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The Wishart Autoregressive Process of Multivariate Stochastic Volatility

Abstract

The Wishart Autoregressive (WAR) process is a multivariate process of
stochastic positive semi-definite matrices, which is proposed in this paper as
a dynamic model for stochastic volatility matrices. The WAR based nonlinear
forecasts at any horizon can be obtained in a straightforward manner. The WAR
also allows for factor representation, which separates white noise directions from
directions which capture entire past information. For illustration, the WAR is
applied to a sequence of intraday realized volatility-covolatility matrices.

Keywords: Stochastic Volatility, CAR Process, Factor Analysis, Realized
Volatility.

JEL number: G13, C51.



Un modele dynamique pour des matrices de volatilité stochastique : Le
processus Wishart autorégressif.

Résumé

Le processus Wishart autorégressif (WAR) est un processus de Markov pour
matrices de volatilité stochastique. Nous décrivons sa distribution multivariée,
donnons les expressions des moments conditionnels d’ordre un et deux et ex-
pliquons comment effectuer les prévisions a tout horizon. Le modele WAR peut
étre contraint pour permettre des interprétations factorielles, qui distinguent
des directions sans dépendance temporelle et des directions résumant 'effet du
passé. La spécification WAR . est finalement appliquée a 1’étude d’une suite de
matrices de volatilité-covolatilité intrajournalieres.

Mots clés : Volatilité stochastique, processus CAR, analyse factorielle, volatilité
réalisée.



1 Introduction

The management of portfolios of multiple risky assets requires a tractable, mul-
tivariate model of expected returns, volatilities and covolatilities. While there
exists a large body of literature on stochastic volatility models for one risky
asset, considerably fewer papers consider stochastic volatility in the multiasset
framework. Moreover, the number of assets examined is often quite limited and
equal to 2, 3 or 4. Exceptions are the recent papers on conditional correlation
GARCH model by Engle and Sheppard (2001), Fiorentini, Sentana and Shep-
hard (2003) and the bayesian model by Chip, Nardari and Shephard (2002). The
multivariate models in the literature are typically applied to the joint analysis of
exchange rates?®, interest rates®, stock prices,® and the volatility links between
stock markets”. The limited number of theoretical contributions in this field is
due to the difficulty in finding a dynamic specification of the stochastic volatility
matrix which would satisfy the following requirements:

i) define matrix processes compatible with the symmetry and positivity prop-
erties of a variance-covariance matrix.

ii) avoid the curse of dimensionality by keeping the number of parameters low
without making the structure of the model too rigid.

iii) allow for forecasting at any horizon in a straightforward manner.

iv) allow for checking the time series properties of the volatility process, such
as stationarity and the Markov property of order 1.

v) ensure the invariance of the model with respect to time aggregation and
portfolio allocation.

In the literature we distinguish two types of multivariate models for the
dynamics of a volatility-covolatility matrix:

Yi=V; (Tt+1) )

where 411 is a n-dimensional vector of returns, (Y;) is a (n,n) symmetric pos-
itive definite matrix and V; denotes the variance-covariance matrix conditional
on the information available at date t.

i) The multivariate ARCH models are autoregressive specifications of the
volatility matrix. The volatility matrix is written as a linear combination of
lagged volatilities and lagged squared returns. The elementary model is the
multivariate ARCH(1) model, in which the elements of the volatility matrix Y;
are linear affine combinations of the elements the matrix of squared returns :

4Bollerslev (1987), Diebold and Nerlove (1989), Bollerslev (1990), Baillie, Bollerslev (1990),
Pelletier (2003).

5Engle, Ng and Rothschild (1990).

6Schwert, Seguin (1990).

"King and Whadwani (1990), King, Sentana, and Wadhwani (1994), Lin, Engle, and Ito
(1994), Ledoit, Santa-Clara, Wolf (2001).



vech (Y;) = Avech (ry—17,_,) + b, where vech (V') denotes the vector obtained
by stacking the @ different elements of Y. The full unrestricted model
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”(";r 1) "(”; ) parameters and suffers from the curse of dimension-

involves [

ality [see Bollerslev, Engle, and Wooldridge (1988)]. The solutions proposed in
the multivariate ARCH literature are the following. Under the diagonal-vech
specification, the matrix A is diagonal and each series in the multivariate vec-
tor has a GARCH-like specification® [Bollerslev, Engle, and Wooldridge (1988)
and e.g. Brandt and Diebold (2002) for an application]; Bollerslev (1987) intro-
duced the constant conditional correlation restriction to make the estimation
of a large model feasible and ensure positive definiteness of the covariance ma-
trix; this approach has been extended by Pelletier (2003), who considered a
regime switching model with constant correlation in each regime. Recently T'se,
Tsui (2002), Engle (2002) introduced models with time varying correlations.
They propose a nonlinear GARCH type representation, which ensures that the
correlations vary between -1 and 1.

Alternatively, the spectral decomposition of the volatility matrix can be as-
sumed to be of a special form [Baba, Engle, Kraft, and Kroner (1987)]. Recently,
Alexander (2000) has advocated the use of factor ARCH models, as first out-
lined by Engle, Ng, and Rothschild (1990), but the model seems to provide poor
fit in empirical work [Engle and Sheppard (2001)].

The multivariate ARCH specifications have several drawbacks. For instance,
the symmetry and positivity constraints are satisfied only under a set of com-
plicated restrictions on the parameters. which are difficult to interpret. Also,
the models are not invariant with respect to the change of time unit® or with
respect to change in portfolio allocation [see for example Dynamic Correlation
model by Engle, Shephard (2001)].

ii) Stochastic volatility models in discrete time have been initially intro-
duced by Taylor (1986), and later improved and extended to the multivariate
framework by Harvey, Ruiz, and Shephard (1994) [see, Chib, Nardari, Shephard
(2002), Fiorentini, Sentana, Shephard (2002), also Ghysels, Harvey, and Renault
(1996) for a survey on the so-called stochastic variance models]. Typically the
volatility matrix is written as:

exp hlt 0
E/t = A i - AIJ
0 exp hnt
where A is a (n,n) matrix and hg, i = 1,...,n, are independent volatility factor
processes. The factor processes can be chosen so that (hig,...,h,t) is a gaus-

sian VAR process [see Harvey, Ruiz, and Shephard (1994)]. This specification
ensures that stochastic matrices (Y;) are symmetric positive definite and follow

8This approach has been recently extended by Engle and Sheppard (2001) to a model with
time-varying correlation compatible with univariate GARCH.

9See Drost and Nijman (1993), Drost and Werker (1996), Meddahi and Renault (2003) for
a discussion of time aggregation of ARCH and volatility models.



a Markov process. The stochastic variance model is easy to estimate from re-
turn data by Kalman filter if the expected return is equal to zero, but much
more difficult to implement if a volatility in mean is introduced'®. However, the
main drawback concerns the number n of underlying vectors, which is strictly
less than the number of different elements of Y; and the diagonal representation
of the volatility matrix, which assumes stochastic weights, but constant factor
loadings (corresponding to the columns of A)!! 12,

The existing multivariate models seem too restrictive to accommodate the
complexity of the data. Therefore, as put forward by Engle (2002), new solutions
need to be found. The aim of the present paper is to introduce a multivariate
dynamic specification which is compatible with the constraints on a volatility
matrix, flexible, easy for prediction making, invariant with respect to temporal
aggregation and portfolio allocation, and straightforward in implementation.
Our approach is based on the extension of the Wishart distribution to dynamic
framework . It is known that the Wishart distribution is the distribution of a
sample variance-covariance matrix computed from i.i.d. multivariate gaussian
observations [see Wishart (1928a,b) for the initial papers and Anderson (1984),
Muirhead (1978, 1982), Stuart and Ord (1994), Bilodeau and Brenner (1999) for
surveys|. The extension consists in introducing serial dependence by considering
multivariate serially correlated Gaussian processes which are independent of
each other, as the building blocks of the new process.

The Wishart Autoregressive (WAR) process is defined in Section 2. We ex-
plain how it is constructed from the aforementioned Gaussian VAR processes,
compute its conditional Laplace transform, show that it satisfies the Markov
property and derive the first and second order conditional moments. Finally
we extend the definition to autoregressive WAR, processes of higher autoregres-
sive orders. Examples of WAR processes are discussed in Section 3 and some
continuous time analogues are presented in Section 4. The WAR processes
arise as special cases of compound autoregressive (CAR) processes considered
in [Darolles, Gourieroux, and Jasiak (2001)]. For this reason, nonlinear pre-
dictions at any horizon are easy to perform. The predictive distribution at
horizon h is given in Section 5, where temporal aggregation is also discussed.
The purpose of Section 6 is to analyze models with reduced rank and their
factor interpretations. The WAR-in-mean models are presented in Section 7.
The properties of return based predictions are also given. The WAR-in-mean
model is used as a representation of the dynamics of the efficient portfolio in a
mean-variance framework and the structural interpretations are provided. Sta-
tistical inference is discussed in Section 8. We focus on the use of observable
volatility matrices. We first discuss the identification of the parameters and ex-
plain how to derive consistent estimators by nonlinear least squares. In Section

108ee Kim, Shephard, Chib (1998) for an application to exchange rates.

I The specification looks like Bollerslev’s constant correlation GARCH process, since the
correlation is zero after a change in the definition of the basic assets by means of the trans-
formation AL,

12Constant factor loadings are also assumed in the standard factor ARCH model [Diebold,
Nerlove(1989), Engle, Ng, Rotschild (1990), Alexander (2000)].



9 the Wishart process is estimated from a series of intraday realized volatility
matrices. In particular, we analyze the number and types of underlying factors.
Section 10 concludes. The proofs are gathered in Appendices.

2 The Wishart Autoregressive Process

Wishart distribution is the distribution of the sample second order moment
of independent zero-mean multinormal vectors [see e.g. Wishart (1928a,b)].
This definition is extended to a dynamic framework by considering (zero-mean)
gaussian vector autoregressive processes instead of independent normal vectors.
The associated sample second moment at time ¢ defines the value of the Wishart
Autoregressive process (WAR) Y;.

In Section 2.1 we first consider a model of Y; of autoregressive order one
which arises as the outer product of one Gaussian VAR(1) process, so that the
rank of Y; is constant and equal to one. Next, in Section 2.2 the model of
order one of is extended to processes formed by stochastic matrices Y; of any
rank which arise from adding the outer products of several Gaussian VAR(1)
processes. We derive the conditional first and second order moments of WAR(1),
and we show that this model is invariant to portfolio allocation (Section 2.3).
Finally we discuss the extension of the WAR process of order one to a WAR
process of a finite order p.

