ(t) is a time-varying (random) function that is independent ofw, andσ 2(t)

is Lipschitz (almost surely).(i i ) The noise process, u, is a Gaussian iid process with mean zero and

varianceω2 that is independent of p∗.

Although we allow the volatility function,σ(t), to be random we shall condition onσ(t) in our

analysis, because our object of interest is theintegrated variance, IV ≡
∫ b

a σ 2(t)dt. The Lipschitz

condition is a smoothness condition that requires|σ 2(t) − σ 2(t + δ)| < εδ for someε and all t

and δ (with probability one). This specification for the noise process is similar (or identical) to

those in Corsi et al. (2001), Zhang et al. (2003), and Bandi & Russell (2003). Assuming a Gaussian

distribution is not crucial but makes the analysis more tractable.

We partition the interval [a, b] into m intervals of equal length,1m ≡ (b − a)/m, and obtain

them returns,y∗
i,m ≡ p∗(a + i1m) − p∗(a + i1m − 1m), i = 1, . . . , m, that will be referred to

asintraday returns. Similarly we defineyi,m andei,m to be the increments inp andu, respectively,

and note thatei,m = yi,m − y∗
i,m.

The realized variancefor p∗ is defined byRV(m)
∗ ≡

∑m
i=1 y∗2

i,m, and it follows thatRV(m)
∗ is

consistent for theIV, asm → ∞, see e.g. Meddahi (2002). An asymptotic distribution theory of

realized variance (in relation to integrated variance) is established in Barndorff-Nielsen & Shephard

(2002). WhileRV(m)
∗ is the ideal estimator it is not a feasible estimator, becausep∗ is latent. The

realized variance ofp, which is given byRV(m) ≡
∑m

i=1 y2
i,m, is observable but suffers from a

well-known bias problem and is inconsistent for theIV.

The bias-variance properties of theRV(m) have been established by Zhang et al. (2003) and

Bandi & Russell (2003) under an iid noise assumption. The following lemma summarizes some of

their results in our framework, where our Gaussian assumptions lead to moredetailed (and simpler)

expressions. First we defineσ 2
i,m ≡

∫ a+i1m

a+i1m−1m
σ 2(t)dt and we note that var(y∗

i,m) = E(y∗2
i,m) =

σ 2
i,m.
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Lemma 2 Given Assumption 1 it holds that E(RV(m)) = IV + 2mω2, var(RV(m)) = 12ω4m +
2ω2 ∑m

i=1 σ 2
i,m − 4ω4 + 2

∑m
i=1 σ 4

i,m, and the asymptotic distribution is given by

RV(m) − 2mω2

√
12ω4m

=
√

m/3(
RV(m)

2mω2
− 1)

d→ N(0, 1), as m→ ∞.

Next, we consider the alternative measure of the realized variance, that isgiven by

RV(m)

AC1
≡

m
∑

i=1

y2
i,m +

m
∑

i=1

yi,myi−1,m +
m

∑

i=1

yi,myi+1,m.

This quantity incorporates the empirical first-order autocorrelation which explains the subscript.

This modification amounts to a bias reduction that ‘works’ the same way that robust covariance

estimators, such as that of Newey & West (1987), achieve their consistency.

Lemma 3 Given Assumption 1 it holds that E(RV(m)

AC1
) = IV,

var(RV(m)

AC1
) = 8ω4m + 6ω2(

m
∑

i=1

σ 2
i,m − ω2) + 6

m
∑

i=1

σ 4
i,m + ω2(σ 2

0,m + σ 2
m+1,m) + O(m−2),

and the asymptotic distribution is given by

RV(m)

AC1
− IV

√
8ω4m

d→ N(0, 1), as m→ ∞.

