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Tutorial lecture 3
Reducing the dimension of the parameter space: Factor

Models

Modeling of comovement or of relations between single time series in
multivariate time series. Here we consider (static and dynamic)

• Principal component models

• Frisch or idiosyncratic noise model

• Reduced rank regression
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3.1 The basic framework:

We restrict ourselves to the stationary case:

yt = Λ(z)ξt + ut, Eξtu
′
s = 0 (1)

where
yt . . . observations (n–dim.)
ξt . . . factors (unobserved) (r << n–dim.)
Λ(z) =

∑∞
j=−∞Λjz

j, Λj ∈ Rn×r . . . factor loadings
ŷt = Λ(z)ξt . . . latent variables
Λ = Λ0 . . . (quasi-static) case.
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Spectral densities:

fy = ΛfξΛ∗ + fu (2)

Ass.: fy(λ) > 0, fξ(λ) > 0, rkΛ = r

for the quasi-static case we obtain

Σy = ΛΣξΛ∗ + Σu where e.g.Σy = Eyty
′
t (3)

Identifiability questions:

• Identifiability of fŷ = ΛfξΛ∗ and fu

• Identifiability of Λ and fξ
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Estimation of integers and real-valued parameters:

• Estimation of r

• Estimation of the free parameters in Λ, fξ, fu

• Estimation of ξt

Forecasting model for factors:

ξt+1 = a(z)ξt + d(z)xt + εt+1, (εt) white noise,Extε
′
s = 0 (4)

stability condition: det(I − za(z)) 6= 0 |z| ≤ 1
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3.2 Principal Component Analysis

1. The quasi-static case:

Eigenvalue decomposition of Σy:

Σy = OΩO′ = O1Ω1O
′
1︸ ︷︷ ︸

Σŷ

+O2Ω2O
′
2︸ ︷︷ ︸

Σu

,

where Ω1 is the r × r–dim. diogonal matrix containing the r largest
eigenvalues of Σy.
This decomposition is unique for ωr > ωr+1.
A special choice for the factor loading matrix is Λ = O1, then

yt = O1ξt + ut

ξt = O′
1yt, ut = yt −O1O

′
1yt = O2O

′
2yt

Note: Factors are linear functions of yt.
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Estimation:

Determine r from ω1, . . . , ωn

Estimate Λ,Σξ,Σu, ξt from the eigenvalue decomposition of Σ̂y = 1
T

∑T
t=1 yty

′
t
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2. The dynamic case:
We commence from the spectral density fy rather than from Σy

fy(λ) = O1(λ)Ω1(λ)O∗
1(λ)︸ ︷︷ ︸

fŷ(λ)

+O2(λ)Ω2(λ)O∗
2(λ)︸ ︷︷ ︸

fu(λ)

,

then
yt = O1(z)ξt + ut

ξt = O∗
1(z)yt

Note: Here Eu′tut is minimal among all decompositions where rk(Ω(z)) = r
a.e.

Again ξt = O∗
1(z)yt, i.e. factors are linear transformations of (yt)

Problem: In general, the filter O∗
1(z) will be non-causal and non-rational. Thus,

naive forecasting may lead to infeasible forecasts for yt. Restriction to causal
filters is required.
In estimation, we commence from a spectral estimate.
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3.3 The Frisch model

Here the additional assumption fu is diagonal is imposed in (1).

Interpretation: Factors describe the common effects, the noise ut takes into
account the individual effects, e.g. factors describe markets and sector
specific movements and the noise the firm specific movements of stock
returns.

For given ŷt the components of yt are conditionally uncorrelated.
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1. The quasi-static case:

Identifiability: More demanding compared to PCA

Σy = ΛΣξΛ′︸ ︷︷ ︸
Σŷ

+Σu, (Σu) digaonal (5)

Identifiability of Σŷ:

Uniqueness of solution of (5)
for given n and r, the number of equations (i.e. the number of free
elements in Σy) is n(n+1)

2 . The number of free parameters on the r.h.s. is
nr − r(r−1)

2 + n. Now let

B(r) =
n(n + 1)

2
− (nr − r(r − 1)

2
+ n) =

1
2
((n− r)2 − n− r)
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then the following cases may occur:

B(r) < 0 : In this case we might expect non-uniqueness of the
decomposition
B(r) ≥ 0 : In this case we might expect uniqueness of the
decomposition

The argument can be made more precise, in particular, for B(r) > 0
generic uniqueness can be shown.

Given Σy, if Σξ = Ir is assumed, then Λ is unique up to postmultiplication by
orthogonal matrices (rotation).

Note that, as opposed to PCA, here the factors ξt, in general, cannot be
obtained as a function of the observations yt. Thus, the factors have to be
approximated by a linear function of yt. The following two approximations are
used:
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1. The regression method investigated by Thomson:

The idea, here, is to estimate ξt by a linear function of yt such that the
variance of the estimation error, ξt − ξ̂t, is minimal. Therefore, ξ̂t is given by
the regression of ξt onto yt,

ξ̂T
t = Λ′Σ−1

y yt, (6)

since by the above assumptions

Eytξ
′
t = E[(Λξt + ut)ξ′t] = Λ. (7)

As can easily be seen, this estimator is biased in a certain sense, since
E(ξ̂T

t |ξt) = Λ′Σ−1
y (Λξt + E(ut|ξt)) 6= ξt.
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2. Bartlett’s method:

In his method Bartlett suggests to minimize the sum of the standardized
residuals with respect to ξ̂t, i.e.,

min
ξ̂t

(yt − Λξ̂t)′Σ−1
u (yt − Λξ̂t). (8)

Thus, the estimate for ξt is given by

ξ̂B
t = (Λ′Σ−1

u Λ)−1Λ′Σ−1
u yt. (9)

This estimate is unbiased in the same sense as above, if E(ut|ξt) = 0 holds
true, since E(ξ̂B

t |ξt) = (Λ′Σ−1
u Λ)−1Λ′Σ−1

u (Λξt + E(ut|ξt)) = ξt.