2.1 The outer product of a gaussian VAR(1) process

Let us consider a (zero-mean) gaussian VAR(1) process (z;)of dimension n. This
process satisfies:
Tep1 = Mae +et41, (1)

where (e¢) is a sequence of i.i.d. random vectors with multivariate gaussian dis-
tribution N (0,X), where ¥ is assumed positive definite. Thus the process (z;)
is a Markov process with conditional distribution N (Mx;—1,X). This process
is stationary if the matrix M has eigenvalues with modulus less than one and
can be nonstationary otherwise. Let us now consider the process defined by:

It is a time series of (n,n) stochastic matrices of rank one for any date and state
of nature. For example, for n = 2, we get:

Y, = Yiie Yo _ x%t xlt‘CUZt
Yorr Yoo T1tT2t ﬂfét ’
While the rank of the matrix is deterministic (equal to 1), its nonzero eigen-
value (equal to z%, + z3,) and the eigenvectors are stochastic. The dynamic
distributional properties of the process (Y;) are characterized by the conditional

distribution of Y41 given x4, 41, .... For Wishart processes it is easier and more
suitable to examine the conditional distributions by means of the conditional



Laplace transform instead of the conditional density function. The property
below is proved in Appendix 1:

Proposition 1 i) The stochastic process (Y;) is a Markov process, in the sense
that the conditional distribution of Yii1 given the information on the entire past
path of v: ©y, x4—1, ... is identical to the conditional distribution of Y41 given
Y: = zexy, only.

it) Moreover, the conditional Laplace transform (or moment generating func-

tion) W, of the process (Y;) can be written as*3:

¥ (I) = ElexpTr (I'Viq1) |z
= E [exp (wgﬂl"xt“) |:Ut]
exp [x;MT (Id—25T) ! M:Ut]

[det (Id — 251/2T'51/2)]'/?

expTr [M’F (Id — 251) 7 MYt]

[det (Id — 251/2051/2)]Y/?
where the argument of the Laplace transform is a symmetric matriz T and T'r

denotes the trace operator. The Laplace transform is defined for a matriz T such
that'* 15||281/2TSL/2|| < 1.

The Laplace transform of Y;1, which is the (conditional) expectation of the
exponential of a linear combination of different elements of 2,12}, can always
be written as the (conditional) expectation of exp (z},,'ws11), where I is a
symmetric matrix. Indeed we have:

Tr (FY%_H) =1T1r (F.’L‘t+1$;+1) =1T1r (ZE;:JrlF;EH_l) = ;L';+1F.’L't+1,

since w} I'ws11 is a scalar. Moreover, ¥, (I') depends on z; by means of Y;
only, which is the Markov property of the matrix process (Y3).

As mentioned above, the stochastic matrix ¥; = x;} is of rank one, while its
range is stochastic. Therefore the model can only be used for degenerate positive
semidefinite matrices'®. The extension to positive semidefinite matrices of any
rank, including the full rank, is given below.

131 et us recall that, for two symmetric matrices ' and Y, we have:

n n n

Ir(IY) = Z (ry),;; = Z i')‘ilyli = Z i"/ilYil-

i=1 i=1 (=1 i=1 [=1

For instance, for n = 2 we get: 1'r (FY) =v11Y11 + 722Y22 + 2712 Y12.

14The domain of existence of the Laplace transform has zero as interior point, and the
Laplace transform admits a series expansion with respect to I'. Thus all conditional (cross)
moments of any order of the components of the process (Y;) exist.

15The norm of a symmetric matrix is its maximal eigenvalue.

16See Bilodeau and Brenner (1999) and references therein for a discussion of degenerate
Wishart distributions.



2.2 Extension to positive semidefinite matrices of any rank

Let us now consider the process Y; defined by

K
Vi= S wnl, (3)
k=1

where the processes zg, k = 1,..., K are independent Gaussian VAR(1) pro-
cesses of dimension n with the same autoregressive parameter matrix and inno-
vation variance:

Tpt = Mxpy1 +€rt, €xe~ N(0,%), (4)
The Proposition below extends Proposition 1 and is proved in Appendix 2.

Proposition 2 When the processes (xg), k =1,..., K, are independent with
the same autoregressive parameter M and innovation variance X:

i) The process Y; = Ele Tpexy, is a Markov process.

it) Its (conditional) Laplace transform is given by:

Ui (I) = ElexpTr (I'Ves) [z

= exp (Zn: Zn: Vi Yij,t+1 |Yt]
s )

= B

i=1 j=1

expTr [(M'T (Id—-2%T)~ M) Y,

1d — 251/2r51/2) )%

[det

The conditional Laplace transform still depends on the past by means of Y;

only, which is the Markov property of the matrix process (Y;). The following is
the definition of a Wishart autoregressive process of order one.

Definition 3 A Wishart autoregressive process of order 1, denoted WAR(1),
is a matriz Markov process Y; = Eszl Tptx),, where (xp:) are independent
gaussian AR (1) processes: Ty 41 = MTp+ €k tt1, Ekr ~ N (0,X). It will be
denoted as W, (K, M,X).

Thus, the conditional distribution depends on the parameters K, M, ¥. K
is the degree of freedom, M the (latent) autoregressive parameter, and ¥ the
(latent) innovation variance.

The transition of this process follows a noncentered Wishart distribution
with pdf [see Muirhead (1982) p.442]:



1 1

1
f(Yiq1]Ye) SR m(detz)—K/%let[ld - 52_1MYtM’E_1Yt+1]_K/2

1
(detYy ) KD/ exp{(=5Tr[Z7 (Ve + MY M')]},

where T',(K/2) = [,., exp{Tr(—A)}(detA)K—"=1/2dA is the multidimen-
sional gamma function and the density is defined on positive semi-definite ma-
trices.

This function remains a density function when K is a real number strictly
larger than n—1. Therefore a WAR(1) process can also be defined for noninte-
ger values of K by means of its Laplace transform, but loses its interpretation
as a sum of squared gaussian VAR(1) 7. However, except for applications
such as the models of quadratic term structure of interest rates'®, we don’t
have to focus on an economic or financial interpretation of the latent processes
(gt). These processes are introduced mainly to derive the functional form of
the Laplace transform and to simplify the proofs and interpretations of some
results. Finally note that the matrix Y; has full rank with probability one if
K> (n-1).

The WAR(1) model arises as a solution to the curse of dimensionality en-
countered in multivariate models, where the number of reduced form parameters

4
is of order [M} . Indeed the WAR(1) process involves a much smaller num-

2
ber of parameters equal to 1 + M + n2, which corresponds to the order for
the reduced-form parameters of a n-dimensional VAR process. The number of
parameters can be further reduced by imposing restrictions on the matrices M

or ¥ (see Section 6).

2.3 Conditional moments

The conditional Laplace transform contains all information on the conditional
distribution. However, it can be useful to consider also some summary statistics
such as the first and second order conditional moments, even if they are less
informative. While the expression of the conditional expectation of a stochastic
matrix is easy to define, its conditional variance-covariance matrix is cumber-
some. Remember that the volatility matrix of a stochastic volatility matrix!® is

17This possibility of noninteger degree of freedom corresponds to the inclusion of the chi-
square family of distributions in the gamma family when n = 1, since up to a scale factor
the chi-square distribution with degree of freedom K is a gamma distribution with degree of
freedom K/2.

18See Ahn, Dittmar and Gallant (2002) for the estimation of a basic quadratic term structure
model, and Cheng and Scaillet (2002), Gourieroux and Sufana (2003) for the discussion and
extension of such models.

19The volatility of the volatility is important for financial applications. Indeed it is related
to the volatility of derivatives written on the underlying returns. This explains for instance
the opening of a market for derivatives on market index volatility at Chicago.

10



n(n+1)

2
sights on the structure of that matrix, without complicated matrix notation, we
calculate the conditional variance between two inner products Y110, 6'Yi1 8
based on Y;;1. Given the formulas established for any real vectors a, 3, v, §, we
can compute all covariances of interest. For instance, the conditional covariance
covy (Yiji+1, Yrr,e41) corresponds to oo = e, v = €;, B = e, § = ey, where e; is
the i*" canonical vector with zero components except the i** component which
is equal to 1.

The first and second order conditional moments of the WAR(1) process are
derived in Appendix 3.

of a very large dimension equal to ”("TH) [ + 1] . In order to give some in-

Proposition 4 We have:
i) By (Yii1) = MY;M' + KYX..
it) For any set of four n-dimensional vectors a, B, v, § we get:

cove (7' Yep10,0'Ye 1 8)
= YMY,M'§a'S8 +~"MY;M'Ba'Y5 + o' MY, M'5v'¥3
+a' MY;M'By'S6 + K [YE8a'S6 + a'£37'E6] .

The first and second order conditional moments are affine functions of the
lagged values of the volatility process, which is a direct consequence of the
exponential affine expression of the conditional Laplace transform [see Darolles,
Gourieroux, and Jasiak (2001)]. In particular, the WAR(1) process is a weak
linear AR(1) process [see e.g. Grunwald, Hyndman, Tedesco, and Tweedie
(1997) for a survey of linear AR(1) processes in the literature]. More precisely,
we get :

Vi1 = MY M' + KX + ey, (5)
where 7;41 is a matrix of stochastic errors with conditional mean zero. Equiv-
alently we get:

vech(Yiy1) = A(M)vech(Y:) + vech(KX) + vech(ne+1), (6)

where vech(Y) denotes the vector obtained by stacking the lower triangular
elements of Y, and A(M) is a matrix function of M. The linear representation
given above is a weak representation since the error term features conditional
heteroscedasticity and, even after standardization, is not identically distributed.

2.4 Invariance to linear invertible transformation

Let us consider a WAR(1) process Y; of dimension n with parameters K, M, X,
and a (n,n) invertible matrix A; the process: Y; (4) = A'Y; A is another process
of stochastic symmetric positive semidefinite matrices. Moreover we have:

K K K
! ! ! ! !
;(A)=A E Ty A = E Aepa, A= E Zkt 2t
k=1 k=1 k=1

11



where zg: = A'xy: are also gaussian autoregressive processes such that: zp ;41 =
A'M (A") " 2t + A'eg 411 This implies the property below 20,

Proposition 5 If (Y;) is a WAR(1) process Wy, (K, M,%) and A is a (n,n)
invertible matriz, then Y; (A) = A'Y: A is also a WAR(1) process
Wo(K, A'M (A", A'SA).

