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1. INTRODUCTION

Problem: Forecasting of returns

rt = pt−pt−1

pt−1
, t = 1, . . . , T

pt . . . prices of financial assets, in particular, prices of shares.

This is important for ‘active’ portfolio management

‘Classical theory’:

E(pt+1|pt, pt−1, . . .) = pt Weak form efficiency

or

E(pt+1|It) = pt Semi-strong efficiency,

It publically available information at time t
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Question: Can we find ‘better’ forecasting models from data?

(Can we beat the market?)

Main issues and problems in statistical modeling:

1. Input selection

2. Modeling of dynamics

3. Possible nonlinearities

4. Structural changes

5. Outliers

6. Forecast evaluation

Research unit for Econometrics and System Theory - University of Technology, Vienna –3–
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2. THE MODELS

In order to forecast the n–dimensional vector process (yt) we make use of several

kinds of factor models.

The main feature of factor models is that the vector of observed variables is

explained by linear combinations of a small, say r << n, number of factors.

yt+1 = Λξt+1 + ut+1 (1)

(yt) . . . n–dim. process of observed variables

(ξt) . . . r–dim. factor process

(ut) . . . n–dim. noise process

Λ ∈ R
n×r . . . matrix of factor loadings

Research unit for Econometrics and System Theory - University of Technology, Vienna –4–
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General Assumptions:

• (ξt) and (ut) are linearly regular, jointly stationary and ergodic processes with

means zero.

• Σξ = Eξtξ
′
t > 0.

• Eξtu
′
s = 0 for all t ≤ s.

Then the variance-covariance matrix of yt, Σy , may be written as

Σy = ΛΣξΛ
′ + Σu. (2)

The assumptions imposed so far, however, do not determine a reasonable model

class. In order to obtain reasonable model classes further assumptions have to be

imposed.

Research unit for Econometrics and System Theory - University of Technology, Vienna –5–
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Quasi static principal components (PCA) model:

Additional Assumption (PCA):

• The factor ξt and the loading matrix Λ are obtained by minimizing

Eu′
tut = tr(Σu) over all rank r matrices Λ and all Σξ of rank r for given Σy .

An optimal solution to this problem is given by an eigenvalue decomposition of Σy ,

Σy = OΩO′ = O1Ω1O
′
1

︸ ︷︷ ︸

=ΛΣξΛ′

+ O2Ω2O
′
2

︸ ︷︷ ︸

=Σu

, (3)

where Ω = diag(ω1, . . . , ωn) is the diagonal matrix of eigenvalues, with ωi > ωj

for all j > i, O = [O1, O2] is an orthogonal matrix of eigenvectors and O′ its

transpose.

Implying Λ = O1, ξt = O′
1yt and ut = O2O

′
2yt.
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Estimation of the factors and loadings:

Estimates for Λ and ξt are obtained by substituting the population

variance-covariance matrix Σy by the sample variance-covariance matrix

Σ̂T
y = 1

T

∑T

t=1 yty
′
t = ÔT Ω̂T Ô′

T , where T denotes sample size.

Due to the ergodicity of (yt) and the fact that the eigenvalues as well as the

normalized eigenvectors are continuous functions of Σ̂T
y it follows that the estimates

for the factors and the loadings are given by ξ̂t = Ô′
1,T yt and Λ̂ = Ô1,T .

Research unit for Econometrics and System Theory - University of Technology, Vienna –7–
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Forecasting the factors:

For forecasting the factor process (ξt), here, we use an ARX model of the form

ξt+1 = A(z)ξt + D(z)xt + εt+1, (4)

where A(z) and D(z) are polynomial matrices in the backward shift operator z of

order p and q, resp., and the stability condition

det(I − z(A(z))) 6= 0 for all |z| ≤ 1 (5)

holds.

Assumptions (Forecasting Model):

• (εt) is white noise.

• (xt) is an m–dimensional linearly regular, stationary and ergodic process with

nonsingular spectral density and mean zero and Extε
′
s = 0 for all t, s ∈ Z.

• Furthermore we assume, that Extu
′
s = 0 for all t, s ∈ Z.

Research unit for Econometrics and System Theory - University of Technology, Vienna –8–
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Forecasting the n–dim. process (yt):

The one-step ahead forecasts of yt+1 are then obtained as ŷt+1|t = Λ̂ξ̂t+1|t,

where ξ̂t+1|t are the one-step ahead forecasts of ξt+1 based on Equation (4).