An important result of Lemma 3 is thatRV(m)

AC1
is unbiased for theIV (conditionally on{σ(s),

a ≤ s ≤ b}), such that an unbiased measure is available in the presence of market microstructure

noise. A rather remarkable result of Lemma 3 is that the bias corrected estimator, RV(m)

AC1
, has a

smaller asymptotic variance than the unadjusted estimator,RV(m). Usually a bias correction leads to

a larger asymptotic variance. Also note that the asymptotic results of Lemma 3 is more useful than

that of Lemma 2, because the result of Lemma 2 does not involve the object ofinterest,IV, but only

shed light on aspects of theRV’s bias. Note, however, that the asymptotic result of Lemma 3 does

not suggest thatRV(m)

AC1
should be sampled at the highest possible frequency, since the asymptotic

variance is increasing inm. Our expression for the variance is approximately given by var[RV(m)

AC1
] ≈

8ω4m+6ω2[
∫ b

a σ 2(s)−ω2] +6
∫ b

a σ 4(s)ds1
m, where the last term involves theintegrated quarticity

that was introduced by Barndorff-Nielsen & Shephard (2002).

Next we compareRV(m)

AC1
to RV(m) in terms of their mean square error (MSE) and their respective

optimal sampling frequencies for a special case.

Corollary 4 Suppose that the volatility is constant such thatσ 2
i,m = σ 2/m, whereσ 2 = IV and

define the noise-to-signal ratio,λ ≡ ω2/σ 2. The mean squared errors are given by

MSE(RV(m)) = 2σ 4[2λ2m2 + 6λ2m + (λ − 2λ2) + 1

m
],
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MSE[RV(m)

AC1
] = 2σ 4[ 4λ2m + 3(λ − λ2) + 3 + λ

m
].

Let m∗
0 and m∗

1 be the optimal sampling frequencies for RV(m) and RV(m)

AC1
, respectively. It holds

that m∗
0 is given implicitly as the real (positive) solution to2m3 + 3m2 = 1/(2λ2) whereas m∗1 =

√
3 + λ/(2λ).

It can be verified thatm∗
1 is several times larger thanm∗

0, thus the optimalRV(m)

AC1
requires more

frequent sampling that the ‘optimal’RV. This is quite intuitive, becauseRV(m)

AC1
can utilized more

information in the data without being affected by a severe bias.

3. Empirical Analysis

We analyze the Alcoa Inc. (AA) stock over a sample period that spans the five year from January

2, 1998 to December 31, 2002. The data are transaction prices from the NYSE extracted from

the Trade and Quote (TAQ) database. The raw data were filtered for outliers and we discarded

transactions outside period from 9:30am to 4:00pm, and days with less than five hours of trading

were removed from the sample, which reduced the sample by 13 days. Thuswe used the previous-

tick method to construct theRVs for a total ofn = 1, 242 days and denoted these byRV(m)
t and

RV(m)

AC1,t
, t = 1, . . . , n. TheRVs are calculated for the hours that the market is open, approximately

390 minutes per day (6.5 hours) for most days.

From Lemmas 2 and 3 it follows that 2mω2 = E[RV(m) − RV(m)

AC1
] such thatω̂2 = 1

2m(RV
(m) −

RV
(m)

AC1
) is a natural estimator ofω2 (under the assumptions of Corollary 4), where we define the

sample averages,RV
(m) ≡ n−1 ∑n

t=1 RV(m)
t and RV

(m)

AC1
≡ n−1 ∑n

t=1 RV(m)

AC1,t
. With m = 390 (1-

minute intraday returns) we find thatRV
(m)−RV

(m)

AC1
= 0.657 which leads tôω2 = 0.657/(2∗390) =

0.000842, and sinceRV
(m)

AC1
= 4.762 we obtainλ̂ = 0.000842/4.762 = 0.000177. This leads to

m∗
0 ≈ 200 andm∗

1 ≈ 4, 890, which corresponds to intraday returns that are sampled approximately

every 2 minutes and every 5 seconds, respectively.4 By plugging these numbers into the formulae

of Corollary 4 we find the relative mean squared error to be MSE(RV(m∗
0))/MSE(RV