From a financial viewpoint, Proposition 5 establishes the invariance of the
family of Wishart processes with respect to portfolio allocation. Indeed, let
us consider n basic assets with returns r; and volatility Y;. and n portfolios
of various quantities of those assets. The quantities of each asset (positive or
negative) in a given portfolio allocation form a column of matrix A. The returns
on the portfolios are:

i1 (A) = A'rey,

whereas the portfolios’ volatilities are Viryy; (A) = A'Y;A. Thus, if the asset
return volatility follows a Wishart process, the portfolios’ volatility follows a
Wishart process as well 2'. This invariance property is not satisfied by some
constrained multivariate ARCH models such as the so-called diagonal model
and the model with constant correlation.

In particular, Proposition 5 implies that any Wishart autoregressive process
can be rewritten as a ”standardized” WAR, with latent error € variance equal
to an identity matrix of dimension n.

Corollary 6 Any WAR(1) process Wy, (K, M,X) with invertible matriz ¥ can
be written as: Y; = SY/2YSV2 ) where Y* is a "standardized” WAR(1) process
W, (K, ='2MxY? ) Id).

Other linear invertible transformations can also be considered. For instance,
let us assume that the autoregressive matrix M is diagonalizable??. M can be
written as: M = QAQ ™!, where @ is the matrix of eigenvectors and A the diag-
onal matrix of eigenvalues of M. The transformed process Y* = Q~'Y; (Q‘l)'

is a WAR(1) process W,,(K, A, Q72 (Q’l)’), with a diagonal autoregressive
matrix. Thus all interactions between latent variables are captured by the in-
novation variance.

The discussion in terms of porfolio allocations shows the importance of port-
folio volatilities a'Y;a, where a is a given vector. The second order dynamic

properties of such portfolio volatilities follow from Proposition 4 (see Appendix
4).

Corollary 7 Let a, 3, v, § be n-dimensional vectors. We obtain:
i) Vi (VYira) = MYiM'y o'Sa+ 2y MY, M'a o'Sv 4+ o' MY, M o v' 2y

20The proof for noninteger K follows directly from the conditional Laplace transfrom.

21Similarly, the Wishart specification for a volatility matrix of log-exchange rates is invariant
with respect to the currency unit.

22This assumption has been made for instance by Ahn, Dittmar and Gallant (2002) in the
context of quadratic term structure models.

12



+K [(7’204)2 +a'Say'Ey|;
i) Vi (&' Yigr00) = 40/ MY M'a o/ v + 2K (o' Sar)? ;
iti) covy ('Yipra, B'Ye418) = 4/ MY, M'B o/ S8 + 2K (o/X8)°;
i) cov (&'Yip10,a'Yi108) =20/ MY, M'a &'36 + 20/ MY, M'S o/ X
2K 'Y o' Xa.

From the formulas in Corollary 7 we see that :

i) the degree of freedom is a parameter which determines the magnitude of
overdispersion;

ii) the correlations between portfolio volatilities can be of any sign due to the
first term in iii) of Corollary 7. Thus it will be easy to reproduce asymmetric
reactions of volatilities and covolatilities [Ang, Chen (2002)].

2.5 WAR(p) processes

Due to the number n of components in Y;, a WAR(1) process can accommodate a
large spectrum of patterns of persistence in volatilities and covolatilities, includ-
ing possibly long memory effects. Nevertheless there may be cases when WAR
processes with higher autoregressive order p (called WAR(p)) need to be consid-
ered. The Wishart processes are easily extended to include more autoregressive
lags. Since the formula of the conditional Laplace transform in Definition 3 is
valid for any conditioning matrix MY; M', this matrix can be replaced by any
symmetric positive semi-definite function of Y%, Y;_1,...,Y:_p41.

Definition 8 A Wishart autoregressive process of order p, denoted WAR(p), is
a matriz process with conditional Laplace transform:

\I’t (F) = Et [exp Tr (FY}+1)]
expTr [T (Id - 25T) ™ Y2, MYy i1 M}

)

[det (Id — 251/2T51/2)] %/

where the matrices M; have dimension (n,n) and represent the sequence of
latent "matriz autoregressive coefficients”. The process will be denoted
Wy (K5 My, ..., My, X).

When the autoregressive order is larger than 1, the interpretation of the
Wishart process as the sum of squares of autoregressive gaussian processes is no
longer valid. For instance, let us consider a gaussian VAR(2) process: z;y+1 =
Mixy + Maxi—1 + €441, €t41 ~ IIN (0,X). The conditional Laplace transform
of i1 = ($t+1$2+1) given x; = (x¢,%¢_1,...) becomes:

W, ()
exp [(Mlzct + Mowy_1)' T (Id — 250) " (Myy + szt_l)]

[det (Id — 251/2051/2)]Y/?

13



exp Tr [F (Id — 2EF)_1 (Mlél?t + MQZUt,l) (Mlél?t + MQZUt,l)I]

[det (Id — 251/21'51/2)]'/?
exp T'r [r (Id = 25T) ™" (MyY, M} + MyYy_y M} + Myz,a, | M} + M2xt_1x;M{)]

[det (Id — 251/2T'51/2)]"/?

We see that this is not the conditional Laplace transform of a Wishart process
because of the presence of the cross products z;x;_;. Section 4.2 shows how
such cross terms can be handled in a Wishart framework. The expressions of
first and second order conditional moments of a WAR(p) process are similar to
expressions given in Proposition 4 and Corollary 7. We get , for instance:

p
Ei(Yiy1) = ZMjﬁJrij}ﬁLKE;
j=1
p
Vi(@'Yipe) = 40/ M;Yip jMj)aa'Sa + 2K (o' Sa)?,
j=1

In particular a WAR(p) process admits a weak linear autoregressive represen-
tation of order p:

vech(Yi41) = Z Aj(Mn, ..., Mp)vech(Yii1—j) + vech(KX) + vech(niy1), say.

(7)

=1

3 Examples

In this section we give various examples of Wishart processes and describe spe-
cial cases which are known in the literature, such as the Wishart White Noise,
the one-dimensional Wishart process, known as the Autoregressive Gamma, Pro-
cess, and the Wishart process of unit root.

3.1 The Wishart White Noise

When M = 0, the series (Y;) is simply a sequence of independent matri-
ces with identical Wishart distributions with parameters K and . The first
and second order moments are given by: E (Y;) = KX, cov (V' Y, 8'Y () =
K [YEBa'S + o'E4v'E4].  In particular, cov(a/Yia, B'Y:5) = 2K (a'SB)%.
The two stochastic quadratic forms o'Y;a and B'Y;3 are uncorrelated if and
only if the vectors a and § are orthogonal for the inner product associated with
3. Such results are useful in the analysis of Wishart processes since, as shown
in the next section, the marginal distribution of a stationary Wishart process is
a centered Wishart distribution.

14



3.2 The limiting deterministic case

Let us consider the WAR/(1) process with parameters K, ¥x = K13, My =
M, where X1, M; are constant matrices, and the limit of the WAR(1) process
when the degree of freedom K tends to infinity. By definition we have:

K
!
Y = E Trt L,
k=1

where z+ = Mgxrt—1 + €kt, €kt ~ N (0,2 k). Equivalently we can write:

K
1 z :~ ~
Y't = E Trt Ty,
k=1

where Zy; = VKap = MiTgi—1 + Ext, St ~ N (0,%;). Since the variables
Trt, k=1,...,K, are independent identically distributed®?, it follows that, for
large K:

Yy ~ E (TutThy) ,

by the law of large numbers.

For instance, if the autoregressive coefficient M; admits eigenvalues with a
modulus strictly less than 1, if 24, = 0,Vk, Y; tends to X (00), where X (00) is
the marginal variance of Ty;. Thus the WAR(1) process includes as a limiting
case the constant process, formed by a sequence of constant matrices.

3.3 The univariate WAR process

In the univariate framework (n = 1), the conditional Laplace transform be-
comes:

Ui (y) = Elexp(vYit1)|Yi] (8)

2
—K/2 ym
= (]. — 2’}/0'2) / exp (mh)

We see that this is the conditional Laplace transform of an autoregressive
gamma process [see e.g. Gourieroux and Jasiak (2000), Darolles, Gourieroux,
and Jasiak (2001)], up to a scale factor. The transition distribution is a path
dependent noncentered gamma distribution up to a change of scale.

3.4 Unit root

A special WAR(1) process has already been considered in the literature [Bru
(1989), Bru (1991), O’Connel (2003)], and corresponds to M = Id, ¥ = Id.

23if the processes are stationary. Otherwise the result is still valid if we assume identical
initial values for the different (x;) processes.
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Thus, if K is integer, the underlying processes (z;),i = 1,...,n, are indepen-
dent gaussian random walks, and the WAR,, (K, Id, Id) process is simply the
time discretization of the continuous time process defined by:

dY; = KIdpdt + Y, awv;/?, (9)

where Yfﬂ is the symmetric positive root of ¥; and W is a (n,n) matrix, whose
components are independent Brownian motions. This matrix process arises as
a natural multivariate extension of the Bessel process used in finance for time
deformation [Geman, Yor (1999)], and therefore shares the properties of the
Bessel process®*. Several theoretical results have been derived in this special
case [Bru (1991), Donati-Martin et alii (2003)] like the explicit expression of
the transition density of the process or the joint distribution of the process of
eigenvalues of matrix Y;. Note also, that for dimension n = 1 it corresponds to
an autoregressive gamma process with unit root. This process is known to be
stationary with long memory (see Gourieroux, Jasiak (2000)).

3.5 The bivariate WAR process

The bivariate WAR(1) process involves three components and depends on eight
parameters, which explains the large variety of dynamic patterns that can be
accommodated. In this section we show various simulated paths of

i) Y11¢, Yaoor, interpreted as volatilities,

ii) correlation Y1a:/ (Ynthgt)l/2, and

iii) eigenvalues \1; > Ao; of the stochastic volatility matrix.

The spectral decomposition of the volatility matrix is important for financial
applications. The largest eigenvalue Aj; is equal to the maximum of the port-
folio volatilities A\;; = a'Y;a, computed on portfolio allocations standardized
by a'a = 1. It provides the measure of the highest risk, whereas the associ-
ated eigenvector is the most risky portfolio allocation. Similarly, the smallest
eigenvalue Ag; is equal to the minimum of portfolio volatilitites computed on
standardized portfolio allocations. When it is close to zero, the associated eigen-
vector is the basis for arbitragist strategies.

For illustration let us consider three experiments involving a bivariate WAR(1)
process with 7" = 100 observations and K = 2 underlying processes. The au-
toregressive coefficient has been fixed to:

09 0 . _ 03 -0.3 .

M = ( 10 >for experiment 1, M = < 03 03 >for experiment 2,
05 0 )

M = ( 0 0'5> for experiment 3.