Thus, ξ̂t+1|t = F̂ η̂t, where

F = [A0 A1 . . . Ap D0 D1 . . . Dq] ∈ R
r×[(p+1)r+(q+1)m],

ηt = (ξ′t, ξ
′
t−1, . . . , ξ

′
t−p, x

′
t, x

′
t−1, . . . , xt−q)

′,

F̂ =
∑t−1

s=1(ξ̂s+1η̂
′
s)(

∑t−1
s=1(η̂sη̂

′
s))

−1 and η̂t is defined analogously to ξ̂t.

Note, that this predictor is not the (linearly least squares) optimal forecast of yt+1

given its past, because ut may contain further forecasting information.

Research unit for Econometrics and System Theory - University of Technology, Vienna –9–
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Quasi static factor model with idiosyncratic noise (IN):

Additional Assumptions (IN):

• Σu is diagonal.

• Σξ = Ir , the identity.

The idea behind the first assumption is to attribute the joint effects to the factors and

the individual effects to the noise.

In spite of the second assumption two identifiability problems arise in estimating the

loading matrix Λ:

(i) Obtain ΛΛ′ from Σy .

(ii) Obtain Λ from ΛΛ′.

Research unit for Econometrics and System Theory - University of Technology, Vienna –10–
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Ad (i): one can show that if r ≤ 2n+1
2 −

√

( 2n+1
2 )2 − (n2 − n), the so-called

Ledermann bound, then ΛΛ′ is generically unique from Σy .

Ad (ii): If a partition of Σy has been found, then (under the assumption that Λ has

rank r) Λ is uniquely determined from ΛΛ′ up to postmultiplication by an arbitrary

orthogonal matrix M :

- The normalization Λ′Σ−1

u Λ is diagonal, its elements are larger than zero, ordered in

size and distinct ensures that Λ, given by Λ = Σ
1
2
u PQ

1
2 , is unique up to sign changes

in the columns of P , where Q = diag(q1, . . . , qr) is the (r × r)–dimensional matrix of

non-zero eigenvalues of Σ
−

1
2

u (Σy − Σu)Σ
−

1
2

u = Σ
−

1
2

u ΛΛ′Σ
−

1
2

u ≥ 0 and P is the

(n × r)–dimensional matrix of the corresponding eigenvectors, thus P ′P = Ir .

- Other choices for Λ may be obtained from methods like the varimax and the promax

method.

Research unit for Econometrics and System Theory - University of Technology, Vienna –11–
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Estimation of Λ and Σu:

Estimates for Λ and Σu are obtained by iteratively maximizing the function,

LT(Λ,Σu|Σ̂
T
y ) = −

T

2
log detΣy −

T

2
trace(Σ−1

y Σ̂T
y ), (6)

subject to rank(Λ) = r, Σu > 0 and the default normalization condition from

above.

Note, that in case of independent identically normally distributed noise and factors,

the function given in (6) is (up to a constant) the loglikelihood function of yt.

In case of autoregressive factors and noise considered here, (6) however, is not the

likelihood function.

Nevertheless, the estimates Λ̂ and Σ̂u obtained from maximizing (6) can be shown

to be consistent estimates for Λ and Σu, if Σ̂T
y is a consistent estimate of Σy .

Research unit for Econometrics and System Theory - University of Technology, Vienna –12–
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Estimation of the unobserved factors ξt:

In contrast to the PCA model, here, the factors, in general, cannot be obtained

directly as a function of the observed yt and, hence, have to be approximated by

some (linear) function of yt:

1. Regression method by Thomson: approximates the factor process in least

squares sense by some linear combination of yt, obtained from

min
A∈Rn×r

E(ξt − A′yt)(ξt − A′yt)
′. (7)

From the assumptions on p. 5 we obtain A′ = Λ′Σ−1
y and, therefore,

substituting Λ by Λ̂ and Σy by Σ̂y yields ξ̂t = Λ̂′Σ̂−1
y yt.

Research unit for Econometrics and System Theory - University of Technology, Vienna –13–
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2. Bartlett’s method: Bartlett’s idea was to minimize the sum of the squared

standardized residuals with respect to the r–dimensional factor process,

min
ξt

(yt − Λ̂ξt)
′Σ̂−1

u (yt − Λ̂ξt), (8)

giving ξ̂t = (Λ̂′Σ̂−1
u Λ̂)−1Λ̂′Σ̂−1

u yt.

Which method should be chosen?

There is no general rule.

