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Tentative Plan
• Day 1 Introduction to high frequency data

– Data features
– Market microstructure.
– Fixed Interval Analysis

• Day 2  A point process approach – the ACD model
• Day 3  Marked point process modeling.

– General approach
– Volatility Models
– Discrete price movements – the ACM-ACD model

• Day 4  Measuring and modeling transaction cost (slides 
forthcoming)
– Existing measures
– Full information transaction cost
– Decomposing the spread with unobserved components.
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Introduction

• Characteristics of High Frequency Data
– Irregularly Spaced
– Diurnal Patterns
– Separate prices for buying and selling
– Discrete prices
– Highly dependent

• We will use the Airgas stock traded on the 
NYSE throughout the week.
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Autocorrelation in prices
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Diurnal Patterns
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Autocorrelations in durations
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Autocorrelations in (log) volume
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Economic Data

• Quotes
• Transaction prices
• Volume
• Time stamps 
• Orders

10

Economic Questions

• Liquidity/Quality of Execution
• Forecasting Order Flow
• Hedging/Pricing
• Price Discovery
• Volatility/Risk
• Correlation
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Econometric Framework

• All economic events can be described by 
when they occur and a list of 
characteristics.

• Sometimes the timing of the events is 
fixed, but with high frequency data it is not.

• For example, 
– Transaction events and prices
– Limit order submission and strike
– Quote revisions

12

Transaction Point Process
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Notation
• Let N(t) denote the number of events that have 

occurred by time              . 
• Let ti denote the ith arrival time.  These arrival 

times are referred to as a point process.
– where 0=t0<t1<t2<…<tN(T)=T

• Let xi=ti-ti-1 denote the ith duration.
• Let yi denote a vector of characteristics 

associated with the ith arrival time.
• Jointly, the sequence of arrival times and marks 

are referred to as a marked point process.

[ ]Tt ,0∈
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Joint Density
• The joint density of the arrival times and the 

marks given the initial values for t0 and y0 is the 
object of interest.

• This can be recursively decomposed:

where                              and  
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How should such data be analyzed?

• Convert point process to fixed intervals and use 
traditional time series techniques.
– Familiar ground – lots of available techniques.

• Model in tick time.
• Model as a point process.

– When will the next event occur?
– When will the next event of a specific type occur?

• Point process models for the marks.  Joint 
modeling of prices and durations.
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Fixed interval analysis.

• Most time series econometrics is based 
on fixed interval analysis.

• When the marks are of primary interest, 
there is a natural tendency to convert 
irregularly spaced data to fixed time 
intervals.
– I.e. model prices over 5 minute intervals.

18

Numerous examples in the 
literature

• Andersen and Bollerslev (1998) estimate 
GARCH models for 5-minute FX returns 
constructed from the midquotes.
– Sophisticated modeling of diurnal pattern.
– Important to account for news 

announcements.
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• Hasbrouck (2000), Zhang Russell and 
Tsay (2001) use 15 minute quote data to 
study quote dynamics.

• Hasbrouck(1995) (2001) use 1 second 
intervals. 

20

Methods of converting to fixed intervals

• For some of the points in time defining 
the fixed intervals there will not be a 
corresponding event.  What value 
should be used for the mark?

• Lets focus on the price as the mark.
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Three main methods
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Denote the log of the price at time ti by
.  Then let 

I. Use the prevailing quote:   λ=1

II. Interpolate:

*
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III. A third possibility is adopted by 
Hasbrouck (2002).  Since time of a 
trade is usually recorded to the nearest 
second, then if the fixed interval is taken 
to be one second there is at most one 
observation per time period.  

At each second the price is set either to 
this price or to the previous period price.
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Prevailing price (λ=1): means and 
variances are not always retained.

Let the returns be denoted by:

• If there is never more than one trade per 
calendar interval then means and 
variances are preserved:
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• If the intervals are larger so that more than 
one trade can occur then means are 
preserved, but not variances.

• If the high frequency returns are a 
martingale then the expectation of the 
cross products are zero and the expected 
value of the variances are the same.
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• When prices are interpolated these relations no longer 
hold. The sum of the squared interpolated series will be:

where i and j are the events just after the two endpoints 
of the fixed interval

• Mean will be approximately right.
• If the returns form a martingale difference sequence then 

the expected variance and its probability limit will be less 
than the variance of the process. 