The first experiment corresponds to a recursive system for x;, which involves
a component (z1;) with a root close to 1. The second experiment corresponds

24see Karlin, Taylor (1981) pl175-176 for the definition of the Bessel process, and Revuz,
Yor (1998), chapter XI for its properties.
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to an autoregressive matrix of rank 1, where all the elements of the volatility
matrix are driven by a single dynamic factor [see Section 6] Finally, in the third
experiment the two latent processes are independent with identical dynamics.

[Insert Figure 1: volatilities, example 1]

[Insert Figure 2: correlation, example 1]

[Insert Figure 3: canonical volatilities, example 1]

[Insert Figure 9: canonical volatilities, example 3]

As expected, the bivariate WAR(1) model is able to reproduce volatility
clustering phenomena, that is path dependent subperiods where the values of the
variances Y7i1¢, Y20¢, Or A1, Aoy are large, and path dependent subperiods when
they are small. But these clustering phenomena are not necessarily identical for
all portfolio volatilities.

In particular simultaneously Aj; can cluster at high levels, while Ay; is clus-
tering at low levels. In such a situation the market has to manage two very
different types of risks: 1) the common volatility risk for the first eigenvector,
2) a risk due to the leverage effect of arbitragist strategies for the second eigen-
vector. Intuitively, this situation will occur when some portfolio volatilities are
negatively correlated.

Let us first discuss the volatility patterns. In experiment 1 we directly
observe the lag of one between the peaks and throughs, which is a consequence
of the recursive form of matrix M [see Figure 1]. In experiment 2 the series
are driven by the same factor, but the sensitivity coefficients with respect to
the factors are different. Moreover, the conditional heteroscedasticity of the
volatility series renders difficult the detection of the common factor.

The correlations are rather typical of the case n = K = 2. Indeed the case
K = 2 is close to the degenerate case K = 1. If K = 1, the matrix Y; is
stochastic with rank 1 and the correlation alternates, taking randomly values
+1 and -1. When K = 2, the matrix Y; has rank 2 with probability 1, but the
probability of a correlation with absolute value close to one is significant. This
feature is directly observed in Figures 2, 5, 8 in which we see highly fluctuating
correlation. This effect will generally diminish when K increases as shown in
Section 3.2.

Finally in Figures displaying the eigenvalues we find observations for which
A1t is rather large while Ao is close to zero. At those times, the set of assets
features high risk while there exist approximate directions for arbitrage.

4 Predictions from WAR processes

The WAR processes belong to the family of compound autoregressive (CAR)
processes [see Darolles, Gourieroux, and Jasiak (2001)], which have simple pre-
diction formulas due to the exponential affine representation of the conditional
Laplace transform. Also, in this section we discuss temporal aggregation of
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WAR processes. It will be shown that it resembles in many respects the tem-
poral aggregation of gaussian VAR processes.

4.1 Prediction formulas and stationarity condition

Let us consider the (nonlinear) forecasting of the matrix WAR(1) process Y at
horizon h which consists in computing the conditional distribution of Y,y given
Y;. Mathematically the prediction formulas follow from the conditional Laplace
transform at horizon h, which is easy to compute recursively [see Darolles,
Gourieroux, and Jasiak (2001)]. For ease of exposition, let us consider an
integer-valued degree of freedom K. By definition we have:

K

!
Yt+h = E Lht+hLk t+h>
k=1

where 2y 14n = MPayitepin, V (Enn) = SHMEM +. . + M1 (M 1) =
¥ (h), say. This implies the following proposition.

Proposition 9 The transition distribution at horizon h of the WAR(1) process
is the (conditional) Wishart distribution W, (K,M", X (h)).

In particular, the WAR(1) process admits linear prediction formulas at any
horizon. We have:

E Yy |Vy] = M"Y, (M") + K (h).

If the matrix M admits eigenvalues with a modulus strictly less than 1,
then the WAR(1) process is asymptotically strictly stationary. Its stationary
(marginal) distribution is the centered Wishart distribution W (K0, X (c0)),
where X (00) is the solution of the equation:

¥ (00) = MY (00) M' + X.

The prediction formulas are easily extended to a WAR(p) process, which is a
compound autoregressive process t0o.

4.2 Temporal aggregation

In Sections 2 and 3 we considered a volatility matrix Y; at horizon 1 for which
the information set included the lagged values of Y; and of the returns r;. It
is well-known that standard volatility models are not invariant with respect to
time aggregation [see e.g. Drost and Nijman (1993), Drost and Werker (1996),
Meddahi and Renault (2003)]. Let us consider a WAR(1) specification and
study the volatilities and returns defined at a longer horizon of 2 time units,
say. Let us first interpret the time aggregated volatility process:

YT+1 :}[27'+Y2T+17T:071727""
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For this purpose let us define the geometric return at horizon 2:

Tr4l = T2r41 + 2742,

and assume zero expected return. We also assume that Y; follows WAR(1)
stochastic volatility model at time unit equal to one. When the information set
at date 7 = 2t includes the lagged values of the aggregate volatility and returns,
we get:

Vv [ Tz, r]
=V [7”2r+1 + rar42|Tr, Y, Y ]

14 [ 7”2r+1 + Tzr+z|7”anzT) |7“r, Y, ]
+E [V (r27+1 + rory2|rar, er) I7r, r]
= [ Tory1 + Tzr+z|7”anzT) |7“r, Y, ]
= [er + E (Yor41|Yar) 2, Y, ]
= B[Vr +Yar 1|V

- B [YT+1|YT] .

Thus, the aggregate process ?TH = Y5, +Y5,41 is the basic process that one
needs to consider to calculate the volatility at horizon 2, equal to E [)N@HDN’T]

Let us now consider the expression of aggregate volatility in terms of the
latent x processes. We get:

K

! !
Yor +Yor = E (Th2r Tk or + Th2r+1%h 27 11) >
k=1

which is not a WAR(1) process, due to the presence of lags. However, the

aggregate volatility Y, 1 can be obtained from (n?,n?) matrix:

K
j : Tk,27 / /
= ? Ty, . Iy, «
Pt < wk,2T+1 > ( k,2T k,27+1 ) ’

!
by summing the two diagonal blocks. The stacked process ($;€72T,:U;€72T+1) is

a gaussian VAR(1) process:

< Tgor ) _ ( 0 M > ( T, 2r—2 ) " ( Id 0 > ( Ek,2r )
Th27r+1 0 M? Th2r—1 M Id Ek2r+1 )
Since the process (Z;) is the sum of squares of the stacked gaussian VAR, it

follows that:
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Proposition 10 The stochastic process (Z;) is a Wishart process of dimension
0 M P M’
2n: Won <K< 0 M? >< MY ¥+ MEM' ))

Thus the process of aggregate volatilities is the sum of block diagonal ele-
ments of a Wishart process obtained by stacking the consecutive observations
of latent processes z;. The stacking reveals the effect of the cross-products
:Uk72.,—:l?;€727_+1 on the distribution of the block diagonal elements. We conclude

that the volatility process at horizon 2, that is F [)N/THDN”T}, is not a Wishart

process of order 1, but can be computed from an augmented Wishart process
of order 1.

5 Continuous time analogue

When the autoregressive coefficient M can be written as M = exp (A), where A
is a matrix, the Wishart autoregressive process of order 1 is a time-discretized
diffusion process. Moreover, if K is an integer the diffusion process is obtained
by summing the squares of K independent multivariate Ornstein-Uhlenbeck
processes.
Let us consider K = 1 and the multivariate Ornstein-Uhlenbeck process
defined by:
diL“t = Aﬂ?tdt + det, (10)

where (w;) is a n-dimensional standard brownian motion and A and 2 are
(n,n) matrices. It is well known that the time-discretized Ornstein-Uhlenbeck
process is a gaussian autoregressive process of order 1, where M = exp (4) and
Y= fol exp (sA) QQ' [exp (sA)] ds.

The exponential expression of the autoregressive matrix coefficient implies
restrictions on the dynamics of the associated discrete-time gaussian AR(1)
process. More precisely, the autoregressive matrix M cannot admit negative or
zero eigenvalues. Thus a number of gaussian VAR(1) processes in discrete time,
which are usually encountered in applications, cannot be considered as time dis-
cretizations of multivariate Ornstein-Uhlenbeck processes. Thus some Wishart
processes of order one are not time discretized continuous-time processes. For
M of dimension (2,2) we have for example:

i) the white noise Wishart process for M = 0;

ii) the model with periodicity 2 for M = —Id;

. . 0 O

iii) the model with recursive dependence M = < 05 0 ), where the latent
process Ti; = €1¢, Tat = €2t — 0.9 T14—1 = €2t — 0.5 €1,4—1, IS a moving
average.
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For any other M = exp (A4), the WAR(1) process is a time-discretized dif-
fusion process. The diffusion process is: Y; = z;z} where (z;) is the Ornstein-
Uhlenbeck process (equation 10). Let us show the stochastic differential system
satisfied by the continuous time matrix process (Y;). It is proved in Appendix
5 that this matrix process satisfies:

dy; = (QQ + AY; + V;A')dt + z¢ (Qdw;)' + Qdw,z) (11)
= (Q +AY; + VA dt + Y (2 + Quap) dwye,
=1
where Q;, [ = 1,...,n, are the columns of matrix Q. It is easily checked that
the volatility matrix of d(vecY;) depends on Y; only. Indeed let us introduce:
vecY; = (Y, .. Y”’) , where Y/, j = 1,...,n, is the j column of Y;. The

Brownian component of dY} is Zle (zswji + Qzj¢) dwy. Thus we deduce:

covy (dyg', Yy )

n n
= cou [Z (xewi + Qi) dwyy, Z (pwji + Nzji) dwlt]
=1 =1

dt.

[Z (zewi + Ywir) (wewjs + Ywje)'
I=1

This conditional covariance is a function of ¥ and Y; only:
coun (aV,dv7) = (oYy + Y7 (5) + 37 (1) + Vi Z) e, (12)
In particular, we deduce for any n-dimensional vectors «, 3, 7, §

i) cov (dYia, dYi ) = (&'EBY; + V'S + X5a'Y; + 'Y 6Y) dt,

il) covr (v'dY;a, 0'dY;B) = [(a'S8) (v'Y:0) + ('Y:B) (a'S9)
+(v'E8) ('Y:0) + (a'Y13) (7'X0)]dt,
iii) V; (v'dYier) = [(o'Za) (v'Yiy) + 2 («'Yiy) ('Ey) + (o'Yia) (' Ey)]dt,
iv) Vi (&/dYia) = 4 (¢'Ea) (a'Yia) dt,
v) covg (&'dYiar, B'dY:8) = 4 ('E8) ('Y 5) di.

