
Tutorial lecture 2: System identification

Data driven modeling: Find a good model from noisy data.

• Model class: Set of all a priori feasible candidate systems

• Identification procedure: Attach a system from the model class to time
series data yt, t = 1, . . . , T

? Development of procedures
? Evaluation: Asymptotic properties

Semi-nonparametric approach: Model specification leads to a finite
dimensional model (sub)class
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Three modules in semi-nonparametric identification

• Structure theory: Idealized Problem; we commence from the stochastic
processes generating the data (or their population moments) rather than
from data. Relation between ’external behaviour’ and ’internal parameters’.

• Estimation of real valued parameters: Subclass is assumed to be given;
parameter space is a subset of an Euclidean space and contains a nonvoid
open set. Estimation e.g. by M-estimators.

• Model selection: In general, the orders, the relevant inputs or even the
functional forms are not known a priori and have to be determined from
data. In many cases, this corresponds to estimating a model subclass
within the original model class. This is done, e.g. by estimation of integers,
e.g. using information criteria or test sequences.
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Linear systems

• (εt): white noise (s-dimensional), Eεtε
′
t = Σ

• (xt): (observed) inputs (m-dimensional)

• (ut): noise to output (s-dimensional), Extu
′
s = 0

• (yt): output (s-dimensional)

l(z) is the input-to-output transfer function and k(z) the noise-to-output
transfer function.
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Relation between second moments and (l, k,Σ)

Relation between second (population) moments of the observations and
(l, k,Σ):

fyx = l · fx (1)

fy = l · fx · l∗ +
1
2π

k · Σ · k∗ (2)

If fx > 0, then l = fyx · f−1
x .
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Main model classes for linear systems
AR(X) models: a(z)yt = (d(z)xt) + εt

• (εt): white noise, Eεtε
′
t = Σ, Extε

′
s = 0

• a(z) =
∑p
j=0 ajz

j, d(z) =
∑r
j=0 djz

j

• Integer parameters: p, r

• Real valued parameters: ((a0, . . . , ap, d0, . . . , dr),Σ); free parameters

Model class:
{(a0, . . . , ap, d0, . . . , dr) ∈ Rs2(p+1)+sm(r+1)|det(a(z)) 6= 0|z| ≤ 1} × Σ,
Σ ⊂ Rs(s+1)/2

Relation betw. transfer functions and internal parameters: l = a−1d, k = a−1

Stability condition: det(a(z)) 6= 0|z| ≤ 1
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Main model classes for linear systems
ARMA(X) models: a(z)yt = (d(z)xt) + b(z)εt

• (εt): white noise, Eεtε
′
t = Σ, Extε

′
s = 0

• a(z) =
∑p
j=0 ajz

j, d(z) =
∑r
j=0 djz

j, b(z) =
∑q
j=0 bjz

j

• Integer parameters: e.g. p, q, r

• Real valued parameters: ((a0, . . . , ap, b0, . . . , bq, d0, . . . , dr),Σ); free pars

Relation betw. transfer functions and internal parameters: l = a−1d, k = a−1b

Stability condition: det(a(z)) 6= 0|z| ≤ 1

Miniphase condition: det(b(z)) 6= 0|z| ≤ (<)1

Left coprimeness of (a, b, d) and non-redundancy of dynamics a0 = b0
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Main model classes for linear systems
State Space (StS) models (in innovations form): st is the n-dimensional state

st+1 = Ast + Bεt(+Lxt) (3)

yt = Cst + εt(+Dxt) (4)

• Integer parameters: e.g. n
• Real valued parameters: ((A,B,C, L,D),Σ)

Relation betw. transfer functions and internal parameters: l(z) = D + C(z−1I − A)−1L,
k(z) = I + C(z−1I − A)−1B

Stability condition: |λmax(A)| ≤ 1

Miniphase condition: |λmax(A− BC)| < (≤)1

Minimality of (A,B,C) (i.e. n is minimal for given k(z)) ⇐⇒
rk(B,AB, . . . , An−1B) =rk(C ′, A′C ′, . . . , (A′)n−1C ′)′ = n

The state st is obtained by projecting the future of (yt) onto its past
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Applications

In applications, AR(X) models still dominate because of their advantages

• no problems with non-identifiability

• maximum likelihood estimates are of least-squares type, asymptotically
efficient and easy to calculate

Their disadvantages are:

• less flexible; more parameters may have to be estimated
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Comparison ARMA and state-space systems
ARMA and StS models describe the same class of transfer functions.