(m∗
1)

AC1
) ≈ 4.88,

which (in theory) implies thatRV
(m∗

1)

AC1
is almost five time more efficient thanRV(m∗

0) in terms of the

mean squared error criterion. The most commonly used sampling frequencyis 5-minute sampling,

which corresponds tom = 78 in our application. As noted by Bandi & Russell (2003) this results in

an additional loss of efficiency and theoretically we have that MSE(RV(78)) is about 10 times larger

than MSE(RV
(m∗

1)

AC1
).

4 Bandi & Russell (2003) reported optimal sample frequencies for RV(m) (for several assets) that are quite similar to our estimate

of m∗
0.
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From Corollary 4 we observe that the root mean squared errors are proportional toσ 2, such that

RMSE(RV(m)) = σ 2cRV(m) and RMSE(RV(m)

AC1
) = σ 2cAC(m) wherec2

RV(m) ≡ 2[2λ2m2 + 6λ2m+
(λ − 2λ2) + 1

m] andc2
AC(m) ≡ 2[4λ2m + 3(λ − λ2) + 3+λ

m ]. In the left panel of Figure 1 we have

plottedcRV(m) andcAC(m) using our empirical estimate ofλ. This reveals that theRV(m)

AC1
dominate

theRV(m) except at the lowest frequencies. The left panel also shows that theRV(m)

AC1
is less sensitive

to the choice ofm. This is also clear from the right panel of Figure 1, where we have displayed

the relative MSE ofRV(m)

AC1
to that of (the optimal)RV(m∗

0) and the relative MSE ofRV(m) to that of

(the optimal)RV
(m∗

1)

AC1
. One aspect that can be read of Figure 1 is that theRV(m)

AC1
continue to dominate

the ‘optimal’ RV(m∗
0) for a wide ranges of frequencies, and not just in a small neighborhoodof the

optimal value,m∗
1.

[Figure 1 about here]

The optimal sample frequencies of Corollary 4 depend on parameters that are likely to differ

across days. So our estimates above should be viewed as approximations for ‘daily average values’,

in the sense thatm0 = 200 is a sensible sampling frequency to use (on average), although different

values are likely to be better on some days. Whilem∗
1 indicate that we should sample intraday

returns every 5 seconds, we shall see that the implications of the iid noise assumption do not hold

in practice if intraday returns are sampled at high frequencies. In our application the implications

seem to fail once intraday returns are sampled more frequently than every30 seconds.

3.1. Empirical Evidence against the IID Noise Assumption

Under the iid noise assumption theRV(m)

AC1
should be unbiased at any frequency. This can be un-

derstood from the fact that the iid noise assumption causes the first-orderautocorrelation ofei,m

(and henceyi,m) to be non-zero, whereas higher-order covariances are all zero. TheRV(m)

AC1
properly

corrects for the first-order autocorrelation inyi,m, which is the reason that theRV(m)

AC1
is unbiased

under the iid assumption. If higher-order autocorrelations ofyi,m are non-zero, which could be the

case if the noise component,u(t), was dependent across time (different from iid noise), then the

RV(m)

AC1
would be biased (for largems). This problem is evident from the signature plots in Figure

2 that show that theRV(m)

AC1
is biased for sampling frequency above 30 seconds. For example, with

1-second sampling the bias is quite severe and close to that of the standardRV, however theRV(m)

AC1

generally has a smaller bias.

[Figure 2 about here]
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In spite of this shortcoming, we will still argue that theRV(m)

AC1
is preferred to the standardRV.