These covariance formulas are the local counterparts of the discrete time
formulas derived in Corollary 7. Indeed for a small time increment dt, the
formulas of Corollary 7 hold with M = Id + o (dt) and ¥ replaced by Xdt. For
continuous time, the terms in the volatility formula of order dt matter only.

By construction we know that the solution Y; = .z} of the differential sys-

tem (11) - (12) is symmetric positive semidefinite. However the positivity condi-
tion becomes obvious when we consider the ”drift” and ”volatility” expressions.
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Indeed let us consider a vector (portfolio allocation) a such that o'Y;a = 0. The
drift of o’dYia is @'QQ adt > 0, whereas its volatility is V; (¢’dY;a) = 0. Thus
there is a mean-reverting effect, which ensures that o'Y;a remains nonnegative
and this argument is valid for any a.

The Wishart continuous-time process is easily extended to handle any degree
of freedom K strictly greater than 0, integer or noninteger valued. To do that, we
keep the volatility function unchanged, change the drift to KQQ' + AY; + Y; A’
and increase the number of independent Brownian motions up to dimension
%. When K is not an integer, the interpretation in terms of sums of
squares of Ornstein-Uhlenbeck processes is no longer valid, but the symmetry
and positivity of the solutions are ensured by the boundary argument given
above.

The differential stochastic system satisfied by the Wishart process can be
written as:

dvechY; = pedt + Ai/det, (13)

where (%) is an n(n+1)/2 dimensional Brownian motion, u; = vech(KQQ'+

AY; + Vi A') and Ay = 1/dtV;(dvechY?) has a complicated expression. An alter-

native representation of the continuous time process can be derived by analogy

to the equation of unit root Wishart processes (see Section 3.4). It is easy to
see that a continuous time Wishart process satisfies a system of the type :

dy; = (O + AY, + Y, A')dt + Y, 2dW,Q + Q'dW,Y,/?,

where W, is a (n, n) stochastic matrix, whose components are independent Brow-
nian motions and 2, A, Q are (n,n) matrices . This representation can be useful
for some computations, but it can also be misleading. Indeed the number of
scalar Brownian motions is strictly larger than the number of linearly indepen-
dent components of Y;. Therefore information generated by the n(n + 1)/2
components of Y is strictly included in the information set generated by the n?
Brownian motions.

Example 1. The square of a univariate Ornstein-Uhlenbeck process y; = 7,

where:

dxy = azxidt + wdWy,

satisfies the stochastic differential equation:

dy; = (2ayt + wz) dt + 2w \/y dWy.

For another value K of the degree of freedom, we get:
dyy = (Qayt + KWQ) dt + 2w \/y dWy.
This is the Cox-Ingersoll-Ross (CIR) process [Cox, Ingersoll, Ross (1985)].

This result is not surprising since the CIR process is a special case of an au-
toregressive gamma process. In particular the square of an Ornstein-Uhlenbeck
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process is a special case of CIR process with a restriction on the mean reverting,
volatility and equilibrium parameters [see Heston (1993)].

6 Reduced-rank (factor) models

In multivariate time series, the number of parameters can be reduced by finding
factor representations with a small number of factors. The factor representa-
tions can be defined a priori as, for example, in factor ARCH models, or they
can be based on a coherent general-to-specific methodology as in multivariate
linear autoregressive models. In this section we develop a general-to-specific
approach which is based on the analysis of the rank, kernel and range of the
autoregressive matrix. By considering a matrix M with reduced rank, we are
able to define portfolio allocations with special properties such as 1) serially in-
dependent portfolio volatilities (white noise directions), 2) portfolio volatilities
which summarize relevant information (factor directions).

For ease of exposition, we first consider an autoregressive matrix of rank one,
and next extend the results to matrices of any rank.

6.1 DMatrix M of rank 1

Let us first consider a WAR(1) process with autoregressive matrix M of rank
1. This matrix can always be written as: M = B/, where 8 and «a are two
nonzero vectors of dimension n. Thus, for integer K, the process Y;11 can be
written as:

K
!
Yijr = E Tht+1Tf 41
k=1

K K K
! ! ! ! ! ! !
= fBaYaB + pa E Tht+1€k, 41 T E €kt 1T p4108 + E Eht+1Ek t+1-
k=1 k=1 k=1

This representation involves a term Sa'Y;af', which is known at time ¢, and
three stochastic terms.

i) Let us first consider the conditional Laplace transform of the process Y;
25 Tt is equal to:

expTr [aﬁ’l" (Id—25T) " Ba’Yt]

T, () =
t [det (1d — 251/2T51/2)] %/

expTr [(ﬁ’l“ (Id — 25T) " B) a’Yta]

)

[det (Id — 251/2T51/2)] %/

since we can commute under the trace operator. It is seen that the conditional
Laplace transform depends on Y; by means of o'Y;« only.

25yalid for any integer or noninteger degree of freedom

23



Proposition 11 When M = pa’, the conditional Laplace transform depends
on Yy through the quadratic form (portfolio volatility) o'Y;a only.

Moreover, the dynamics of o'Y;« is easily characterized. Indeed we have:
E;exp (ua'Yiy10)

U, (uaa')

exp [(uﬁ’aa’ (Id — 2uEaa’)71 B) a’Yta]

[det (Id — 2u21/2aa'21/2)]K/2

It is shown in Appendix ?? that this conditional Laplace transform corre-
sponds to a WAR(1) process of dimension 1, which has a noncentered chi-square
transition distribution.

Proposition 12 When M = o', the univariate process (o'Yiar) is a WAR(1)
process W1 (K, o3, a'Ea).

Thus we get a nonlinear one-factor model, where the dynamic factor is F; =
a'Yia. More precisely, the factor process (F;) admits autonomous dynamics,
and, once the factor value is known, the conditional distribution of Y;;; given
Y; is known and equal to the conditional distribution of Y;41 given Fj. It is
interesting to note that in the usual CAPM model the asset return volatility
matrix depends on the past through the market portfolio volatility only, which
implies that the matrix M is of rank one.

ii) It is also interesting to point out functions of the volatility matrix which
destroy serial dependence. Let us consider a deterministic matrix C' with di-
mension (p,n) and focus on the matrix process (C'Y;C). We get:

K
CYeiC = O wper1h 0 C
k=1
K
C"Y " (Ba'my +eppir) (B zhp + i) C.

k=1

This expression does not depend on the lagged values (zy ) if the columns
of C are orthogonal to vector 8. Moreover, C'Y;11C = C’ Z,If:l 5k,t+152,t+10
will follow a WAR(1) process W, (K, 0, C'EC') of dimension p.

Proposition 13 Let us consider a matriz C of dimension (n,n — 1), whose
columns span the vector space orthogonal to vector 3. Then the sequence of
matrices (C'Y:C) is an i.i.d. sequence of Wishart variables W,,_1(K, 0, C'XC)
of dimension n — 1.

Therefore, in the framework of a matrix M of rank one, we can define trans-
formations of the stochastic volatility matrix which either contain all necessary
information, or reveal the absence of serial dependence. Two cases can be dis-
tinguished:
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1) If « is not orthogonal to §: o' # 0, we can compute the volatilities with
respect to a new basis of the vector space. More precisely, we can consider
the transformed volatility matrix:

_ C'Y;:HC C'Yt+104
Yt+1 (A) - O/Y;:HC a’YtHa

corresponding to A = (C, «), where C is orthogonal to 8. The first diago-
nal block captures serial dependence wheras the second diagonal block is
white noise. These blocks are mutually independent.

2) If a and f are orthogonal: o/ = 0, we can compute the volatilities with
respect to a basis including the direction without serial dependence plus
the 8 direction. In this case: A = (C,«, ), where C is a (n,n — 2) matrix
with columns orthogonal to § and linearly independent of «. Then we
get:

CYe1C CVipra C'YpafB
Yir1(4) = | o'Yi1C oY oY
B'Yi1C 'Y Y

In this case the portfolio volatility a’Y; 11« is a white noise process which
captures all relevant information.

6.2 Transformations of WAR(1) processes

We will now consider the general framework of a matrix M of any rank and of
degree of freedom which can be integer or noninteger valued. Let us consider a
transformation a'Y;y;ia of the volatility matrix, where a is a (n, p) matrix with
full column rank. The conditional Laplace transform of this process is:

U () = Elexp Tr (va'Yir1a) V7],

where 7 is a symmetric (p,p) matrix. It can be written in terms of the basic
Laplace transform :

Ui (y) = ElexpTr(ya'Yia) |V7]
= ¥ (aya'),
since we can commute within the trace operator. Thus we get:
- expTr [M’ava' (Id - 2Zaya’) " MYt}
= [det (Id — 251/2aya'x1/2)] "/
expT'r [7(1’ (Id—2%aya’) " MY}M’a]

[det (Id - 221/2a7a’21/2)]K/2
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Thus (a'Y;a) is a Markov process if and only if MY;M'a is function of a'Y;a
(for any value Y}), or equivalently if there exists a matrix @) such that M'a =
a®)’. Moreover, it is easy to show that in this case (a'Y;a) still defines a Wishart
process.

Proposition 14 Let us assume that (Y;) is a Wishart process of order one
Wy (K, M,Y%) and consider a matriz a with dimension (n,p) and full column
rank.

i) The transformed process (a'Yia) is a Markov process if and only if there
exists a (n,p) matriz Q such that o’ M = Qa’.

it) Under this condition, the process (a'Yia) is also a Wishart process
W, (K,Q,a'Sa) of dimension p.

The condition i) of Proposition 14 is easy to understand if K is integer and
the Wishart process is written in terms of the latent processes z:

K K
! ! ! !
aYia = E Q' TptTp @ = E Zkt e
k=1 k=1

where zg; = a'zge = o’ My —1 + a’e;. The process (zy;) is gaussian autore-
gressive iff a’ Mz ;1 is a linear function of zj 1, that is iff there exists @) such
that: a’/Mzrs—1 = Qa'zps1 = Qzrt—1. Then the parameters of the trans-
formed Wishart process are the parameters of the new gaussian autoregressive
process (z¢)-

6.3 Wishart processes with reduced rank

The results of the previous section can be used to extend the interpretations
given in Section 6.1 to a Wishart process of order one with an autoregressive
matrix of any rank. Let us now assume that this matrix has rank [ < n. Then
it can be written as:

M = Bd, (14)

where a and f are matrices with dimension (n,!) and full column rank.
Two types of transformed processes have direct interpretations:

i) (a'Yia) is a process which conveys all information, called the nonlinear
dynamic factor process.

ii) (C'Y;C), where C' is a matrix ”orthogonal” to 3, that is satisfying C'f = 0,
is a white noise process.