• Autocorrelation is induced into the fixed interval returns. 
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Bivariate fixed interval analysis

• Consider the case that the fixed interval is 
set to the shortest interval over which the 
data can evolve (often this is one second).
– Unlike aggregating to longer fixed intervals, 

no information is lost
– If the prevailing price is used, lots of 

redundant values for the price are created.  
The implication is that many zero returns are 
created.

– Does the “creation” of zeros induce bias?
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Simple discrete time example
• Let z be the log price of an asset that is continuously 

observed at t=1,2,…,T.  We assume the returns ∆zt
are iid.

• Let y be the log price of a second asset that is 
observed at N(T) random arrival times t1,t2,…,tN(T) for 
t=1,2,…,T 

• Let dt denote an indicator for whether the price of y is 
observed at time t taking the value 1 with probability 
p.

• Then define the price at time t for asset y as 

• The return series for y will be zero if no price is 
observed at time t and will be non-zero when a price 
is observed at time t. 

1 if N(t) N(t-1)

  if N(t) N(t-1)
t

t
t

y
y

y
− == 

>
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Goal: Regress ∆y on ∆z

• We consider two 
choices:
– Regression using the 

returns associated 
with the N(T) random 
time intervals.

– Regression using the 
T fixed interval returns.
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Results:
• Suppose the true relationship between the two series 

is 

or, equivalently 

• If we use the T fixed interval returns and regress 

• Denote the estimate using the T fixed interval returns 
by 

ˆTβ
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Conditional on whether the price for y is 
observed at time t yields the OLS 

estimator:

• then

• Taking expectations of the conditional moments of 
the estimator yields:

• The resulting estimate     is downward biased.  The 
bias is driven by the probability of observing the price 
of asset y.
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ˆTβ
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Now suppose instead that we 
regress yt on zt,zt-1,…,zt-K.
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Again, taking expectations over the 
conditional moment

• Then  

• The estimates      decay exponentially in p.  

• Additionally, for the infinite lag model 

• More generally, if p is not constant, the probability 
limit will be determined by

lim
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Interpretation is suspect 
however

• When we perform regression with the T equally 
spaced observations the result is slowly 
decaying parameter estimates.

• Interpreting this as long range dependence, or 
predictability is wrong.  This long range 
dependence is purely an artifact of the 
estimation technique.

• Results are not useful for dynamic hedging or 
pricing of asset y.

34

Now suppose that z is 
measured randomly

• Probability of observing y in any period is 
p

• Probability of observing z in any period is 
q ( ) 2 y observed at t 

and z observed at t-kt t kE y z pq E overlapβσ−

 
∆ ∆ =  
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Regression Coefficients

•

• and the sum of the coefficients in an 
infinite lag model is

( )lim 1 k
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p q pq

β β= −
+ −
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K T k

pqp q
p q pq
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IMPLICATIONS

• If q=1, then the sum of the coefficients will 
be the true response

• However, the apparent lag shape does not 
indicate market inefficiency or causality

• If p=1 but q<1, then the sum of the 
coefficients is q2 so even the sum is 
understated

• If p<1 and q<1 then it is worse still.



19

37

When will the next event occur?
- Examples of Point Processes

• A point process can be described either in terms 
of the sequence of arrival times ti or the 
sequence of durations xi.  

• Engle and Russell (1998) propose the 
Autoregressive Conditional Duration (ACD) to 
model the distribution of waiting times xi
conditional on the history of arrival times.

• Many point processes have been used in other 
fields of statistics 

38

ACD

• The ACD model assumes that any 
dependence in the arrival rate can be 
summarized by:

where

is iid with E(εi)=1 and
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Flexibility of the ACD
• The flexibility of the ACD model lies in the 

potential models for the mean      and the 
choice of the innovation distribution ε.

• Engle and Russell propose using the linear 
parameterization

– This is referred to as an ACD(p,q) since it contains p 
lags of x and q lags of ψ.

– Often low order models such as the (2,2) model are 
capable of describing the temporal dependence in 
the arrival rates.
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Interpretation of linear model

• Let                       which will be a margingale
difference sequence by construction.

• Then the ACD(p,q) model can be written as an 
ARMA(p*,q) model in the durations where
p*=max(p,q).

i i ixη ψ= −
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1 1

p q
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• Bauwens and Giot (2000), Russell and Engle 
(2004), Engle and Lunde (2003) consider the 
Nelson From ACD model.