Theorem:

• Every ARMA system and every StS system has a rational transfer function k(z) that is
causal and stable and satisfies det(k(z)) 6= 0 |z| ≤ 1.

• Conversely, for every rational, causal and stable transfer function k(z) satisfying
det(k(z)) 6= 0 |z| ≤ 1 there is an ARMA as well as a StS representation.

Relation between second moments and (k,Σ): fy = 1
2πk · Σ · k∗

Note:

• Due to the stability and miniphase condition, k corresponds to the Wold representation.

• For Σ > 0, k(0) = I, k and Σ are unique for given fy.

• For identifiability it remains to give conditions such that (a, b) or (A,B,C) are unique for
given k
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2.1 AR(X) identification (1)
This is classical.

Structure theory:

• For Σ > 0, two AR(X) systems (ā, d̄) and (a, d) are observationally
equivalent if and only if there exists a nonsingular matrix t such that ā = ta,
d̄ = td, Σ̄ = tΣt′.

• Thus identifiability is obtained by assuming a0 = I or by suitable ’structural’
restrictions.

• Parameter space in the AR case:
Θ = {(a1, . . . , ap) ∈ Rs

2p|det(a(z)) 6= 0, |z| ≤ 1}︸ ︷︷ ︸
open subset of Rs2p

×Σ

• No ’bad’ points in parameter space even for e.g. ap = 0.
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2.1 AR(X) identification (2)

Estimation of real valued parameters:

• OLS type estimation for the a0 = I case (or for the just identifiable case).

• Estimators are consistent and asymptotically efficient.

• Simultaneous equations methods (such as TSLS) for the overidentifiable
case.

Model selection:

• Estimation of p and selection of inputs (subset selection); see below.
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2.2 Structure theory for ARMA and state-space systems

Relation to internal parameters:

k = a−1(z)b(z) or k(z) =
∑∞
j=0 kjz

j where kj = CAj−1B for j ≥ 1, k0 = I.

UA = {k| rational, s× s, k(0) = I, no poles for |z| ≤ 1 and no zeros for |z| < 1}

M(n) ⊂ UA: Set of all transfer functions of order n.

TA: Set of all A,B, C for fixed s, but n variable, satisfying stability + miniphase
assumption.

S(n) ⊂ TA: Subset of all (A,B, C) for fixed n.

Sm(n) ⊂ S(n): Subset of all minimal (A,B,C).
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2.2 Structure theory for ARMA and state-space systems

π : TA → UA : π(A,B, C) = k = C(Iz−1 −A)−1B + I

π is surjective but not injective

Note: TA is not a good parameter space because:

• TA is infinite dimensional

• lack of identifiability

• lack of ”well posedness”: There exists no continuous selection from the
equivalence classes π−1(k) for Tα.
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2.2 Structure theory for ARMA and state-space systems
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2.2 Structure theory for ARMA and state-space systems
Desirable properties of parametrizations:

• UA and TA are broken into bits, Uα and Tα, α ∈ I, such that k restricted to Tα:
π|Tα : Tα → Uα is bijective. Then there exists a parametrization ψα : Uα → Tα such that
ψα(π(A,B,C)) = (A,B,C) ∀(A,B,C) ∈ Tα.

• Uα is finite dimensional in the sense that Uα ⊂ ∪ni=1M(n) for some n.
• Well posedness: The parametrization ψα : Uα → Tα is a homeomorphism (pointwise

topology Tpt for UA).
• Uα is Tpt-open in Ūα.
• ∪α∈IUα is a cover for UA.

Examples:

• Canonical forms based on M(n), e.g. echelon forms and balanced realizations.
Decomposition of M(n) into sets Uα of different dimension. Nice free parameters vs. nice
spaces of free parameters.

• ”Overlapping description” of the manifold M(n) by local coordinates.
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2.2 Structure theory for ARMA and state-space systems

• ”Full parametrization” for state space systems. Here S(n) ⊂ Rn
2+2ns or Sm(n) are used

as parameter spaces for M̄(n) or M(n), respectively. Lack of identifiability. The
equivalence classes are n2 dimensional manifolds. The likelihood function is constant
along these classes.