The volatility signature plot ofRVAC1 indicate that the time-dependence inu persists for less than 30

seconds, because the signature plot is quite constant for the frequencies that are below a 30-second

sampling. So our estimate ofλ (that is based on 1-minute returns) should not be affected by the time

dependence, and this value ofλ suggests that the MSE of theRV(780)
AC1

(30-seconds returns) is 58%

smaller than that of the ‘optimal’RV(m∗
0), see Figure 1. Nevertheless, Figure 2 shows that there is

a need to study the properties of theRV under a more general specification for the noise process,

such as the Ornstein–Uhlenbeck specification that was analyzed in a related setting by Äıt-Sahalia,

Mykland & Zhang (2003).

4. Concluding Remarks

We have derived the bias and variance properties ofRV(m)

AC1
, which equals the standard realized vari-

ance plus a bias correction that is given from the first-order autocorrelation of intraday returns. The

RV(m)

AC1
compares favorable to the standard measure ofRV in terms of the mean squared error cri-

terion. Our empirical analysis showed that the MSE ofRV(m)

AC1
may be 90% smaller than the MSE

of the most common measure ofRV, provided that the market microstructure noise satisfies the

iid assumption. Most of the existing theoretical studies of theRV in the presence of market mi-

crostructure effects are based on this assumption, however our empirical analysis revealed that this

assumption does not hold in practice. While it may be true (or approximately true) for sampling at

low frequencies, it does not hold when returns are sampled more frequently than every 30 seconds

in our empirical analysis. This followed directly from the volatility signature plotof RV(m)

AC1
in Figure

2. While theRV(m)

AC1
is biased when sampling at high frequencies, its bias was less severe than that of

the standardRV, andRV(m)

AC1
was found to dominate the standardRV(m) when the former is based on a

less aggressive sampling, such as 30-second sampling. However, ouranalysis has revealed a need to

study the properties ofRV-measures under a more general specification for the noise process. Some

preliminary results can be found in Hansen & Lunde (2003) who use a model-free noise structure,

and in Oomen (2002b) who use a model-based approach.
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Appendix of Proofs

Proof of Lemma 1. That(u(t1), . . . , u(tk))
′∼ N(µ, ω2Ik) follows from the definition ofu, and since this

is a well-defined (multivariate) Gaussian distribution, the existence ofu follows directly from Kolmogorov’s

Existence Theorem, see Billingsley (1995, chapter 7).

As stated earlier, we condition onσ(t) in our analysis, thus without loss of generality we treatσ(t) as a

deterministic function in our derivations.

Proof of Lemma 2. The bias follows directly from the decompositiony2
i,m = y∗2

i,m + e2
i,m + 2y∗

i,mei,m, since

E(e2
i,m) = 2ω2. Similarly, we see that

var(RV(m)) = var(
m

∑

i=1

y∗2
i,m) + var(

m
∑

i=1

e2
i,m) + 4 var(

m
∑

i=1

y∗
i,mei,m)

because the three sums are uncorrelated. The first sum involves uncorrelated terms such that var(
∑m

i=1 y∗2
i,m) =

∑m
i=1 var(y∗2

i,m) = 2
∑m

i=1 σ 4
i,m, where the last equality follows from the Gaussian assumption. For the sec-

ond sum we find

E(e4
i,m) = E(ui,m − ui−1,m)4 = E(u2

i,m + u2
i−1,m − 2ui,mui−1,m)2

= E(u4
i,m + u4

i−1,m + 4u2
i,mu2

i−1,m + 2u2
i,mu2

i−1,m) + 0

= 6ω4 + 6ω4 = 12ω4,

E(e2
i,me2

i+1,m) = E(ui,m − ui−1,m)2(ui+1,m − ui,m)2

= E(u2
i,m + u2

i−1,m − 2ui,mui−1,m)(u2
i+1,m + u2

i,m − 2ui+1,mui,m)

= E(u2
i,m + u2

i−1,m)(u2
i+1,m + u2

i,m) + 0 = 6ω4.

such that var(e2
i,m) = 12ω4 − [E(e2

i,m)]2 = 8ω4 and cov(e2
i,m, e2

i+1,m) = 2ω4. Since cov(e2
i,m, e2

i+h,m) = 0

for |h| ≥ 2 it follows that

var(
m

∑

i=1

e2
i,m) =

m
∑

i=1

var(e2
i,m) +

m
∑

i, j =1
i 6= j

cov(e2
i,m, e2

i+h,m) = m8ω4 + 2(m − 1)2ω4 = 12mω4 − 4ω4.