• Zhang Russell and Tsay (2003) consider a non-
linear specification for the expected duration.
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• Fernandez and Grammig (2003) consider 
a family of ACD models constructed from 
the Box-Cox Transformation.
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Choice of the error term

• Suggestions for the distribution of εi include the 
exponential, weibul, (generalized) Gamma, and 
the Burr distributions.

• Implications of the choice of the distribution of εi
are most easily seen by examining the 
conditional intensity function.

44

Conditional Intensity Function

( ) ( )( )1 1,..., 0
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Pr ( ) | ( ), ,
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So the conditional intensity function characterizes the 
instantaneous probability of an event occurring given the 
history of the process.

That is, the probability that an event occurs over the 
next small time interval ∆t is approximately given by

( )1 1,..., 0| ( ), ,i it N t t t t tλ − − ∆

Recall that N(t) denotes the counting function.
Then the conditional intensity function is given by:
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Baseline hazard function 

• Let                 denote the density function of ε.
• Define the baseline hazard associated with ε as:

where                                is the survivor 
function. 

( );p ε φ
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p
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Conditional Intensity for ACD
• From the baseline hazard                       we 

obtain the conditional intensity function.
• Perform the change of variable 

• Then

• Hence it is the shape of the distribution of ε
that determines how the instantaneous 
probability of an event occurring evolves in 
the absence of a new event.

( )
( )

( )

N t
N t

N t

x
ε

ψ
=

( ) ( )
( )0

;
;

p
S

ε φ
λ ε

ε φ
=

( ) ( ) ( ) ( )
1 1,..., 0 0 ( ) 0 0

( ) ( ) ( )

1| ( ), , N t N t
i i N t

N t N t N t

x xdt N t t t t
dx
ελ λ ε λ λ

ψ ψ ψ− −

   
= = =      

   



24

47

• For example, the exponential distribution implies 
the well known flat baseline hazard:  

• The Weibull, on the other hand, allows for 
monotonic behavior of the hazard: 

• The Gamma and Generalized Gamma and Burr 
distributions allow for a rich class of hump shape 
hazards.  

( )

1

N tψ

( ) ( ) ( )λ γ ψ γ
γ

γ
t t t t tN t N t N t( ) ( ) ( ),..., 0 1

1 1
1 1= +



 −+

− −
Γ
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Diurnal Patterns 
• Diurnal patterns in trading rates are well 

documented.
• We might consider formulating the  conditional 

expectation as the product of a stochastic and a 
deterministic component

• Where               is simply the expectation of the 
waiting time conditioned on the time of day that 
the duration starts. 

• Two step and joint estimation are possible.

( ) 1 ( ) 1 1 1( ) ( ; ) ( , .., ; )N t N t i i iE x t x xφ ψφ θ ψ θ− − −=

φ θφ( ; )ti−1
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QMLE Results
• The EACD(1,1) model is clearly very similar to the 

GARCH(1,1) specification.  The similarity is even closer 
than what you might think.  

• Consider the likelihood for the EACD(1,1) model:

• This is identical to the likelihood function for the 
GARCH(1,1) where 

• Hence, QMLE results carry over from the GARCH 
literature (Lumsdaine (1996) or Lee and Hansen (1994)).

• If  satisfies the conditions for yi in their theorems then the 
EACD(1,1) model is a QMLE. 

L x
i

i

ii

N T
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QMLE Implications

• We can use standard GARCH software to 
estimate parameters (ω and the α’s and β’s) of 
the conditional expected duration for the linear 
ACD(1,1) model.

• Given consistent estimates of these 
parameters one can non-parametrically 
estimate the baseline hazard model using:

ˆ
ˆ

i
i

i

xε
ψ

=
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Airgas Stock Example
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Observations 32366

Mean       0.996958
Median   0.444078
Maximum  54.66090
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Std. Dev.   1.574711
Skewness   5.236681
Kurtosis   77.04077

Jarque-Bera  7540910.
Probability  0.000000
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ARG duration autocorrelations
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ACD Estimates for ARG

 Coefficient Robust Std. Err.
ω 0.004244 0.000855
α1 0.070261 0.007157
α2 0.038710 0.012901
α3 -0.055966 0.008640
β1 0.835806 0.125428
β2 0.107894 0.118311

 

Example using GARCH estimation code
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Observed and Predicted Durations
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Model Evaluation

• Any inhomogeneous Poisson process can be 
converted to a homogeneous Poisson process 
by a deterministic transformation of the time 
scale (see for example Snyder and Miller 
Springer).
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The “durations” measured on the ui time scale should be
a homogeneous Poisson with unit intensity.
Clearly this can be tested given an estimated model.
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Example

• For the exponential model:

• For the Weibull model:
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Diagnostics
• Are the      uncorrelated?

