Tutorial lecture 2: System identification

Data driven modeling: Find a good model from noisy data.

Model class: Set of all a priori feasible candidate systems
|dentification procedure: Attach a system from the model class to time
seriesdata y,, t =1,...,T

* Development of procedures
* Evaluation: Asymptotic properties

Semi-nonparametric approach: Model specification leads to a finite
dimensional model (sub)class




Three modules In semi-nonparametric identification

Structure theory: ldealized Problem; we commence from the stochastic
processes generating the data (or their population moments) rather than
from data. Relation between ’external behaviour’ and ’'internal parameters’.

Estimation of real valued parameters: Subclass is assumed to be given,;
parameter space is a subset of an Euclidean space and contains a nonvoid
open set. Estimation e.g. by M-estimators.

Model selection: In general, the orders, the relevant inputs or even the
functional forms are not known a priori and have to be determined from
data. In many cases, this corresponds to estimating a model subclass
within the original model class. This is done, e.g. by estimation of integers,
e.g. using information criteria or test sequences.
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Linear systems

(e¢): white noise (s-dimensional), Ee;e), = X
(x¢): (observed) inputs (m-dimensional)

(u¢): noise to output (s-dimensional), Ex;u, = 0
(y¢): output (s-dimensional)

[(z) is the input-to-output transfer function and k(z) the noise-to-output

transfer function.
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Relation between second moments and ([, &k, Y)

Relation between second (population) moments of the observations and
(I, k,X%):

fo = L folt ok Dok @)

If f, >0,thenl=f,.-f '
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Main model classes for linear systems
AR(X) models: a(z)y; = (d(z)xy) + &

(e¢): white noise, Ec.e; = X, Exel, =0

CL(Z) — ?ZO aijj1 d(Z) — Z;:O de]
Integer parameters: p, r

Real valued parameters: ((ao, ..., ap,do,-..,d,), %), free parameters

Model class: ;
{(ag, . ..,ap,do,...,d,) € R"PED+smr+Didet(q(2)) # 0|z] < 1} x X,
Y C RS(S-I—l)/Q

Relation betw. transfer functions and internal parameters: [ = a='d, k = a™*

Stability condition: det(a(z)) # 0|z| <1
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Main model classes for linear systems
ARMA(X) models: a(z)y; = (d(z)xy) + b(2)ey

(e¢): white noise, Ec;e; = 3, Exie’, = 0

a(z) = Y0_ga;7, d(2) = Yy dj?, b(z) = Yo by

j=0
Integer parameters: e.g. p, q, r

Real valued parameters: ((ao,...,ap,bo,-..,bq, do,...,d),%); free pars

Relation betw. transfer functions and internal parameters: | = a='d, k = a~'b
Stability condition: det(a(z)) # 0|z < 1
Miniphase condition: det(b(z)) # 0|z] < (<)1

Left coprimeness of (a, b, d) and non-redundancy of dynamics ag = bg
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Main model classes for linear systems

State Space (StS) models (in innovations form): s; is the n-dimensional state

St+1 — ASt -+ BEt(—I-th) (3)
Yy = Csi+ e(+Dxy) (4)

Integer parameters: e.g. n
Real valued parameters: ((A, B,C, L, D), )

Relation betw. transfer functions and internal parameters: [(z) = D + C(z~'I — A)"'L,
k(z)=I+C(z'I—-A)"'B

Stability condition: [Amaz(A)] < 1
Miniphase condition: |A;,..(A — BC)| < (<)1

Minimality of (A, B, C) (i.e. n is minimal for given k(z)) <=
(k(B, AB, ..., A" 'B) =k(C', A'C',...,(AY"'C") =n

The state s, is obtained by projecting the future of (y,) onto its past
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Applications

In applications, AR(X) models still dominate because of their advantages

no problems with non-identifiability

maximum likelihood estimates are of least-squares type, asymptotically
efficient and easy to calculate

Their disadvantages are:

less flexible; more parameters may have to be estimated
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Comparison ARMA and state-space systems

ARMA and StS models describe the same class of transfer functions.