• Data driven local coordinates (DDLC): Orthonormal coordinates for the 2ns dimensional
ortho-complement of the tangent space to the equivalence class at an initial estimator.
Extensions: slsDDLC and orthoDDLC

• ARMA systems with prescribed column degrees.

• ARMA parametrizations commencing from writing k as c−1p where c is a least common
denominator polynomial for k and where the degrees of c and p serve as integer valued
parameters.

In general, state space systems have larger equivalence classes compared to ARMA
systems: More freedom in selection of optimal representatives.

Main unanswered question: Optimal tradeoff between ”number” and dimension of the pieces
Uα.
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2.2 Structure theory for ARMA and state-space systems
Problem: Numerical properties of parametrizations

Different parametrizations:

ψ1 : U1 → T1 ⊂ TA, ψ2 : U2 → T2 ⊂ TA

For the asymptotic analysis, in the case that U1 ⊃ U2, U2 contains a nonvoid open (in U1) set
and k0 ∈ U2, we have:

STATISTICAL ANALYSIS (”real world”):

• no essential differences: coordinate free consistency

• different asymptotic distributions, but we know the transformation

NUMERICAL ANALYSIS (”integer world”):

• The selection from the equivalence class matters

• Dependency on algorithm
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2.2 Structure theory for ARMA and state-space systems
Questions:

• What are appropriate evaluation criteria for numerical properties?

• Which are the optimal parameter spaces (algorithm specific)?

Relation between statistical and numerical precision: curvature of the criterion function:

ECONOMETRIC FORECASTING AND HIGH-FREQUENCY DATA ANALYSIS, Singapore, May 2004



18

2.2 Structure theory for ARMA and state-space systems
Consider the case s = n = 1 where (a, b, c) ∈ R3:

• Minimality: b 6= 0 and c 6= 0

• Equivalence classes of minimal systems: ā = a, b̄ = tb, c̄ = ct−1, t ∈ R \ {0}
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2.3 Estimation for a given subclass
We here assume that Uα is given.

Identifiable case: ψα : Uα → Tα has the desirable properties.

τ ∈ Tα ⊂ Rdα: vector of free parameters for Uα.

σ ∈ Σ ⊂ R
n(n+1)

2 : free parameters for Σ > 0.

Overall parameter space: Θ = Tα × Σ.

Many procedures, at least asymptotically, commence from sample 2nd moments of the data

GENERAL FEATURES: γ̂(s) = T−1 ∑T−s
t=1 yt+sy

′
t, s ≥ 0

Now, γ̂ can be directly realized as an MA system typically of order Ts; ˆ̂
kT

IDENTIFICATION:

Projection step (model reduction) : important for statistical qualities.

Realization step.
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2.3 Estimation for a given subclass

• M-estimators:
θ̂T = argminLT (θ; y1, . . . , yT )

• Direct procedures: Explicit functions.
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2.3 Estimation for a given subclass
GAUSSIAN MAXIMUM LIKELIHOOD:

L̂T (θ) = T
−1log detΓT (θ) + T

−1
y
′
(T )ΓT (θ)

−1
y(T )

where y(T ) = (y′1, . . . , y
′
T )
′, ΓT (θ) = Ey(T ; θ)y

′
(T ; θ), , θ̂T = argminθ∈ΘL̂T (θ)

• No explicit formula for MLE, in general.

• L̂T (k,Σ) since L̂T depends on τ only via k: parameter free approach.

• Boundary points are important.

Whittle likelihood:

L̂W,T (k, σ) = log detΣ + (2π)
−1

∫ π

−π
tr

[(
k(e

−iλ
)Σk

∗
(e
−iλ

)
)−1

I(λ)

]
dλ

where I(λ) is the periodogram.

ECONOMETRIC FORECASTING AND HIGH-FREQUENCY DATA ANALYSIS, Singapore, May 2004



22

2.3 Estimation for a given subclass
EVALUATION:

• Coordinate free consistency: for k0 ∈ Uα and

limT−1 ∑T−s
t=1 εt+sε

′
t = δ0,sΣ0 a.s. for s ≥ 0 we have k̂T → k0 a.s. and Σ̂T → Σ0 a.s.

Consistency proof: basic idea Wald (1949) for i.i.d. case.
Noncompact parameter spaces:

lim
T→∞

L̂T (k, σ) = L(k, σ) = log detΣ + (2π)
−1

∫ π

−π
tr

[(
k(e

−iλ
)Σk

∗
(e
−iλ

)
)−1 (

k0(e
−iλ

)Σ0k
∗
0(e

−iλ
)
)]
dλa.s.