– Perform serial correlation test such as Ljung Box

• Are they approximately unit exponential?

should have a limiting standard Normal distribution.

• Alternatively, out of sample prediction could be 
examined or predictive distributions (Diebold Gunther
and Tay (1998)

( ) 1
( )

8
sd u

N T
−

ˆiu
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Residual Autocorrelations for ARG
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Does it look like the Exponential 
distribution assumption is valid?
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Non-Parametric Estimate of 
Baseline Hazard
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There may be several types of 
events

• Model only these events (thinning)
• Build a joint model to determine the 

arrival probabilities of different types of 
events (more later).

64

When will the next event of a 
particular type occur?  

• Prices:  How long will it take for the price 
to move more than an amount c?  

• Execution:  How long until the a 
transaction involving a limit order is 
executed?   

Time till event of type k occurs

fk(t)

ψk
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Modeling the marks in Tick Time.

• Models the marks yi as a time series 
where i indexes the ith event arrival.

• Since there is no aggregation to fixed 
intervals no information is lost.

• This modeling approach has proven useful 
in the analysis of a single stock.  The 
model operates in the time scale that new 
information occurs.

66

Examples include Hasbrouck 1991

• VAR’s used to model the 
bivariate system of prices 
and volume for a given 
stock.

• Where mi is the 
prevailing price (defined 
as the midpoint of the bid 
and ask) at the time of 
the ith trade.  

• wi is the volume 
associated with the ith
transaction. 

1

2

i j i j j i j i
j j

i j i j j i j i
j j

m a m b w

w c m d w

ε

ε

− −

− −

= + +

= + +

∑ ∑
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What is the expected price impact 
of a trade?

• Since order flow is correlated it makes 
more sense to ask “what is the expected 
price impact of the unexpected portion of a 
trade?”.

• Hasbrouck argues that the market 
structure dictates a specific ordering in the 
impulse response functions.  Namely, he 
argues, that market orders hit existing 
prices in the market.
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VAR for Airgas

• We estimate a VAR for midquote prices 
and a buy/sell indicator.

• Needs lots of lags (about 10).
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• Tick time models are difficult to apply to 
multivariate data.  For example, consider joint 
modeling of two stock price return series.

• Two different time scales, how should they be 
combined?

• Fixed interval models clearly have an advantage 
here in that once fixed interval data is obtained 
all the usual econometrics tools (VARs etc) can 
be applied.

• Finally, if the properties of the time series 
depend on the spacing of the data the tick time 
models may be mispecified.  

72

Marked point process approach

• Without loss of generality we can always 
decompose the joint distribution into the 
product of a conditional and a marginal:

• Here g denotes the conditional density of the 
mark given historical information as well as 
the contemporaneous duration

( ) ( ) ( )1 1 1 1 1 1 2

Distribution of the Mark

, | , ; | , | | , |i i i i i i i i i if y t y t g y y t h t y tθ θ θ− − − − −=
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Interesting Marks Considered

• Transaction price returns.
– Engle (2000), Ghysels and Jasiak (1998) 

GARCH models.
– Russell and Engle (2004), Rydberg and 

Shephard (2000) and many other recent 
contributions model discrete transaction price 
moves.

• Order type (limit, market, marketable limit 
order, cancellation etc…).

74

Ultra-High Frequency Volatility 
Models

• Engle (2000) proposes a GARCH model 
for transactions data.

• The idea is that the volatility per unit time 
follows a GARCH process.  The volatility 
per trade will likely depend on the time 
interval.
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UHF GARCH set up

• Let ri denote the return from transaction i-1 to 
transaction i.

• Denote the volatility per trade by:

• Denote the volatility per unit time by:

( )1| ,i i i ih Var r x r −=

2
1| ,i

i i i
i

rVar x r
x

σ −

 
=   
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• The volatility per unit time is hypothesized to 
follow a GARCH process.