Decision might be based on the properties the estimates of the factor should

possess:

smallest variance −→ Regression method

some kind of unbiasedness −→ Bartlett’s method

Research unit for Econometrics and System Theory - University of Technology, Vienna –14–
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Forecasting the factors:

This is done by an ARX scheme analogously to the PCA case on p. 8.

Forecasting the noise component:

Since the noise is assumed to be idiosyncratic and may be interpreted as asset

specific component, we additionally consider univariate ARX models in order to

predict the noise component,

u
(i)
t+1 = ai(z)u

(i)
t + Di(z)z

(i)
t + ν

(i)
t+1, i = 1, . . . ,n. (9)

Research unit for Econometrics and System Theory - University of Technology, Vienna –15–
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Assumptions (Forecasting the noise component):

• (νt) is white noise.

• (z
(i)
t ) is an mi–dimensional linearly regular, stationary and ergodic process

with nonsingular spectral density and mean zero and Ez
(i)
t ν

(i)′

s = 0 for all t,

s ∈ Z, and i = 1, . . . , n.

• Ez
(i)
t x′

s = 0 for all t, s ∈ Z and i = 1, . . . , n.

• |1 − ai(z)| 6= 0 for all |z| ≤ 1, i = 1, . . . , n.

Research unit for Econometrics and System Theory - University of Technology, Vienna –16–
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The one-step ahead forecasts for u
(i)
t+1 are given by û

(i)
t+1|t = F̂iη̂

(i)
t , where

η̂
(i)
t = (û

(i)′

t , . . . , û
(i)′

t−pi
, z

(i)′

t , . . . , z
(i)′

t−qi
),

F̂i =
∑t−1

s=1(û
(i)
s+1η̂

(i)′

s )(
∑t−1

s=1(η̂
(i)
s η̂

(i)′

s ))−1 and ût = yt − Λ̂ξ̂t.

Finally, one may compute three different types of one-step ahead forecasts for yt+1:

1. ŷI
t+1|t = Λ̂ξ̂t+1|t,

2. ŷII
t+1|t = Λ̂ξ̂t+1|t + ût+1|t

3. ŷIII
t+1|t = ût+1|t.

Research unit for Econometrics and System Theory - University of Technology, Vienna –17–
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Reduced rank regression (RR):

The model is of the form:

yt+1 = FGχt + ut+1, t ∈ Z (10)

where χt = (y′
t, y

′
t−1, . . . , y

′
t−p, x

′
t, x

′
t−1, . . . , x

′
t−q)

′,

(xt) is the m–dimensional process of exogenous variables described above,

ξt+1 = Gχt is the r–dimensional factor process, (r = rank(FG) ≤ n) and

F ∈ R
n×r , G ∈ R

r×(n(p+1)+m(q+1)).

Additional Assumption (RR):

• ut is white noise

Hence (10) is an ARX system with retricted parameters.

Research unit for Econometrics and System Theory - University of Technology, Vienna –18–
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Estimation of the product FG:

The product β = FG is given by

FG = ΣyχΣ−1
χ , (11)

where Σyχ = Eytχt
′ and Σχ = Eχtχt

′.

By replacing Σyχ and Σχ by their sample counterparts

Σ̂yχ = 1
T−1

∑T−1
t=1 yt+1χt

′ and Σ̂χ = 1
T−1

∑T−1
t=1 χtχt

′ we obtain the least

squares estimate β̂ = Σ̂yχΣ̂−1
χ .

Typically rank(β̂) = n, even if r < n holds.

To obtain a rank reduced estimator of β we perform a Singular Value Decomposition

(SVD) of β̂:

β̂ = UΣV ′,

where U and V are orthogonal matrices and Σ ∈ R
n×m is the diagonal matrix of

singular values, σi, i = 1, . . . , n, arranged in decreasing order.

Research unit for Econometrics and System Theory - University of Technology, Vienna –19–
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We consider two methods:

1. Direct estimator:

ˆ̂
βD = U1Σ1V1

′, (12)

where Σ1 ∈ R
r×r is the matrix formed from the r largest singular values of Σ

and U1 and V1, respectively, are formed from the first r columns of U and V,

respectively.