Moreover, both transformed processes satisfy condition i) of Proposition 14
since:

i) o'M =d'Ba’ = Qad’, with Q = o' 5;
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ii) C'M =C'Ba' =0=0d', with Q = 0.
Proposition 14 implies the following properties.

Proposition 15 Let us assume M = Ba’, where « and § are (n,l) matrices
with full column rank [.

i) The conditional distribution of Yi+1 depends on the past values Y; by means
of 'Yy only.

it) (o'Yia) is a Wishart process Wi (K, o/, a'Ea) of dimension I.

iii) If C is a (n,n — 1) matriz such that C'8 = 0, then (C'Y;C) is an i.i.d.
Wishart process Wy,_; (K,0,C'SC) of dimension n — 1.

7 Stochastic volatility in mean

The WAR stochastic volatility can be introduced in the expected return model
by analogy to the ARCH-in-mean process [see Engle, Lilien, and Robbins (1987)].
The definition of the WAR-in-mean process is given in Section 7.1 and its pre-
dictive properties are described in Section 7.2.

7.1 Definition of the WAR-in-mean process

Let us consider the returns on n risky assets. The returns form a n-dimensional
process (r;). We assume that the distribution of r.y; conditional on the lagged
returns ; and lagged volatilities Y; is gaussian with conditional variance Y; and
a conditional mean which is an affine function of Y;26.

Definition 16 The return process (ri) is a WAR-in-mean process if the condi-
tional distribution of ryy1 given ¢, Yy is gaussian with @ WAR(1) conditional
variance-covariance matriz Yy, and a conditional mean m; = (m;) with com-
ponents: m;y = by + Tr(D;Y:), i = 1,...,n, where b; are scalars and D; are
(n,n) symmetric matrices of "risk premia”.

For instance, for two returns the WAR-in-mean model becomes:

i1 =01 +di,11Y11, + 2d1 12Yi0 + di22Yo0 1 + €141
ro i1 = ba +do11Y11,¢ + 2d212Y10,¢ + d222Yo0 ¢ +€2441,

where V; [(6’17t+1,6’27t+1)l] = Y;. The model allows for dependence of the
expected return on volatilities and covolatilities.

The WAR-in-mean specification is rather convenient since the predictive
distributions of the returns are easy to compute by means of Laplace transforms.

26The gaussian assumption concerns the distribution conditional on lagged returns and
lagged volatilities. It is compatible with fat tails observed on the distribution conditional on
lagged returns only.
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This is a consequence of the expression of the conditional Laplace transform of
the return ;4 given r¢, Y;. Indeed we have:

E [exp (2're41) |re, Ye]

1
= exp|z'm; + 52")@2’]

n
1
= exp Z zi [bi + Tr (D;Y)] + Ez'Ytz

Li=1
n 1 ,
E ziD; + Ezz Y:

i=1

= exp|2'b+Tr

’

which is an exponential affine function of Y;. Similar computations can easily be
performed in more complicated specifications, including combinations of lagged
returns in the conditional mean or higher autoregressive order.

Finally note that, as mentioned in Section 5, under restrictions on the pa-
rameters, some WAR, processes can be seen as time discretized continuous time
processes. The same remark applies to a WAR-in-mean process. When it ad-
mits a continuous time representation, the differential system for asset prices
S,‘7t is:

dlog Siy = [b; + Tr (D;Yy)] dt + Y, 2dW,

where (Y}) satisfies stochastic differential system (10) with a different multivari-
ate Brownian motion. The tractability is due to the affine specification since the
joint process (vec (log S; ) ,vec (Yz)) is a continuous-time affine process, that is
admits affine drift and volatility coefficients. This continuous-time specification
can be considered as the multivariate extension®” of the model:

dSt = (a + ,805) Stdt + O'tthS,
do? = (70 + 5002) dt + v/ + 6102dWY,

introduced by [Heston (1993)].

7.2 Mean-variance efficient portfolios

For r;, a net return, that is the difference between the return of asset ¢ and the
risk-free return, the Markowitz mean-variance efficient portfolio has an alloca-
tion proportional to:

a; = (Vi)' my.

Let us assume a WAR-in-mean process for the net returns. When the volatil-
ity of the net returns is equal to zero, the risky returns are equal to the risk-free
return. Thus, we can assume b; = 0, Vi. Moreover, it is easily checked that the
"risk premium” T'r (D;Y;) is positive if the matrix D; is positive definite, and

27See Gourieroux, Sufana (2004)b for a use of this extended version to derive closed-form
expressions for derivative prices. This is another new frontier for ARCH models mentioned
by Engle (2002b).
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in this case it is an increasing function of the volatility ¥;8, 2° . Thus for a
WAR-in-mean model we get;:

af = (V) "vec[Tr (DiY7)].

The positivity constraint on matrix D has a simple structural interpretation.
The risk premium on asset i is equal to T'r (D;Y;). Typically this is a linear
combination of the volatilities and covolatilities such as: dj 11 Y11, ¢+2dy 1212+ +
dy,22Y52+ for i = 1, n = 2. The risk premium involves two components: Y;
dign diae
dii2 dioo
of risk aversion coefficients describing the risk perceived by the market. As
usual in a multiasset framework, the risk aversion is represented by a symmetric
positive definite matrix. The combination of both effects provides the level of
risk premium and explains the positivity of the risk premium since T'r (DY) > 0
if D>»0and Y > 0.

measures the underlying joint risk, whereas D = is a matrix

8 Statistical inference

Two types of statistical inference can be considered according to the available
observations:

i) When a time-series of volatility matrices is available, a WAR model can be
directly estimated from Yi,...,Y7.

ii) When the asset returns are observed and the stochastic volatility is unob-
served, a WAR-in-mean model can be estimated and the latent volatilities
approximated by a nonlinear filter.

In this section we focus on the first type of statistical inference, which has
at least two interesting applications.

i) First from high frequency data, it is possible to compute every day the
volatility matrix of returns at a 5 minute interval, say. We derive a series

28Indeed a positive definite matrix D can be written as D = E:zl dkd;c. Thus we

get: Tr(DYy) = Tr(Y,_ dedYe) = Yoo Tr(dpdyY) = Sop_ Tr (d)YVedy) =
Y rey @ Yedi >0, since Yy is a volatility.

Moreover, if two values of the volatility Yz and Y;" are such that: Y; > Y, <= Y —Y,” > 0,
we deduce that: Tr [D; (Y — ;)] = Tr (D;Yy) ~ Tr (D;Y;") > 0, which is the monotonicity
property of the risk premium.

29However Abel (1988), Backus, Gregory (1993) and Gennotte, Marsh (1993) offer models
where a negative relation between expected return and variance is compatible with equilib-
rium. This is mainly due to the partial interpretation of this relationship which does not
necessarily account for all state variables. It would be natural to examine this financial puzzle
in a multiasset framework to see how the matrix D and its positivity conditions will depend
on the number of assets.
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of intraday volatility matrices®®. Due to the different order matching pro-
cedures at opening and closure (auction), and within the day (continuous
trading), the dynamics of the intraday volatility matrices can be different
from the dynamics of volatilities of daily returns computed from closing
prices [see Gourieroux and Jasiak (2002), chapter 14 for a description of
electronic financial markets].

ii) Another application concerns the dynamics of derivative prices. Indeed in a
multiasset framework the Black-Scholes formula can be used to compute
implied volatility matrices from derivative prices written on n assets. The
WAR specifications can be applied to the series of implied volatilities and
covolatilities [see e.g. Stapleton, Subrahmanyam (1984) for contingent
claims whose payoffs depend on the outcomes of two or more stochastic
variables].

In the sequel we first discuss the identification of the parameters of interest,
then we introduce a first order method of moments, which provides consistent
estimators and is easy to implement. This method can be seen as the first step
before numerical implementation of maximum likelihood based on the expression
of the transition density given in Section 2.2. Finally we discuss estimation of
the WAR-in-mean model.

8.1 Identification

The identifiable [resp. first order identifiable] parameters are obtained by consid-
ering the expressions of the conditional Laplace transform [resp. the conditional
first-order moment]. The following identification results are proved in Appendix
10.

Proposition 17 Let us assume K > n.

i) K and X are identifiable whereas the autoregressive coefficient M is iden-
tifiable up to its sign.

i) ¥ is first-order identifiable>* up to a scale factor and M is first-order
identifiable up to its sign. The degree of freedom K is not first-order identifiable,
but is second order identifiable?.

At first order the number of identifiable structural parameters is n? + ”("TH)

(for M and ¥* = K¥). The number of reduced form parameters in the predic-

. : | n(n+1) 2 n(n+1) .

tion formula E (Y;41]Y%) is [ 5 } + 55— (which are the number of slope
plus intercept coefficients, repectively, in the seemingly unrelated regression
of vech (Y;) on wvech (Y;—1) plus constant). The degree of (first order) over-

nmt)]? _ 2 _ nl(n-1)(n+3)
2 4

identification [ n , is equal to zero for n = 1 and

increases quickly with the number of assets.

30Called realized volatility in the literature [see e.g. Andersen, Bollerslev, and Diebold
(2002) for a survey].

31That is identifiable from the first-order conditional moment.

32T hat is identifiable from the first and second order conditional moments.
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Table 1. Degree of first order over-identification.

Number of assets 1 2 3 4 5
Degree of over-identification | 0 ) 27 | 84 | 200

Thus more accurate estimators are likely obtained when the cross sectional
dimension n increases. This is due to the presence of second order cross moments
among the moment restrictions.

Finally note that the statistical inference concerning the rank of M, its
kernel and its range can be performed (consistently) from conditional moments
of order one, since they don’t depend on the sign of matrix M.

8.2 First-order method of moments

The first-order conditional moments can be used to calibrate the parameters M
and X, up to the sign and scale factor, respectively. The first order method of
moments is equivalent to the nonlinear least squares. The ordinary nonlinear
least squares estimators are defined as:

(]/\4\, f]*) = Arg min S* (M, %),
M,z

where:

2
S?(M,T*) = ZZ( it — ZZYklt 1MiEMyj — ij)
t=2 i<j k=11=1
T .
= ZHvech(Y})—vech(MYth"f‘E*)Hza
t—2

and ¥* = K¥. This method can be applied by using any software that ac-
counts for conditional heteroscedasticity. It can be improved by applying a
quasi-generalized nonlinear least squares, since the expression of V; [vech (Yi41)]
becomes known, once the degree of freedom K has been estimated [see Corollary
7.