The last sum involves uncorrelated terms such that

var(
m

∑

i=1

ei,my∗
i,m) =

m
∑

i=1

var(ei,my∗
i,m) = 2ω2

m
∑

i=1

σ 2
i,m.

Finally, the asymptotic normality follows by the central limit theorem for heterogeneous arrays with finite

dependence, and the fact that 2
∑m

i=1 σ 4
i,m + 2ω2 ∑m

i=1 σ 2
i,m − 4ω4 = O(1).

Proof of Lemma 3. First we note thatRV(m)
AC1

=
∑m

i=1Yi,m + Ui,m + Vi,m + Wi,m, where

Yi,m ≡ y∗
i,m(y∗

i−1,m + y∗
i,m + y∗

i+1,m)

Ui,m ≡ (ui,m − ui−1,m)(ui+1,m − ui−2,m)

Vi,m ≡ y∗
i,m(ui+1,m − ui−2,m)

Wi,m ≡ (ui,m − ui−1,m)(y∗
i−1,m + y∗

i,m + y∗
i+1,m),

8
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sinceyi,m(yi−1,m + yi,m + yi+1,m) = (y∗
i,m + ui,m − ui−1,m)(y∗

i−1,m + y∗
i,m + y∗

i+1,m + ui+1,m − ui−2,m)

=Yi,m + Ui,m + Vi,m + Wi,m. Thus the properties ofRV(m)
AC1

are given from those ofYi,m, Ui,m, Vi,m, and

Wi,m. It follows directly thatE(Yi,m) = σ 2
i,m, andE(Ui,m) = E(Vi,m) = E(Wi,m) = 0, which shows that

E[RV(m)
AC1

] =
∑m

i=1 σ 2
i,m, and the variance ofRV(m)

AC1
is given by

var[RV(m)
AC1

] = var[
m

∑

i=1

Yi,m + Ui,m + Vi,m + Wi,m] = (1) + (2) + (3) + (4) + (5),

where(1) = var(
∑m

i=1 Yi,m), (2) = var(
∑m

i=1 Ui,m), (3) = var(
∑m

i=1 Vi,m), (4) = var(
∑m

i=1 Wi,m), (5) =
cov(

∑m
i=1 Vi,m,

∑m
i=1 Wi,m), since all other sums are uncorrelated. Next, we derive derive the expressions of

each of these five terms.

1. Yi,m = y∗
i,m(y∗

i−1,m + y∗
i,m + y∗

i+1,m) and given our assumptions it follows thatE[y∗2
i,my∗2

j,m] = σ 2
i,mσ 2

j,m

for i 6= j, andE[y∗2
i,my∗2

j,m] = E[y∗4
i,m] = 3σ 4

i,m for i = j, such that

var(Yi,m) = 3σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m − [σ 2

i,m]2 = 2σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m.

The first-order autocorrelation ofYi,m is

E[Yi,mYi+1,m] = E[y∗
i,m(y∗

i−1,m + y∗
i,m + y∗

i+1,m)y∗
i+1,m(y∗

i,m + y∗
i+1,m + y∗

i+2,m)]