2. Indirect estimator: Here we form the SVD of the weigthed matrix

Σ̂
− 1

2
y β̂Σ̂

1
2
χ = UΣV ′,

where β̂ is the least squares estimator Σ̂yχΣ̂−1
χ . Retaining only the r largest

singular values we obtain (using an obvious notation)

ˆ̂
βI = Σ̂

1

2

y U1Σ1V1
′Σ̂

− 1

2

χ . (13)

Research unit for Econometrics and System Theory - University of Technology, Vienna –20–
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Forecasting the n–dim. process (yt):

Forecasts of yt+1 are obtained from ŷt+1|t = β̂χt.

Analogously to the IN case one might consider forecasting models for the noise part.

Research unit for Econometrics and System Theory - University of Technology, Vienna –21–
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3. MODEL SPECIFICATION

Specification, here, is completely data driven and basically consists of two parts:

• Estimation of the factor dimension r.

• Selection of the explanatory variables from a set of a priori defined candidates.

Due to the high number (compared to sample size) of different model classes that

are compared with respect to fit and complexity one is confronted with two problems

in practice:

• The computational costs may be very high.

• What may be even more serious is that severe overfitting may occur.

Research unit for Econometrics and System Theory - University of Technology, Vienna –22–
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Quasi static principal components (PCA) model:

Determination of r:

• Rule of thumb: r equals the number of eigenvalues of the correlation matrix of

yt that are larger than one.

• Fix r at some small number, e.g. 2 or 3.

Given r̂, estimates for loadings and factors are computed as described on p. 6.

Input selection and specification of the dynamics:

In practice, the number of candidates for explanatory variables, say k, is large.

For model selection we use information criteria (IC) of AIC or BIC type.

In many cases it is not reasonable to search over all possible subsets of the set of

explanatory variables (denoted by Sk). Our model selection procedures are

stepwise procedures based on the idea of An and Gu for single equation models.

Research unit for Econometrics and System Theory - University of Technology, Vienna –23–
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Fast Step Procedure (FSP) for single equation models:

1. Perform a forward procedure to find an IC optimal initial set:

- Search for the IC optimal singleton, denote it S1.

- Search for the IC optimal explanatory variable to be added to S1, giving S2.

- Continue adding explanatory variables to Si−1, until Si = Sk.

- Out of the sets S1, . . . , Sk, the one with the lowest criterion value is chosen

to be the initial set.

2. Given the initial set, add and drop one variable in each step as long as the

criterion value can be decreased, otherwise stop.

Research unit for Econometrics and System Theory - University of Technology, Vienna –24–
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Fast Step Procedure (FSP) for a system of equations:

1. Find some initial set:

- mva method: Apply a forward algorithm to all equations at once, i.e. search

for the IC optimal explanatory variable to be added to all equations until the

criterion value computed for the whole system cannot be reduced anymore.

- univ method: Apply the forward algorithm from above to each single equation

and take the union of the n sets obtained in this way as initial set.

The selection of such an initial set imposes zero restrictions on the elements of

matrix F from p. 9.

2. Add one variable or drop one variable at a time, meaning that in each step of the

procedure zero restrictions on the parameters are canceled or added, as long

as the criterion value of the system can be improved.

Research unit for Econometrics and System Theory - University of Technology, Vienna –25–
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Quasi static factor model with idiosyncratic noise (IN):

Determination of r: The selection of r and the explanatory variables are related:

1. For each r smaller or equal the Ledermann bound the ARX models for the factor

process are specified, analogous to the PCA case.

2. r is chosen to give an optimal trade-off between in-sample explanatory power

for yt and model complexity.

Note:

• In this procedure input selection and dynamic specification for the ARX model is

based on a goodness-of-fit measure for the factor process, whereas

determination of the number of factors is based on a goodness-of-fit measure of

yt.

• The procedure described here could also be applied to the principal

components case.

Research unit for Econometrics and System Theory - University of Technology, Vienna –26–
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Reduced rank regression (RR):

Specification of the number of factors

Inputselection

Specification of dynamics







is performed simultaneously.

The initial number of factors is chosen to be n.

The initial set of explanatory variables is found by applying one of the forward

procedures for systems of equations described above.

Research unit for Econometrics and System Theory - University of Technology, Vienna –27–
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A refinement of the second step of the FSP from p. 25 for this model class is as

follows:

It is not only allowed to add or drop variables from the set, but also to let the number

of factors variate from 1 up to n and to weight observations at time t with some

weighting factor λT−t, λ ∈ (0, 1].

Thus, in each iteration step the IC optimal variable to be added to the set, dropped

from the set, the IC optimal number of factors and the IC optimal weighting factor λ

are determined, giving four ‘optimal’ criterion values. From these four ‘optimal’

specifications again the best is selected. The procedure stops, when the IC value

cannot be improved anymore by any of the four possibilities mentioned.