(5)

? L has a unique minimum at k0, Σ0.
? (k̂T , Σ̂T ) enters a compact set, uniform convergence in (5).

• Generalized, coordinate free consistency for k0 6∈ Ūα, (k̂T , Σ̂T ) → D a.s D: Set of all
best approximants to k0,Σ0 in Ūα × Σ.

• Consistency in coordinates: ψα(k̂T ) = τ̂T → τ0 = ψα(k0) a.s.
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2.3 Estimation for a given subclass
• CLT:

Under E(εt|Ft−1) = 0 and E(εtε′t|Ft−1) = Σ0, we have
√

T (τ̂T − τ0)
d
−→ N(0, V )

Idea of proof: Cramer (1946) i.i.d. case: Linearization.

Direct Estimators:

IV Methods, subspace methods: Numerically faster, in many cases not
asymptotically efficient.

CALCULATIONS OF ESTIMATES

Usual procedure: consistent initial estimator (e.g. IV or subspace estimator) +
one Gauss-Newton step gives an asymptotically efficient procedure (e.g.
Hannan-Rissanen)
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2.3 Estimation for a given subclass
HOWEVER THERE ARE STILL PROBLEMS

• Problem of local minima: “good” initial estimates are required

• Numerical problems: Optimization over a grid
Statistical accuracy may be higher than numerical accuracy
Valleys close to equivalence classes corresponding to lower dimensional
systems
“Intelligent” parametrization may help DDLC’s and extensions:
Data driven selection of coordinates from an uncountable number of
possibilities
Only locally homeomorphic

• “Curse of dimensionality”
lower dimensional parametrizations (e.g. reduced rank models)
concentration of the likelihood function by a least squares step.
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2.4 Model selection
Automatic vs. nonautomatic procedures.

Information criteria: Formulate tradeoff between fit and complexity. Based on e.g. Bayesian
arguments, coding theory . . .

Order estimation (or more general closure nested case): n1 < n2 implies M̄(n1) ⊂ M̄(n2)

and dim(M(n1)) <dim(M(n2)).

Criteria of the form A(n) = log detΣ̂T (n) + 2ns · c(T ) · T−1 where Σ̂T (n) is the MLE for
Σ0 over M̄(n)× Σ; c(T ) = 2: AIC criterion; c(T ) = c·logT, c ≥ 1: BIC criterion

Estimator: n̂T =argminA(n)

Statistical evaluation: n̂T is consistent for limT→∞
c(T )
T = 0, lim infT→∞

c(T )

logT > 0

Evaluation of uncertainty coming from model selection for estimators of real valued
parameters.
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2.4 Model selection
Note: Complexity is in the eye of the beholder. Consider e.g. AR models for s = 1:
yt + a1yt−1 + a2yt−2 = εt

Parameter spaces:

T = {(a1, a2) ∈ R2|1 + a1z + a2z
2 6= 0 for |z| ≤ 1}

T0 = {(0, 0)}

T1 = {(a1, 0)||a1| < 1, a1 6= 0}

T2 = T − (T0 ∪ T1)
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2.4 Model selection

Bayesian justification:

• Positive priors for all classes, otherwise MLE is asymptotically normal

• Certain properties of Uα, α ∈ I are needed, e.g. for BIC to give consistent
estimators: closure nestedness, e.g. n1 > n2 ⇒ M(n1) ⊃ M(n2)

Main open question:

• Optimal tradeoff between dimension and ”number” of pieces.
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2.4 Model selection
Problem: Properties of post model selection estimators

• The statistical analysis of the MLE τ̂T traditionally does not take into account the additional
uncertainty coming from model selection.

• This may result in very misleading conclusions

Consider AR case (nested): yt = a1yt−1 + . . .+ apyt−p + εt, where
Tp = {(a1, . . . , ap)

′ ∈ Rp|stability}

The estimator (LS) for given p is τ̂p =
(
X(p)′X(p)

)−1
X(p)y

The post model selection estimator is

τ̃ =

 0
...
0

 1{p̂=0} +

 â1(1)
...
0

 1{p̂=1} + . . .+

 â1(p)
...

âp(p)

 1{p̂=p}

Main problem: Essential lack of uniformity in convergence of finite sample distributions.
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