• After modeling the mean return of ri let ei denote 
the innovation.

• Then

• Using joint ACD model Engle proposes 

( )2 2 2
1 1i i i ie xσ ω α βσ γ− −= + + +

2 2 2 1 1
1 1 1 1 2 3 4

i
i i i i i i

i

xe xσ ω α βσ γ γ γ ψ γ ξ
ψ

− −
− − −= + + + + + +

Long run volatility measure
exponential smoothing
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Models for discrete price changes

• Russell and Engle (2004) propose the 
ACM model for discrete price changes. 

• When used jointly with the ACD model for 
the durations it is referred to as the ACM-
ACD model
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SPECIFYING THE PROBABILITY STRUCTURE 
 

LET                   be the kx1 vectors indicating the state 
observed and the conditional probability of all k states 
respectively. 
 
That is,      takes the jth column of the kxk identity matrix if 
the jth state occurred. 
 
 
A first order markov chain 
(1)  
links these with a transition probability matrix P with the 
properties that  

a) all elements are non-negative 
b) all columns sum to unity 

tx~

ttx π~  and  ~

1t tPxπ −=
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In a more general setting P will be the conditional transition matrix 

and will vary with information available at time t-1.  In this context 

this will include longer lags on x , π , and the time since the last 

transaction as well as other parameters of the timing of trades, and 

economic variables such as spreads, volume and other measures of 

market liquidity. 

 

The restrictions on P are directly satisfied by simple estimators in 

the case of a constant transition matrix but are difficult to impose 

in simple linear extensions.   
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Here we propose an inverse logistic transformation which 

imposes such conditions directly for any set of covariates.   
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Rewriting the k-1 log functions as h() this can be written in simple 

form as: 

 
( ) cxPh ii += *π  

 

where P* is an unrestricted (k-1)x(k-1) matrix c is an unrestricted 

(k-1)x1 vector and x is a the (k-1)x1 state vector. 
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From estimates of P* and the vector c, we find that  

 
*

1
*

1

exp[ ]

1 exp[ ]

mn m
mn k

jn j
j

P cP
P c

−

=

+
=

+ +∑
 

so that all probabilities are positive including the 

probabilities of state k which are obtained from 

condition b). 
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Now by generalizing to allow for more dynamics, we are 

generalizing the transition matrix to allow the conditional 

transition probabilities to vary.  For a first order model with 

predetermined or weakly exogenous variables z that will generally 

contain a constant,   

 

( ) ( ) ( )
1 1

p q

i j i j i j j i j i
j j

h A x B h Zπ π π χ− − −
= =

= − + +∑ ∑  
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An expression for the probability of observing a state can similarly 

be expressed in terms of the past history of the process: 

 

*
1

*
1

*
1
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i
i
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where exp[P*] is interpreted as a matrix with elements *exp[ ]mnP , and 

ι  is a vector of ones. 
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More generally, we define the Autoregressive Conditional 
Multinomial (ACM) model as:

Where                                     is the inverse logistic function.

Zi might contain ti, a constant term, a deterministic function
of time, or perhaps other weakly exogenous variables.

We call this an ACM(p,q) model.

( ) )1()1(: −→−⋅ KKh

( ) ( ) ( )
1 1

p q

i j i j i j j i j i
j j

h A x B h Zπ π π χ− − −
= =

= − + +∑ ∑
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Lets consider the ARG transaction 
price changes.

Histogram of Price Changes
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We therefore
consider a 5
state model 
defined as

It is interesting to consider the sample cross correlogram of
the state vector xi.
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Sample cross correlations of x
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Are there deterministic patterns in 
the price movements?

• Deterministic patterns in fixed interval 
volatility.