Theorem:

Every ARMA system and every StS system has a rational transfer function k(z) that is
causal and stable and satisfies det(k(z)) # 0 |z| < 1.

Conversely, for every rational, causal and stable transfer function k(z) satisfying
det(k(z)) # 0 |z| < 1 there is an ARMA as well as a StS representation.

Relation between second moments and (k, X): f, = 5=k - X - k&

Note:

Due to the stability and miniphase condition, k£ corresponds to the Wold representation.
For X > 0, k(0) = I, k and X are unique for given f,.

For identifiability it remains to give conditions such that (a, b) or (A, B, C) are unique for
given k
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2.1 AR(X) identification (1)
This is classical.

Structure theory:

For X > 0, two AR(X) systems (a, d) and (a, d) are observationally
equivalent if and only if there exists a nonsingular matrix ¢ such that a = ta,

d=td, ¥ =tXt.

Thus identifiability is obtained by assuming ag = I or by suitable ’structural’
restrictions.

Parameter space in the AR case:
2
O = {(a1,...,ap) € R” Pldet(a(z)) # 0, |z| < 1} xX
open subset of rs2

No 'bad’ points in parameter space even for e.g. a, = 0.
ECONOMETRIC FORECASTING AND HIGH-FREQUENCY DATA ANALYSIS, Singapore, May 2004



10

2.1 AR(X) identification (2)

Estimation of real valued parameters:

OLS type estimation for the ag = I case (or for the just identifiable case).
Estimators are consistent and asymptotically efficient.

Simultaneous equations methods (such as TSLS) for the overidentifiable
case.

Model selection:

Estimation of p and selection of inputs (subset selection); see below.
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2.2 Structure theory for ARMA and state-space systems

Relation to internal parameters:

k=a"'(2)b(2) or k(z) = Y72 kj2) where kj = CAI~'Bforj > 1, ko = I.
U = {k| rational, s x s, k(0) = I, no poles for |z| < 1 and no zeros for |z| < 1}
M (n) C Uja: Set of all transfer functions of order n.

Tx. Setofall A, B, C for fixed s, but n variable, satisfying stability + miniphase
assumption.

S(n) C T4: Subset of all (A, B, C) for fixed n.
Sm(n) C S(n): Subset of all minimal (A, B, C).
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2.2 Structure theory for ARMA and state-space systems
m:Ta—Ups:m(A,B,C)=k=C(Iz"'-A)"'B+1I
7 IS surjective but not injective

Note: T4 Is not a good parameter space because:

T4 is infinite dimensional
lack of identifiability

lack of "well posedness”: There exists no continuous selection from the
equivalence classes n~ (k) for T,.
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2.2 Structure theory for ARMA and state-space systems
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2.2 Structure theory for ARMA and state-space systems

Desirable properties of parametrizations:

U, and T4 are broken into bits, U, and T,,, « € I, such that k restricted to T},:
|1, : 1o — U, IS bijective. Then there exists a parametrization v, : U, — T, such that

Yo (m(A,B,C)) = (A, B,C) V(A,B,C) € T,.

U, is finite dimensional in the sense that U, C U}, M (n) for some n.

Well posedness: The parametrization ¢, : U, — T, IS a homeomorphism (pointwise
topology T),; for Uy,).

U, is Ty-open in U,

UaerU, is a cover for Upy.

Examples:

Canonical forms based on M (n), e.g. echelon forms and balanced realizations.
Decomposition of M (n) into sets U,, of different dimension. Nice free parameters vs. nice

spaces of free parameters.
"Overlapping description” of the manifold M (n) by local coordinates.
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2.2 Structure theory for ARMA and state-space systems

"Full parametrization” for state space systems. Here S(n) C R™+208 o Sm(n) are used
as parameter spaces for M (n) or M (n), respectively. Lack of identifiability. The
equivalence classes are n? dimensional manifolds. The likelihood function is constant
along these classes.