ECONOMETRIC FORECASTING AND HIGH-FREQUENCY DATA ANALYSIS, Singapore, May 2004



13
Estimation:
If ξt and ut were Gaussian white noise, then the (negative logarithm of the)
likelihood function has the form

LT (Λ,Σu) =
1
2
T log(det(ΛΛ′ + Σu)) +

1
2

T∑
t=1

y′t(ΛΛ′ + Σu)−1yt =

=
1
2
T log(det(ΛΛ′ + Σu)) +

1
2
T tr((ΛΛ′ + Σu)−1Σ̂y). (10)
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2. The dynamic case:
Here Equation (1) together with the assumption

fu is diagonal.

is considered. Again ut represents the individual influences and ξt the
comovements. The only difference to the previous section is that Λ is now a
dynamic filter and the components of ut are orthogonal to each other for all
leads and lags.
There are still many unsolved problems.

ECONOMETRIC FORECASTING AND HIGH-FREQUENCY DATA ANALYSIS, Singapore, May 2004



15

3.4 Reduced Rank Regression model
Here we consider a regression model of the form

yt+1 = F Gx̃t︸︷︷︸
=ξt+1

+ut+1, t ∈ Z, (11)

where the m̃–dimensional vector process (x̃t) of explanatory variables
contains possibly lagged inputs xt and lagged observed variables yt and (ut)
denotes the n–dimensional noise process. In addition we assume:

(i) (xt) and (ut) are uncorrelated, i.e. Extu
′
s = 0 ∀s, t

(ii) (xt) is stationary with a non-singular spectral density

(iii) (ut) is white noise with Eutu
′
t > 0

(iv) a stability assumption
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Assumption: β = FG is of rank r < min(n, m̃).
Thus, F ∈ Rn×r and G ∈ Rr×m̃ and Gx̃t can be interpreted as the
r–dimensional factor process (ξt+1), the matrix F can be interpreted as the
corresponding factor loading matrix.

Maximum likelihood estimate is obtained by an OLS estimation of β followed
by a weighted singular value decomposition, where only the largest r singular
values are kept.

Identifiability: F is unique only up to postmultiplication by a nonsingular matrix
and an analogous statement holds for G and ξt+1.

Singular value decomposition of β = UΣV ′, where U and V are orthogonal
matrices of dimensions n and m̃, resp., and Σ ∈ Rn×m̃ is the matrix of singular
values, σi, i = 1, . . . ,min(n, m̃), arranged in decreasing order. The strictly
positive singular values are assumed to be different and the singular vectors,
corresponding to these positive singular values, are unique up to sign change
and suitably normalized in order to obtain uniqueness.
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Direct procedure: Let β̂ denote the OLS estimator of β and let β̂ = Û Σ̂V̂ ′

denote its singular value decomposition. The reduced rank estimator of β,
denoted as direct estimator, then is given by

ˆ̂
βD = Û1Σ̂1V̂

′
1 (12)

where Σ̂1 ∈ Rr×r is the matrix formed from the r largest singular values of Σ̂
and Û1 and V̂1, resp., are formed from the first r columns of Û and V̂ , resp.
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Indirect procedure: SVD for a suitably weighted matrix. For a canonical
correlations analysis one would consider

Σ−
1
2

y yt+1 = Σ−
1
2

y βΣ
1
2
x̃Σ−

1
2

x̃ x̃t + Σ−
1
2

y ut+1. (13)

Replacing the population second moments by their sample counterparts,
consider the SVD

Σ̂−
1
2

y β̂Σ̂
1
2
x̃ = Û Σ̂V̂ ′ (14)

where β̂ is the least squares estimator. Note, Û , Σ̂ and V̂ are different from Û ,
Σ̂ and V̂ mentioned above. Retaining only the r largest singular values one
obtains (using an obvious notation)

ˆ̂
βI = Σ̂

1
2
yÛ1Σ̂1V̂

′
1Σ̂

−1
2

x̃ , (15)

where again Û1, Σ̂1 and V̂1 are different from Û1, Σ̂1 and V̂1 in Equation (12).
Furthermore, note that (15) is the ML estimate if there are no lagged variables
of yt contained in x̃t.
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Model specification: Selection of input variables out of a possibly large set of
candidate inputs, specification of the dynamics of the inputs and outputs and
the number of factors. AIC or BIC-type criterion of the form

AIC(m̃, r) = log det Σ̂u(m̃,r) + d(m̃, r)
2
T

BIC(m̃, r) = log det Σ̂u(m̃,r) + d(m̃, r)
log T

T
,

where d(m̃, r) = nr + rm̃− r2 is the number of free parameters in β for a
given specification and Σ̂u(m̃,r) is the one step ahead (in sample) prediction
error variance covariance matrix corresponding to the specification indicated
and to one of the estimation procedures described above.
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