• Deterministic patterns in durations.
• Stochastic volatility has been found to be 

explained by stochastic transaction rates.
• Related question is whether deterministic 

patterns in transaction rates are driven by 
large per trade price changes or simply 
faster trading.
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Deterministic Regression Results

 Const. d1 d2 d3 d4 d5 d6 F stat 
p-value 

Durations 239.30 
(11.83) 

-16.84 
(17.02) 

65.20 
(14.24) 

43.08 
(15.03) 

-41.88 
(15.10) 

-63.26 
(14.39) 

-118.25 
(17.69) 

0.00% 

Down 2 .030 
(.0053) 

-0.0034 
(.0076) 

0.0083 
(.0064) 

-0.0000 
(.0067) 

-.0153 
(.0067) 

0.00625 
(.0064) 

0.00818 
(.00795) 

6.432% 

Down 1 0.165 
(.0117) 

-.0077 
(.0168) 

.0060 
(.0140) 

-.0046 
(.0148) 

.00659 
(.0149) 

.00773 
(.0142) 

-.0292 
(.0175) 

61.3% 

Up 1 .156 
(.0117) 

.0147 
(.0169) 

-.0106 
(.0141) 

.0196 
(.0149) 

-.029 
(.0149) 

.0030 
(.0142) 

.0227 
(.0175) 

25.6% 

Up 2  .0395 
(.0052) 

-.0172 
(.0075) 

.0106 
(.0063) 

-.0042 
(.0066) 

-.0059 
(.0067) 

.0053 
(.0064) 

.0013 
(.0078) 

23.3% 

 

92

• We propose the following model for the 
ACM

• The ACD is assumed to follow the Nelson 
form ACD with exponential error 

• past price changes potentially influencing 
future durations:
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Likelihood

• The log likelihood for the ACM part looks like

• Of course, the joint likelihood for the ACM-ACD 
model is obtained by summing the ACM and the 
ACD log likelihoods.

• The recursive structure of the model permits 
closed form evaluation of the likelihood function 
subject to initial conditions.

( )( ) ( )∑ ∑∑
= ==

′==
N

i

N

i
ii

K

j
ijij xxL

1 11

~log~~log~ ππ
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Several models are estimated in the paper. A simple to general
model selection procedure suggests an ACM(3,3,3)-ACD(2,2).
There are a lot of parameters estimated so I won’t show them here.  
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Implied relationship between trade 
intervals and price changes.
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Concluding Remarks
• Three general approaches to analyzing high 

frequency financial data.
– Point process
– Tick time
– Fixed interval

• Choice of approach is driven by the 
goal/question

• Relationship between approaches is 
underdeveloped.
– Biases may be present
– Interpretation may be suspect.
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Measuring Transactions Cost

• Market microstructure seeks to understand 
the workings of financial markets.  

• One of the most fundamental features of a 
market is the quality of execution of 
orders.

• An ideal market is one in which market 
participants can transact as costlessly as 
possible. 

How should we measure 
transaction costs?

• Ideally, we would like to examine transaction costs that 
allow for a variety of trading strategies.  

• There is a tradeoff between the cost of immediacy and 
the risk of patiently trading over a longer period of time.
– Typically, the larger the quantity traded at once, the worse the

price obtained.
– Breaking the trade up into small chunks decreases the expected 

cost of the trade, but exposes the trader to risk of movements in 
the underlying.  

• Any measure of transaction cost, however, necessarily 
requires measuring the cost of any individual transaction  
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What is the cost of a single trade?

• Bid-ask spreads are one measure of the 
cost of a single trade.  However, in many 
markets there is room for price 
improvement so that trades often occur 
strictly inside the bid ask spread.

• An alternative measure that accounts for 
price improvement is the effective cost of 
trade. 

Notation

• Let        denote the “efficient price”.  This is the 
price that would prevail in equilibrium in absence 
of any market frictions (ie if at any point in time 
there were a single price at which transactions 
occur).

• Let pi denote the ith transaction price.
• Let Qi denote an indicator for whether the ith

trades is a market buy or sell order taking the 
values 1 and -1 respectively.

tm
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• Then the effective spread is defined as:

• Problems: 
– only in rare data sets to we observe Qi.
– We don’t observe the efficient price.

• Solution
– Use an algorithm to assign trades as buyer or seller initiated.
– Use midpoint of bid ask to proxy for efficient price.
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The vertical distances represent the cost to the trader.
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Roll’s measure

• Let the returns be given by:
i i it t tp m η=

Pr(Qi=1)=Pr(Qi=-1)=.5 and Qi is iid.

Further assume that 

Then the return is given by:

( ) ( ) ( ) ( )1 1 1
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If we additionally assume that the efficient price follows
a martingale difference sequence and is uncorrelated with 
the noise return we get:

( )12 cov ,i is r r −= −So
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Summary of Roll’s measure

• Doesn’t require a reference price like the 
efficient price – only requires transaction prices.