Data driven local coordinates (DDLQ: Orthonormal coordinates for the 2ns dimensional
ortho-complement of the tangent space to the equivalence class at an initial estimator.
Extensions: sIsDDLC and orthoDDLC

ARMA systems with prescribed column degrees.

ARMA parametrizations commencing from writing k as ¢~ 'p where c is a least common
denominator polynomial for £ and where the degrees of c and p serve as integer valued
parameters.

In general, state space systems have larger equivalence classes compared to ARMA
systems: More freedom in selection of optimal representatives.

Main unanswered question: Optimal tradeoff between "number” and dimension of the pieces
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2.2 Structure theory for ARMA and state-space systems

Problem: Numerical properties of parametrizations
Different parametrizations:
Y1 : U — T CTa, P2 : Uz — T3 C Ty

For the asymptotic analysis, in the case that U; D U,, U, contains a nonvoid open (in U;) set
and ko € U,, we have:

STATISTICAL ANALYSIS ("real world”):

no essential differences: coordinate free consistency
different asymptotic distributions, but we know the transformation

NUMERICAL ANALYSIS (“integer world”):

The selection from the equivalence class matters
Dependency on algorithm
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2.2 Structure theory for ARMA and state-space systems

Questions:

What are appropriate evaluation criteria for numerical properties?
Which are the optimal parameter spaces (algorithm specific)?

Relation between statistical and numerical precision: curvature of the criterion function:

ECONOMETRIC FORECASTING AND HIGH-FREQUENCY DATA ANALYSIS, Singapore, May 2004



18

2.2 Structure theory for ARMA and state-space systems

Consider the case s = n = 1 where (a, b, c) € R:

Minimality: b £ 0 and ¢ # 0
Equivalence classes of minimal systems: @ = a, b = tb, &
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2.3 Estimation for a given subclass

We here assume that U,, is given.
|dentifiable case: v, : U, — T, has the desirable properties.

T € T, C R%: vector of free parameters for U,,.

n(n+1)
o € X CR 2 :free parameters for X > 0.

Overall parameter space: ©® = T, X X.
Many procedures, at least asymptotically, commence from sample 2"¢ moments of the data

GENERAL FEATURES: 4(s) = T~ Zt i yt+3yt, s >0

Now, 4 can be directly realized as an MA system typically of order T's; kr
IDENTIFICATION:
Projection step (model reduction) : important for statistical qualities.

Realization step.
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2.3 Estimation for a given subclass

M-estimators:

A

Or = argminLp(60;y1, ..., yr)
Direct procedures: Explicit functions.

ECONOMETRIC FORECASTING AND HIGH-FREQUENCY DATA ANALYSIS, Singapore, May 2004



21

2.3 Estimation for a given subclass

GAUSSIAN MAXIMUM LIKELIHOOD:
Lr(0) = T og detl'(0) + T 'y (T)T'1(0) 'y (T)

/ A ) ~
where y(T') = (yy, .- -, yy), Tr(0) =Ey(T;0)y (T;0), ,60r = argming oLz (0)

No explicit formula for MLE, in general.
ET(k, 3) since L1 depends on 7 only via k: parameter free approach.
Boundary points are important.

Whittle likelihood:

T

Pwr(k, o) = logdets + (277)_1/ ir [(k(e—“)zk*(e—“))_11(/\)] i

—Tr

where I(\) is the periodogram.
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2.3 Estimation for a given subclass

EVALUATION:

Coordinate free consistency for kg € U, and
lim T Zt . €t+88t = J9,s20 a.S. for s > 0 we have kr — ko a.s. and 37 — X a.s.

Consistency proof: basic idea Wald (1949) for i.i.d. case.
Noncompact parameter spaces:

. _ 0
lim Lp(k,0) = L(k,o0) = log detX + (27) 1/
T—o0

— T

tr l(l{(e_i)‘)Ek*(e—M)) -t <k0(e_i>‘)20k6(e_i)‘)>] dAa.s.
®)

* L has a unique minimum at kg, X.