= E[y∗
i,m(y∗

i,m + y∗
i+1,m)y∗

i+1,m(y∗
i,m + y∗

i+1,m)] + 0

= 2E[y∗2
i,my∗2

i+1,m] = 2σ 2
i,mσ 2

i+1,m,

such that cov(Yi,m, Yi+1,m) = σ 2
i,mσ 2

i+1,m, whereas cov(Yi,m, Yi+h,m) = 0 for |h| ≥ 2. Thus

(1) =
m

∑

i=1

(2σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m) +

m
∑

i=2

σ 2
i,mσ 2

i−1,m +
m−1
∑

i=1

σ 2
i,mσ 2

i+1,m

= 2
m

∑

i=1

σ 4
i,m + 2

m
∑

i=1

σ 2
i,mσ 2

i−1,m + 2
m

∑

i=1

σ 2
i,mσ 2

i+1,m − σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m

= 6
m

∑

i=1

σ 4
i,m − 2

m
∑

i=1

σ 2
i,m(σ 2

i,m − σ 2
i−1,m) + 2

m
∑

i=1

σ 2
i,m(σ 2

i+1,m − σ 2
i,m)

−σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m

= 6
m

∑

i=1

σ 4
i,m − 2

m
∑

i=2

σ 2
i,m(σ 2

i,m − σ 2
i−1,m) + 2

m−1
∑

i=1

σ 2
i,m(σ 2

i+1,m − σ 2
i,m)

−σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m − 2σ 2
1,m(σ 2

1,m − σ 2
0,m) + 2σ 2

m,m(σ 2
m+1,m − σ 2

m,m)

= 6
m

∑

i=1

σ 4
i,m − 2

m−1
∑

i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m) + σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m

2. Ui,m = (ui,m − ui−1,m)(ui+1,m − ui−2,m) and fromE(U2
i,m) = E(ui,m − ui−1,m)2E(ui+1,m − ui−2,m)2 it

follows that var(U2
i,m) = 4ω4. The first and second order autocovariance are given by

E(Ui,mUi+1,m) = E[(ui,m − ui−1,m)(ui+1,m − ui−2,m)(ui+1,m − ui,m)(ui+2,m − ui−1,m)]

= E[ui−1,mui+1,mui+1,mui−1,m] + 0 = ω4, and

E(Ui,mUi+2,m) = E[(ui,m − ui−1,m)(ui+1,m − ui−2,m)(ui+2,m − ui+1,m)(ui+3,m − ui,m)]

9
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= E[ui,mui+1,mui+1,mui,m] + 0 = ω4,

whereasE(Ui,mUi+h,m) = 0 for |h| ≥ 3. Thus,(2) = m4ω4 + 2(m − 1)ω4 + 2(m − 2)ω4 = 8ω4m − 6ω4.

3. Vi,m = y∗
i,m(ui+1,m − ui−2,m) such that var(V2

i,m) = σ 2
i,m2ω2 andE[Vi,mVi+h,m] = 0 for all h 6= 0. Thus

(3) = var(
∑m

i=1 Vi,m) = 2ω2 ∑m
i=1 σ 2

i,m.

4. Wi,m = (ui,m − ui−1,m)(y∗
i−1,m + y∗

i,m + y∗
i+1,m) such that var(W2

i,m) = 2ω2(σ 2
i−1,m + σ 2

i,m + σ 2
i+1,m).

The first order autocovariance equals

cov(Wi,m, Wi+1,m) = E[−u2
i,m(y∗2

i,m + y∗2
i+1,m)] = −ω2(σ 2

i,m + σ 2
i+1,m),

while cov(Wi,m, Wi+h,m) = 0 for |h| ≥ 2. Thus

(4) =
m

∑

i=1

[2ω2(σ 2
i−1,m + σ 2

i,m + σ 2
i+1,m) −

m
∑

i=2

ω2(σ 2
i,m + σ 2

i−1,m) −
m−1
∑

i=1

ω2(σ 2
i,m + σ 2

i+1,m)]

= ω2
m

∑

i=1

(σ 2
i−1,m + σ 2

i+1,m) + ω2[σ 2
1,m + σ 2

0,m + σ 2
m,m + σ 2

m+1,m]

= 2ω2
m

∑

i=1

σ 2
i,m + ω2[σ 2

0,m − σ 2
m,m + σ 2

m+1,m − σ 2
1,m] + ω2[σ 2

1,m + σ 2
0,m + σ 2

m,m + σ 2
m+1,m]

= 2ω2
m

∑

i=1

σ 2
i,m + 2ω2[σ 2

0,m + σ 2
m+1,m].