Research unit for Econometrics and System Theory - University of Technology, Vienna –28–
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4. VALIDATION

Our forecast procedures are ‘honest’, in the sense of being strictly out-of-sample,

i.e. for forecasting yt+1 only data up to time t are used, both for estimation of real

valued parameters and for model specification.

For each dependent variable, y
(i)
t+1, the one-step (here one day) ahead predictors,

ŷ
(i)
t+1|t, and the corresponding prediction errors, û

(i)
t+1 = y

(i)
t+1 − ŷ

(i)
t+1|t, are

calculated from a model identified from data up to time t, using both an extending

and a moving window, respectively.

The estimators of the real valued parameters are updated at every time instance.

The specification is updated every five or every ten days.

Research unit for Econometrics and System Theory - University of Technology, Vienna –29–
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The sample is divided into two parts, 1, . . . , T1 and T1 + 1, . . . , T2. Only the

latter part is used for evaluating the out-of-sample forecasts.

The evaluation sample, T1 + 1, . . . , T2, consists of the last 30% of the whole

sample.

We consider two measures for the quality of the forecasts:

• The out-of-sample coefficient of determination

R2
(i) = 1 − (û(i)− ¯̂u(i))′(û(i)− ¯̂u(i))

(y(i)−ȳ(i))′(y(i)−ȳ(i))
, where û(i) and y(i), respectively, are the

vectors consisting of the components û
(i)
t and y

(i)
t from the validation sample,

t = T1 + 1, . . . , T2, ¯̂u(i) and ȳ(i) denote the respective sample means.

• The out-of-sample hitrate given by,

h(i) = 1
T2−T1

∑T2

t=T1+1 sign(y
(i)
t ŷ

(i)
t|t−1).

These measures should be interpreted with care. A real test of the forecasting

quality in our context would be the evaluation via the profits made from portfolio

optimization.

Research unit for Econometrics and System Theory - University of Technology, Vienna –30–
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5. EMPIRICAL ANALYSIS FOR DAILY SHARE PRICES

Data: Daily close return data for shares of the banking sector in STOXX50E

together with corresponding input data.

The banks are: ABN AMRO (H.AAB), Banco Bilbao (U.BBV), Banco Santander

(E.SCH), HypoVereinsbank (D.HVM), Deutsche Bank (D.DBK), BNP Paribas

(F.BNP), UniCredito (I.UC)

A set of 19 input candidates for the factors is given a priori, containing, among

others, indices for the banking sector, interest rates and futures for indices. The list

of explanatory variables for the factors is composed of present inputs and outputs

together with their lags of order one and five.

Research unit for Econometrics and System Theory - University of Technology, Vienna –31–
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The explanatory variables for the errors are chosen in order to reflect the influences

on the main markets for the corresponding banks, e.g. a bank and financial index for

Eastern Europe for the HypoVereinsbank.

These data are available for us from 16/06/00 to 13/11/02.

Research unit for Econometrics and System Theory - University of Technology, Vienna –32–
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For each model class (PCA, IN and RR resp.) considered we allow for certain design

specifications.

Coding system:

• PCA: “pca[number of principal components].[re-specification period].[initial method

(mva/univ)].[criteria used in the two steps of the FSP].[logical for moving (TRUE) or

expanding (FALSE) window]”

• IN: “in[re-specification period].[factor estimates (regression/Bartlett)]. [rotation

(varimax/promax/default)].[initial method (mva/univ)]. [criteria used in the two steps of the

FSP].[criterion used to specify the number of factors (AIC/BIC)] .[logical for moving

(TRUE) or expanding (FALSE) window]. [orthogonal projection of the explanatory

variables of the error models on the orthocomplement of the inputs of the factor models

(TRUE/FALSE)]”

• RR: “rr[re-specification period].[estimation of β (direct/indirect)]. [initial method

(mva/univ)].[criteria used in the two steps of the FSP]. [logical for moving (TRUE) or

expanding (FALSE) window]. [orthogonal projection of the input variables of the error

models on the orthocomplement of the inputs of the factor models (TRUE/FALSE)]”

Research unit for Econometrics and System Theory - University of Technology, Vienna –33–
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Results:

• As far as the forecasting qualities are concerned there is a clear ranking: PCA is

worst and RR is best, see Table 1 for an example.