* (l%T, i]T) enters a compact set, uniform convergence in (5).

Generalized, coordinate free consistency for kg & UL, (I%T, ﬁ]T) — D a.s D: Set of all
best approximants to kg, 3o in U, X X.

Consistency in coordinates: wa(l%T) = 7 — 7o = Pa(ko) a.s.
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2.3 Estimation for a given subclass
CLT:
Under E(8t|Ft_1) = 0 and E(E—ft@“Ft_l) = Yo, WE have

VI(Gr—m) ¢ NOV)

Idea of proof. Cramer (1946) i.i.d. case: Linearization.

Direct Estimators:

IV Methods, subspace methods: Numerically faster, in many cases not
asymptotically efficient.

CALCULATIONS OF ESTIMATES

Usual procedure: consistent initial estimator (e.g. IV or subspace estimator) +
one Gauss-Newton step gives an asymptotically efficient procedure (e.g.
Hannan-Rissanen)
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2.3 Estimation for a given subclass
HOWEVER THERE ARE STILL PROBLEMS

Problem of local minima: “good” initial estimates are required

Numerical problems: Optimization over a grid

Statistical accuracy may be higher than numerical accuracy

Valleys close to equivalence classes corresponding to lower dimensional
systems

“Intelligent” parametrization may help DDLCs and extensions:

Data driven selection of coordinates from an uncountable number of
possibilities

Only locally homeomorphic

“Curse of dimensionality”
lower dimensional parametrizations (e.g. reduced rank models)

concentration of the likelihood function by a least squares step.
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2.4 Model selection

Automatic vs. nonautomatic procedures.

Information criteria: Formulate tradeoff between fit and complexity. Based on e.g. Bayesian
arguments, coding theory . ..

Order estimation (or more general closure nested case): n; < no implies M(nl) C M(?’Lg)
and dim(M (n1)) <dim(M (n2)).

Criteria of the form A(n) = log detX(n) + 2ns - ¢(T) - T~ where X1(n) is the MLE for
Yo over M(n) x X; ¢(T) = 2: AIC criterion; ¢(T') = c-logT’, ¢ > 1: BIC criterion

Estimator: np =argminA(n)

(T)

Statistical evaluation: nur Is consistent for limr .o, = = 0, lim inf7_. o(T)

logT

> 0

Evaluation of uncertainty coming from model selection for estimators of real valued
parameters.
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2.4 Model selection

Note: Complexity is in the eye of the beholder. Consider e.g. AR models for s = 1:
Yt + a1yi—1 + a2yr—2 = €¢

Parameter Spaces:

T = {(a1,a2) € R®*|1 + a1z + as2* # Ofor |z| < 1}
To = {(0,0)}

T = {(a1,0)||as| < 1,a1 # 0}

T, =T — (Ty UTY)
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2.4 Model selection

Bayesian justification:

Positive priors for all classes, otherwise MLE is asymptotically normal

Certain properties of U,,, o € I are needed, e.g. for BIC to give consistent
estimators: closure nestedness, e.g. ny > no = M(ny) D M(ns3)

Main open question:

Optimal tradeoff between dimension and "number” of pieces.
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2.4 Model selection

Problem: Properties of post model selection estimators

The statistical analysis of the MLE 7 traditionally does not take into account the additional
uncertainty coming from model selection.
This may result in very misleading conclusions

Consider AR case (nested): y; = a1yi—1 + . . . + apyi—p + €+, Where
T, = {(a1,...,ap,) € RP|stability}

The estimator (LS) for given pis 7, = (X (p)' X (p)) ' X(p)y
The post model selection estimator is
0 a1(1) a1(p)

e - 1{13:0} + 5 1{13:1} SRRy A E 1{I5=p}
0 0 ap(p)

Main problem: Essential lack of uniformity in convergence of finite sample distributions.
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