• Can be estimated based on daily data.
However
• Sometimes inconsistent with the data: positive 

covariances are often obtained.
• Strong assumptions regarding dependence 

structure of efficient price and noise process.

• Bandi and Russell (2004) propose an 
estimator that, like Roll’s model only 
requires transactions prices.

• Unlike Roll’s model there can be arbitrary 
dependence in the cost dynamics and 
unrestricted dependence between the 
efficient price and the cost of trade.
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Russell Tsay and Zhang (2002) 
Econometric Modeling Goals

• Model the discrete bid and ask prices.
• Time varying volatility
• Time varying liquidity
• Diurnal patterns

• Address economic questions regarding 
price discovery and liquidity.

Time series models

• Bollerslev and Melvin (1994) propose 
modeling FX data via a GARCH process 
and feeding the GARCH volatilities into an 
ordered probit model for the bid ask 
spread.  

• Engle and Patton (2000) propose an error 
correction model for the bid and ask prices 
where the spread is the correction 
variable.
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Decomposition models for discrete 
bid and ask prices

ttt vmm += −1

( )
( )tt

b
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tt
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t
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β
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+=

Let        denote the log of the “true” efficient price.

Let         and         denote the observed ask and bid price.

Let                and               denote the cost of exposure
on the ask and bid side respectively.  

tbta

),0(~ 2
tt Nv σ

0>tα 0>tβ

tm

Interpretations of the cost

• I will refer to the “cost of bid exposure” and the 
“cost of ask exposure”.

• On the NYSE the specialist chooses bid and ask 
prices at which a maximum quantity can be 
traded.  

• Hence the cost of exposure is the amount the 
specialist is compensated for fixed cost and risk. 
– Large cost low liquidity and vice versa.
– Motivation in other studies to consider the spread as 

a measure of liquidity.
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Special Cases
• If                         ,                  , and 

rounda=roundb=round to the nearest tick   
we get the model of Harris  (1990)

• If there are no costs (c=0) and rounda=roundb=round to 
the nearest tick we get the model for transaction prices 
proposed by Roll (1984)  

• These simple models focused on the effects of discrete 
price observations on volatility estimates for the efficient 
price.

ctt == βα 22 σσ =t

Time varying cost and volatility

• More generally, we would like to let the cost 
functions     and      be time varying denoting 
variability in the cost functions faced by 
traders. 

• A realistic model should also allow for time 
varying volatility (or GARCH effects).  

tα tβ
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Our Model

tt z and , , t
βα νν

µt and ηt are deterministic functions of time of day.
θt are variables with a common impact on both cost functions

are variables that affect the ask and bid sides only 
respectively
δt is the impact of variables on the efficient price

are iid variables and mutually independent

 and t t
α βθ θ

Advantages of Decomposition
• The decomposition models have the advantage of 

allowing for, and potentially providing quantitative 
measures of separate cost functions for the bid side and 
the ask side (the spread measures the sum of the two 
cost functions plus rounding noise)

• The permanent impact of trade characteristics on the 
efficient price mt can be assessed.  (price discovery 
process)

• We can estimate a volatility model for the efficient price 
(not contaminated by discrete measurement).  
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Time
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Related model
• Hasbrouck (1999a, 1999b) proposes and estimates a 

similar model.  His goal is to show that the cost functions 
are asymmetric and time varying both stochastically and 
deterministically.  

• Here we are interested in how characteristics of the 
market impact the dynamics of the cost functions and the 
efficient price.

• In doing so we will learn about market liquidity and price 
discovery.  We pay particular attention to the effects of 
order flow.
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Estimation

The likelihood involves muti-dimensional integration which must
be solved numerically.  We follow Manrique and Sheppard 
(1997) and Hasbrouck (1999b) and use MCMC methods with
uninformative priors.

Estimation details are in the appendix of the paper.

1θ

2θ

s

Parameters of the cost model

Parameters of the Nelson EGARCH model

State vector of unobserved components including
mt, αt, and βt.

The data
• We extract trades from the TORQ data set 

spanning the three 

• Months Nov 90 to Jan 91.

• 84.6% of the bid and ask changes are of 1 tick 
or are unchanged.