Once the parameters M and X* are estimated, different tests can be per-
formed on matrix M.

i) First we can check the rank of M, that is test for a reduced rank model.
For instance, if the rank is equal to [ the matrix M can be written as
M = Bd’, where a and 8 have dimension (n,[) and are full column rank. Then
an asymptotic least squares estimator of M under the hypothesis REM =1 is
defined by [see Gourieroux, Monfort, Renault (1995)] :

M, = /Blldla

where :
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(a1, 4)) = argmin[vec M — vec (Ba’)]'Var(veeM ) veeM — vec(Ba')],

a,B

and the minimization is performed under the identifying constraints o/« = Id.
This optimization is similar to a singular value decomposition of a well-chosen
symmetric matrix computed from M and its asymptotic-covariance matrix.

ii) Second we can test for embeddability, that is for the possibility to write
M = exp A. This test can be performed from the spectral decomposition of M.

8.3 [Estimation of the degree of freedom

Finally the degree of freedom K and the latent covariance matrix can be iden-
tified from the second order moments. Indeed the marginal distribution of the
process (Y3) is a centered Wishart distribution (see Section 4.1), such that :

V(d'Y;a) = 2K[a'%(00)a)?

= 2K ![a'¥*(0)a)?,

where : £*(00) = MX*(c0)M' + X*.

Thus consistent estimators of the degree of freedom can be derived in the
following way.
step 1 : Compute 3*(c0) as a solution of :

3*(00) = ME*(00) M’ + *.
step 2 : Choose a portfolio allocation «, say, and compute its sample volatility
2

T T
V(d'Ya) = 1 Z o'Yia — 1 Za'Ytoz
T t=1 T t=1

step 3 : A consistent estimator of K is :

K(a) = 2[/S*(c0)a)?/V (o' Yia).
step 4 : A consistent estimator of ¥ is 3(a) = */K ().

In practice it can be useful to compare the estimators computed from differ-
ent portfolio allocations to construct a specification test of the WAR process.

The two-step estimation method described above is simple to implement
and provides associated specification test, but possibly at the expense of lack
of efficiency. Other standard estimation methods can be used. For instance
one could apply the maximum likelihood or run the Kalman filter on a linear
representation of the Wishart process to do linear filtering, smoothing and quasi-
likelihood estimation. This latter approach is also not optimal and doesn’t
necessarily provide positive semi-definite predictions.
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Similarly some standard approaches can also be applied to the WAR-in-mean
model, which is a special case of nonlinear factor models. Such methods are the
Monte Carlo Markov Chain and optimal filtering via particle filters [see Pitt,
Shephard (1999), and Chib (2001) for an extensive review].

9 Dynamics of intraday volatility

9.1 The data

In the analysis of asset return dynamics we have to distinguish their close to
open and open to close components. First, these components have different
implications for volatility transmission between international stock markets, for
example [see e.g. Hamao, Masulis, Ng (1990)]. Second, the trading procedures
are generally different within the day (continuous trading) and at opening and
closure (auction).

In this section we consider a series of intraday historical volatility-covolatility
matrices. They correspond to three stocks : ABX (Barrick Gold), BCE (Bell
Canada Enterprise), NTL (Northern Telecom) traded on the Toronto Stock
Exchange (TSX). Since the TSX is an electronic market with continuous trading
within the day, high frequency data on quotes and trades are available. For
each stock the (trade) returns are computed at 5 minute intervals, and used
to compute the historical volatility-covolatility matrices at 5 minutes on every
day 33. This leads to 72 observations per day to compute each matrix, since
the market was opened between 9:30 a.m. and 4:30 p.m., and the first and
last 30 minutes were deleted to remove the opening and closure effects. For
estimation purpose we have retained one month of observations from October
1998, which yield 21 intraday volatility matrices for the working days. It would
have been possible to construct a longer series, but it is important in practice to
check if the WAR model can be used in rolling as it is done in applied finance,
and if the WAR provides reasonable fit even when estimated from a one month
data sample. It is important to note that the number of observed variables is
much larger than 21. Indeed the observations correspond to a symmetric matrix
(3,3) with 6 different elements. For a WAR model with one lag we get : 120
= (21-1) x 6 observations, which is sufficient to estimate the 16 parameters in
M, ¥, K. Thus the cross-sectional dimension is used to improve the accuracy of
the estimators (see the discussion of overidentification in Section 8.1).

The evolution of the intraday volatility matrices is summarized in Figures
10-12.

[Insert Figure 10 : Stock Return Volatilities].

The returns volatilities are displayed in Figure 10, where some common
market effects can be observed. For instance all volatilities jointly increase on

33 All returns are multiplied by 10% for standardization.
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day number 10. Contrary to the standard one-factor market model, such an
effect appears rather seldom.

The evolution of return correlations is displayed in Figure 11. Some other
factor effects can be mentioned. For instance, on day number 8, all correlations
decrease quickly. The correlations take values essentially between 0.2 and 0.6
during the whole month.

[Insert Figure 11 : Stock Return Correlations]

Finally the eigenvalues of the volatility matrices are displayed in Figure 12.
On day number 3 we observe a decrease of the smallest eigenvalue whereas the
two other ones increase [see the discussion of the Monte-Carlo study of Section
3.5].

[Insert Figure 12 : Eigenvalues]

9.2 Unconstrained estimation

The WAR (1) model 3 is estimated by the first order method of moments from
the same data set. The unconstrained estimators of M and X* are provided in
Tables 2 and 3 and the estimation time is less than 1 minute.

The latent autoregressive coefficient matrix is highly significant, which leads
to the rejection of the time deformed models with deterministic drift recently
introduced in the literature to derive the properties of (one-dimensional) ob-
served realized volatilities [see e.g. Madan, Seneta (1990), Andersen, Bollerslev,
Diebold, Labys (2001) for time deformed Brownian motion of the underlying
return process, or Barndorff-Nielsen, Shephard (2003) for the extension to time
deformed Levy processes].

The eigenvalues of the estimated matrix M are given in Table 4. They are
all real, nonnegative and strictly less than one. This indicates that the process
can be considered as a time discretized version of a continuous time process 3%,
and satisfies the stationarity conditions.

Table 2 : Estimated Latent Autoregression M
(t-ratios in parentheses)

34 As already mentioned the advantage of the WAR(1) process is to represent a process of
symmetric definite processes. For example, this domain restriction has not been taken into
account by Andersen et alii (2003). In this paper, they study exchange rates and assume a
normal model for (y1¢,y2¢,y3¢) where y1¢(resp ya¢,y3¢) is the logarithmic volatility for DM/$
[resp. Y/$, Y/DM]. Since the log-exchange rates satisfy a deterministic relationship, we see
that y1¢ = expo11¢, Y2t = €xXp o22¢, Y3t = exp(ant +022t72012t), where o019, is the covolatility
between the two first log-exchange rates. There is a one to one relationship between yi¢, y2¢, Y3t
and o11¢,022¢,012¢. We find that the standard Cauchy-Schwartz inequality Uf% < o11t022t
implies a complicated nonlinear constraint on the three log volatilities. It is not taken into
account in the multivariate Gaussian model (see Andersen et alii (2003), page 599).

35This can be useful in further financial applications, like derivative pricing in continuous
time [see e.g. Gourieroux, Sufana (2003), (2004), Gourieroux, Monfort, Sufana (2004)].
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0.806 | 0.066 | —0.474
(4.09) | (0.63) | (2.85)
0.377 | 0.300 | 0.168
(1.79) | (2.42) | (0.88)
1.017 | 0.120 | —0.532
(1.60) | (0.48) | (1.42)

Table 3 : Estimated Latent Covariance Matrix X*
(t-ratios in parentheses)

2524 | 1.737 | —1.361
(1.28) | (1.68) | (0.34)
6.266 | 0.732

(4.48) | (0.55)

7.040

(0.86)

Table 4 : Eigenvalues of M

[0:323 ] 0.207 [ 0.042 |

Table 5 provides the eigenvalues of MM'. Tt is immediately seen that the
smallest eigenvalue is much smaller than the other ones. Thus a two factor
model can likely be considered.

Table 5 : Eigenvalues of M M’

[2.291 | 0.179 [ 1.973¢ — 0.5 |

Finally the degree of freedom has been estimated from the marginal sec-
ond order moment corresponding to the equiweighted portfolio allocation a =
(1,1,1). It is equal to : K(a) = 4.25, with a confidence interval of [3.82,5.54].
We observe that the degree of freedom is strictly larger than 3, which ensures
a nondegenerate Wishart process. Moreover other estimations of K based on
different portfolio allocations have been considered [see Table 6]. They provide
estimates in the confidence interval reported above, which is in favour of the
Wishart specification.

Table 6 : Eigenvalues of MM’

porfolio allocation | (1,1,0) | (0,1,1) | (1,0,1)
K(a) 382 | 489 | 466
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9.3 Estimated reduced rank model

A two factor Wishart model has been reestimated from the same data set. The
constrained estimators are provided in Tables 7 and 8.

Table 7 : Constrained Latent Autoregression
(t-ratios in parentheses)

0.808 | 0.063 | —0.472
(3.14) | (0.38) | (3.02)
0.377 | 0.299 | 0.167
(1.78) | (2.52) | (0.91)
1.014 | 0.121 | —0.524
(1.74) | (0.57) | (1.51)

Table 8 : Constrained Latent Covariance Matrix
(t-ratios in parentheses)

2510 | 1.739 | —1.359
(1.21) | (1.66) | (0.34)
6.266 | 0.730

(4.48) | (0.55)

6.075

(0.89)

In this model of rank 2, the 3-space is generated by the first two columns of
the M matrix given in Table 7, whereas the a-space is generated by the rows of
M and is the space orthogonal to the vector (0.697,—1.439,1).

Since the components of the two first columns of M are positive, the C
vector orthogonal to these columns has some positive and negative components.
In some sense the ”white noise” direction corresponds to a kind of ”arbitrage”
portfolio.

10 Concluding remarks

The Wishart Autoregressive process provides a valuable alternative to the stan-
dard multivariate GARCH or stochastic variance models. The WAR specifica-
tion is quite flexible in the sense that it allows for introducing higher autoregres-
sive lags and provides a factor representation. The closed-form prediction formu-
las at various horizons are quite simple to compute as well. It is well-known that
the CIR diffusion process can be interpreted as the limit of well-chosen ARCH
processes [Nelson (1990)]. Likely, the continuous time WAR process could also
be interpreted as the limit of a well-chosen multivariate ARCH model. However,
the discrete time WAR seems more convenient in many applications.