5. The autocovariances between the last two terms are given by

E[Vi,mWi+h,m] = E[y∗
i,m(ui+1,m − ui−2,m)(ui+h,m − ui−1+h,m)(y∗

i−1+h,m + y∗
i+h,m + y∗

i+1+h,m)],

showing that cov(Vi,m, Wi±1,m) = ω2σ 2
i,m, while all other covariances are zero. From this we conclude that

(5) = 2
∑m

i=1 ω2σ 2
i,m − ω2[σ 2

1,m + σ 2
m,m].

By adding up the five terms we find

6
m

∑

i=1

σ 4
i,m − 2

m−1
∑

i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m) + σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m + 8ω4m − 6ω4

+ 2ω2
m

∑

i=1

σ 2
i,m + 2ω2

m
∑

i=1

σ 2
i,m + 2ω2[σ 2

0,m + σ 2
m+1,m] + 2

m
∑

i=1

σ 2
i,mω2 − ω2[σ 2

1,m + σ 2
m,m]

= 8ω4m + 6ω2(

m
∑

i=1

σ 2
i,m − ω2) + 6

m
∑

i=1

σ 4
i,m + ω2(σ 2

0,m + σ 2
m+1,m) + κm,

where

κm = −2
m

∑

i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m) + σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m

+ω2(σ 2
0,m − σ 2

1,m + σ 2
m+1,m − σ 2

m,m).

Sinceσ 2(t) is Lipschitz, there exists anε > 0 such that|σ 2(t) − σ 2(t + δ)| ≤ εδ for all t and allδ. Thus

if we define the interval,Ji,m ≡ [a + (i − 1)1m, a + i 1m], we have that|σ 2
i,m| = |

∫

Ji,m
σ 2(s)ds| ≤

1m sups∈Ji,m
σ 2(s) = O(m−1), since1m = (b − a)/m = O(m−1), and

|σ 2
i,m − σ 2

i−1,m| = |
∫

Ji,m

σ 2(s) − σ 2(s − 1m)ds| ≤
∫

Ji,m

|σ 2(s) − σ 2(s − 1m)|ds

10
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≤ 1m sup
s∈Ji,m

|σ 2(s) − σ 2(s − 1m)| ≤ 12
mε = O(m−2).

Finally,
∑m

i=1(σ
2
i+1,m − σ 2

i,m)2 ≤ m · (1m
ε
m)2 = O(m−3), which proves thatκm = O(m−2). The asymp-

totic normality follows from the CLT that applies to heterogeneous arrays with finite dependence, since

yi,m(yi−1,m + yi,m + yi+1,m) is a finite dependent (3-dependent) process for anym.

Proof of Corollary 4. The MSE’s are given from Lemmas 2 and 3. Setting the∂MSE(RV(m))/∂m ∝ 4λ2m+
6λ2−m−2 equal to zero yields the first order condition of the corollary. Similarly we find∂MSE(RV(m)

AC1
)/∂m ∝

4λ2 − (3 + λ)m−2, which proves thatm∗
1 =

√
3 + λ/(2λ).
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Figure 1: Left: The MSEs ofRV(m) andRV(m)
AC1

as a function of the sampling frequency,m. Right: Relative

MSE of RV(m) to RV
(m∗

1)

AC1
wherem∗

1 is the optimal sampling frequency forRVAC1, and relative MSE ofRV(m)
AC1

to RV(m∗
0) wherem∗

0 is the optimal sampling frequency for the standardRV.
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