• For tractability we follow Hasbrouck and use 
quotes observed just prior to the end of fixed 15 
minute intervals when the model is estimated.
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Market Data
• LogSpread =     log of mean bid-ask spreads over 15 minute 

interval
• LogTPriceVar= log of variance of trade by trade prices over 

interval
• LogVolume+=   log of cumulative positively signed volume 

over interval
• LogVolume-=    log of cumulative negatively signed volume 

over interval
• LogAskDepth= log of mean ask depth over interval
• LogBuyDepth= log of mean buy depth over interval

• The signed volume is obtained using the Lee and Ready rule.

Processing of Market Data
• All market variables contain time of day effects.

• All of the market variables are highly persistent (autocorrelated).  

• To aid interpretation of the model it is useful to decompose the
market variables into their predictable component and the “surprise” 
or innovation.  

• The quote updates may reflect only the surprise element of the 
market variable.

• In this spirit after subtracting off its deterministic component we 
decompose each market variable into its predictable and surprise
components using ARMA(p,q) models.
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• We are left with expected and unexpected 
components of each of the market variables.

• We define two more volume variables:

– Level:  total unanticipated=surprise buyer initiated 
volume + surprise seller initiated volume.

– Pressure:  Unanticipated order imbalance=surprise 
buyer initiated volume – surprise seller initiated 
volume.

– |Pressure|

Specification
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The GED tail parameter can be different overnight as well.
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• Cost equations contain expected and 
unexpected components as well as the level and 
pressure variables.

• The volatility equation contains expected and 
unexpected components.

• The efficient price dynamics contain 
unexpected components only.  It is therefore 
unforcastable and remains a random walk.

Expectations

• The cost equations denote compensation to the 
specialist for exposure to trade.
– Volume effects mixed.
– Volatility increased risk => increased cost of 

exposure.
• Likely order imbalance will be most informative 

for the direction of movements of the efficient 
price.

• Volume and spreads should be informative 
about the volatility of the efficient price.
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Model Building

• Starting with both the predicted and unexpected 
components entering unrestricted into the two 
cost models and the EGARCH  model we use a 
general to simple model selection approach. 

• The predicted components drop out with the 
exception of depth with has a significant 
coefficient on the predictable component, but 
insignificant unexpected component.

Symmetry in the Cost Functions

• Symmetry in the bid and ask dynamics are 
tested.

• Transaction price volatility enters 
symmetrically in cost. 

• Signed volume effects are asymmetric in 
cost models.
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Some Model Diagnostics

• Somewhat extensive model diagnostics 
presented in the paper suggest no 
additional lags are needed in the cost 
model but 2 lags are needed in the 
volatility model.

The final model
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Final Model estimates
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More on Volume
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Order imbalance interpretations

• Unexpectedly large buyer initiated volume 
leads to an increase in the ask cost and a 
decrease in the bid cost.

• Unexpectedly large seller initiated volume 
leads to an increase in the bid cost and a 
decrease in the ask cost.  The increase in 
the bid cost is more than twice that of the 
increase in the ask cost above.

Short sale constraints and volume

• Short sales constraints say that an asset cannot be 
shorted following a downtick.

• Suppose there is bad news about the asset that a 
handful of traders know about.

• After the first informed agent sells no other agent can 
short the stock to capitalize on their better information.

• Hence sell volume may represent only a fraction of the 
volume that traders would like to have transacted if there 
were no short sales constraints.

• Conclusion:  each unit of seller initiated volume should 
have a larger impact than each unit of buyer initiated 
volume.
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Some Caveats

• We have interpreted the results as the 
variables influencing the cost of exposure.

• In fact it could be the other way around.
– Low cost could induce traders and hence 

increase overall volume.
– A movement in the efficient price could induce 

volume pressure.

Conclusions – Cost Function

• High volatility increases both the cost of 
purchasing and selling shares.

• Volume effects on the cost are more complex.
– Unexpectedly high volume generally is associated 

with lower cost.
– Imbalance in unexpected volume has asymmetric 

affects on the cost.
• Excess buyer volume increases the cost on the ask side and 

decreases the cost on the bid side.
• Excess seller volume increases the cost on the bid side a lot

and decreases the cost on the ask side.



21

Conclusions Efficient Price

• Unexpectedly large spreads are associated with 
higher volatility.

• Unexpected volume on either the buy side or the 
sell side increases the volatility. Unexpected 
seller initiated volume tends to have a larger 
immediate impact on volatility.

• Unexpected buyer or seller initiated volume 
changes the efficient price in the way expected. 