• The performance of PCA is far from satisfactory in most cases.

• Choice of the IC is crucial: For IN BICF-BIC.AIC gives the best results and for

RR, BICF-BIC.

• Adding the noise forecasts is helpful in some cases, but may deteriorate the

forecasts in other cases, see Table 2.

• For IN regression gives somewhat better results than Bartlett.

• For RR indirect estimation gives somewhat better results than direct estimation,

see Table 3.

Research unit for Econometrics and System Theory - University of Technology, Vienna –34–
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PCA IN RR

banks R2 hitrate R2 hitrate R2 hitrate

H.AAB 0.03243 0.48947 0.01437 0.54211 0.06873 0.61579

U.BBV -0.07921 0.46842 -0.04040 0.47895 0.00042 0.48421

E.SCH -0.00847 0.50526 -0.02160 0.50526 0.01655 0.57895

D.HVM -0.03152 0.46316 0.02917 0.47895 0.02631 0.53158

D.DBK -0.00721 0.52105 -0.00377 0.53158 0.05968 0.58947

F.BNP 0.03233 0.52632 0.01342 0.52105 0.10100 0.57895

I.UC -0.03411 0.45263 -0.04453 0.48947 0.00924 0.54211

Table 1: The out-of-sample results for pca2.5.mva.BICF.BIC.TRUE,

in10.Bartlett.none.mva.BICF-BIC.BIC.TRUE.FALSE and rr5.direct.BICF-BIC.TRUE.FALSE

considering only forecasts based on the factor part of the models. Note furthermore, that

pca2.5.mva.BICF.BIC.TRUE is one of the best models of all computed PCA models.
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Forecasting with the factor part Forecasting with the factor and noise part

IN RR IN RR

banks R2 hitrate R2 hitrate R2 hitrate R2 hitrate

H.AAB 0.05187 0.56842 0.10062 0.57368 0.04334 0.55789 0.06342 0.60000

U.BBV -0.01701 0.47368 -0.00489 0.44737 0.00325 0.50000 -0.02530 0.44211

E.SCH 0.00976 0.52632 0.04256 0.54211 0.03343 0.53684 0.06387 0.53158

D.HVM 0.06070 0.51579 0.03325 0.48947 0.06724 0.50000 0.04214 0.49474

D.DBK 0.05627 0.54211 0.05914 0.53158 0.05384 0.54211 0.07514 0.54737

F.BNP 0.05906 0.54211 0.11594 0.52105 0.04201 0.56316 0.10915 0.53158

I.UC -0.01234 0.50526 0.02512 0.50526 -0.02815 0.50000 -0.03518 0.50526

Table 2: The out-of-sample results of models in10.regression.default.univ.BICF-

BIC.AIC.TRUE.TRUE and rr10.indirect.BICF-BIC.TRUE.TRUE.
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direct indirect

moving window expanding window moving window expanding window

banks R2 hitrate R2 hitrate R2 hitrate R2 hitrate

H.AAB 0.06873 0.61579 0.06899 0.56842 0.09528 0.57368 0.08564 0.58421

U.BBV 0.00042 0.48421 -0.00571 0.43158 -0.00500 0.45263 -0.00396 0.47368

E.SCH 0.01655 0.57895 0.03012 0.55789 0.03508 0.53684 0.04869 0.53684

D.HVM 0.02631 0.53158 0.03380 0.49474 0.04181 0.50000 0.03948 0.53158

D.DBK 0.05968 0.58947 0.07036 0.57368 0.07339 0.54211 0.08297 0.57895

F.BNP 0.10100 0.57895 0.09290 0.52105 0.11356 0.52105 0.12012 0.55263

I.UC 0.00924 0.54211 0.04310 0.52632 0.01374 0.47368 0.05237 0.54211

Table 3: The out-of-sample results of the models rr5.direct.BICF-BIC.TRUE.TRUE,

rr5.direct.BICF-BIC.FALSE.TRUE, rr5.indirect.BICF-BIC.TRUE.TRUE, rr5.indirect.BICF-

BIC.FALSE.TRUE based of the factor part only.
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6. CONCLUSION

We have investigated three different types of factor models for forecasting daily

close return data:

• Quasi static principal components

• Quasi static factor models with idiosyncratic noise

• Reduced rank regression

The reduced rank models showed the best performance.

Input selection and dynamic specification is an important issue and here has been

performed by modified An-algorithms, where BIC gives the best results. The best

models obtained seem to be of reasonable quality.
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