The WAR process can be used to model the dynamics of volatility matrices
in financial applications, including derivative pricing and hedging. The WAR
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process yields closed-form expressions for the term structure of interest rates
analysis[Gourieroux, Sufana (2003)], and for derivative pricing in multivariate
stochastic volatility models in which it arises as the multivariate extension of
Heston’s model [Gourieroux, Sufana (2004)b].
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APPENDICES
Appendix 1 : Proof of Proposition 1
i) Let us first establish a preliminary lemma.

Lemma 18 For any symmetric semi-definite matriz Q0 with dimension (n,n)
and any vector u € R™, we get:

7.‘.n/2

1
'Oz + ple) do = —— A
/exp( ' Qx4+ p'z) de (detﬂ)1/2exp<4u u)
R’".

Proof. Indeed the integral of the left hand side is equal to:

!
/exp [— <x - %Ql,u> Q0 <x - %Qluﬂ exp (iu’ﬂﬂu) dx

Rn
ﬂ_n/z 1 b1
T (det) 2T <1MQ ”)’

since the gaussian multivariate distribution with mean %Q_l 1 and covariance
matrix 20! admits unit mass. m

ii) We now prove Proposition 1. Let us consider the stochastic process (Y3)
defined by Y; = iz}, 141 = Mz + Y1/2¢, 1 and &4y ~ IIN (0,Id). The
conditional Laplace transform of the process (%) is:

v, (T)

= FE [exp (¢} Tweg) o]

= F [exp <(Mxt + El/2ft+1)lf (Mxt + 21/2&4-1)) |:ct}

exp (2, M'T M) E [exp (2x;M'r21/25t+1 + g;Hzl/Zrzl/thH) |xt] .
By using the pdf of the standard normal,

1 1
f(&ev1) = 2]z eXP—§§£+1§t+1,
and Lemma 18, we get:

¥, ()
exp (¢ M'T M)
2n/2 [det (LId — £1/2r51/2)]"/?

1 1 ‘ 2\
exp lz (2x;M’r21/2) <§Id— 21%22”) (221/2ert)l
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exp (2 M'T M, + 20{M'T (21 = 2T) ' TMw, )

[det (Id — 251/21'51/2)]"/?

exp [x;MT (Id - 251)! M:ct}

[det (Id — 251/20'51/2)]"/?
expTr [M'r (Id — 25T) " MYt]

[det (Id — 251/21'51/2)] /2

This formula is valid whenever Id — 2XT is a positive definite matrix.

Appendix 2 : Proof of Proposition 2

The process can be written as: Y; = Zle Yit, where the matricial processes
Yt = wreay, are independent with the Laplace transform given in Proposition
1. We deduce that:

expT'r [M'r (Id — 25T) " Mth]

K
v, () =
t 1};[1 [det (Id — 221/2p21/2)]1/2

expTr [M’F (Id — 251)~" MYt]
[

det (Id — 251/251/2) ]2

Appendix 3 : Conditional moments of the WAR(1) process

Appendix A.3.1 : Conditional mean

We have:
K
EY|Yy) = E (Z ﬂfk,t+1$§c,t+1|$t>
k=1
K
= ZE (Th,t 11T g1 |72
k=1
K K
= Y E(wrenle) B (whgale) + DV @reler)
k=1 k=1

where the last equality follows from the definition of the variance-covariance
matrix. Thus, we obtain:

K K
E(Yin|V) = MY M+ (%)
k=1 k=1
— MY,M' +KY.
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Appendix A.3.2 : Conditional variance
Let us consider K = 1. We get:

cov (V'Yer10,0'Yi415) (15)
= covg (’7' (Mxt +et41) o (Mzt +€t41) ,0' (Mzt +€t41) Iox (Mzt +et41))
= covs(YM=zid'er 1 + v erp10 Moy + v'ep10' ey,

O Maflerpr + 0'ery1 ' May 4 0'er1f'e141)
= E[(YMzid'eii1 +y'erp1a’ May) (' MayS'eri1 + 6'epp1 8 May)]
+eovy (Y'erp10'eryr, 0'err18'€041)
where the other terms are zero, since they cannot be written as quadratic func-

tions of ;. Using the fact that E; (g441€},,) = %, the first term in the above
expression can be written as:

Ei[(WMzid'errr +v'er1ad May) (8 Mayf'epr1 + 0'epp1 8 May)](16)
= E [(YMzia'eprr + o' Mayy'ern) (eh 1 Bey M6 + ) 0y M' ) ]
= Y Mz o/ Sz M'S + v Mayo! Sox, M'B + o Mayy'Spx, M'S

+a/ Mxyy'Sox, M' 3
= YMY,M'§a’S8 +~"MY;M'Ba'E5 + o/ MY, M'5v' X3

+o! MY; M' 876,

Let e,41 = XY/2¢,,1, where &1 ~ IIN (0,Id). The second term in expression
(15) becomes:

COUt (’}/Ié‘t+1alé‘t+1, (SIEt_HBIEt_H)
= 7'covt (er4161410, Et4161418) 6
= YEi (er16i 108 ei16111) 6 = V' By (erp16i,,0) By (B'eriagry) 0
= y'5'?E, [§t+1§£+1 (21/2043'21/2) §t+1f£+1] $H25 — 4/ Saf D6

n

= '7121/2Et ZZ zt+1§t+1 z])fjt+1§t+1 21/26 'yEaﬁ 36

n
= 4'zl/? Z Z bij Br (&it41&,001&416041) /25 — y'Saf' %,

i=1 j=1

where B = £1/2a3'S1/2, Let e; be the canonical vector with zero components
except the i*" component which is equal to 1, and di; be the Kronecker symbol:
0;; = 1if ¢ = 7, and 0 otherwise. Since Ej (§i7t+1§j,t+1ft+1f£+1) = 6ide+eie;- +
eje; [see e.g. Bilodeau and Brenner (1999), page 75], we have:

covy (Y'epp1a'eryr, 8’ err18ers1) (17)
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= SYV230 S by (8i1d + il + ejel) £26 — 4'Saf'Ss
i=1 j=1
= 'SY2[Tr (B)Id+ B+ B'|£Y/?%6 —y/Saf' %6
F'SV2Tr (B) SY25 4 4/SV2BEY26 4 /S2B'SY26 — 4/ Saf' s
7,21/2 (B’Ea) 21/26 + 7'2046'25 + ’)/’E/BO{,E& _ 7’20{/8’26
= ¢'S68'Sa +9'E8a' 6.

Combining the results in (16) and (17) we obtain:

covt (7'Yer10,0'Ye41 )
= YMY,M'§a'S8 +~"MY;M'Ba'E8 + o' MY, M'5~v' X3
+a' MY M'By'Y6 + [/ 28’ %8 + o' E7'20).

A similar proof can be constructed for an arbitrary positive integer K.

Appendix 4 : Proof of Corollary 7

Let «, 3, v, § be n-dimensional vectors. i) Taking 6 = v and f = « in
Proposition 4, we get:

Ve (' Yer10)
= covy (VY1047 Y1)
VMY, M'vyo!' S+ 2y MY, M’ aa' Sy + o MY M’ ay' .

ii) The above result with v = a implies:
Vi (@Yig10) = 40/ MY, M'aa'Sa + 2K (o/Sa)”.
iii) Using again Proposition 4 with v = a and § = 3, we obtain:
covy (' Yis1a, B'Yiq1 B) = 40/ MY; M'Ba/ S8 + 2K (o/EB).
iv) Finally, Proposition 4 with v = a and § = « implies:

covy (a'Yip10,ad'Y118) = 20 MY, M'ad'SB + 20’ MY, M'Ba’'Sa
+2Ka'Ypa' Sa.

Appendix 5 : Continuous-time analogue

We have:
ay;y = Yya—Y;

= $t+dt$£+dt — @
= (2 + Azdt + Qdwy) (v + Azdt + Qdw,)' — x4
= way A'dt + xdw, Y + Azpxldt + Azgx, A (dt)?
+ Az (dw)' V' dt + Qdwgx, + Qdw,y A'dt + Qdw; (dw;)' .
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The terms that cannot be neglected in the expression above are:
dYi#taxi A'dt + zpdwi Q' + Azyaidt + Qdwizy, + QF [dwt (dwt)'] Q
# (VA + AY; + QQ') dt + z¢ (Qdw,)' + (Qdw;) z}.
Appendix 6 : Proof of Proposition 12
Let P denote an orthogonal matrix such that PYX12q = e,/ a'Ya, where e;

denotes the canonical vector with zero components except the first component
which is equal to 1. The conditional Laplace transform of o'Y;a is:

U, (uaa)

exp [(uﬂ’aa' (Id — QUZaa')_l B) a'Yta]

[det (Id — 2uX!/2aa'51/2)]"/?

exp [(uﬁ'aa’21/2 (Id - 2u21/2a0/21/2)71 2_1/26) oz’Ytoz}

[det (Id — 2uX1/2aa/$1/2) ]/
exp [(uf'aa’SV? (PP — 2uP 1 (PSV2a) (a/'SV2P 1) P) 7' £1/26) a'Yia

[det (P~1P — 2uP~1 (PX'/?q) (a/x1/2P~1) P)]"/?

exp [(uﬂ’aa’21/2P’ (Id — 2ua'Saeye)) ™" PEfl/ZB) oz’Ytoz]

[det (P~! (Id — 2ua/Zae;€}) P)]K/2
exp [(uﬁ’aa’Eae’l (Id — 2ua’Saerel) era’ (aa’) ™ Eilﬁ) a’Yta]
[det (Id — 2ua’2aele’1)]K/2
exp [(uﬂ’aa'Za (1-2ud'Sa) " o (a/)™ E_lﬂ) a'Yta]

(1- 2uo¢’Eo¢)K/2
' 2
= (1-2ua'Sa) *?exp [(M> 'Y

)

1 —2ua'Ya

which is the conditional Laplace transform of a WAR(1) process of dimension 1
(see Section 3.3) with m = o/f and 0? = o/Za.

Appendix 7 : Proof of Proposition 17

We have just to check the second part of the Proposition. From Proposition
6, we deduce that:

n n
EYij|Yi] = Z Z Y emaemy; + Kogj.
k=1 1=1
Since K > n, the admissible values of Y} ; are not functionally dependent. Thus
the product msymyj, Vi, k, [, j, and the quantities Koyj, Vi, j, are first-order
identifiable. The result follows.
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Fig.2 Correlation, Example 1
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Fig.3 Canonical Volatilities, Example 1
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Fig.4 Volatilities, Example 2
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Fig.5 Correlation, Example 2
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Fig.6 Canonical Volatilities, Example 2
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Fig.7 Volatilities, Example 3
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Fig.8 Correlation, Example 3
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Fig.9 Canonical Volatilities, Example 3
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Figure 10 : Volatilities

10 20

57




Figure 11 : Correlations
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